1
|
Gonçalves F, Letomai RM, Gomes MM, dos Remédios Aguiar Araújo M, Muniz YS, Moreira MS, Boaro LC. Dexamethasone-Functionalized PLLA Membranes: Effects of Layer-by-Layer Coating and Electrospinning on Osteogenesis. Bioengineering (Basel) 2025; 12:130. [PMID: 40001650 PMCID: PMC11852168 DOI: 10.3390/bioengineering12020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
The addition of dexamethasone in membranes for guided bone regeneration is promising due to its dual effect: (1) anti-inflammatory action and (2) induction of osteogenesis in host stem cells. Electrospun fiber coating with dexamethasone using the layer-by-layer (LBL) technique offers an interesting alternative for the gradual release of the drug, aiming for enhanced osteodifferentiation activity. This study aimed to develop synthetic poly-L-lactide (PLLA) membranes with dexamethasone incorporated into the fibers or coated on their surface, and to evaluate the drug release rate, as well as the material's ability to promote proliferation, osteoconduction, and osteodifferentiation of human periodontal ligament stem cells (hPDLSCs). PLLA membranes were produced by electrospinning. Dexamethasone was incorporated using three techniques: (A) electrospinning of a co-solution of PLLA with 2.5 w/w% dexamethasone; (B) deposition of four layers on the PLLA membrane using alternating solutions of chitosan and heparin/dexamethasone; (C) deposition of 10 layers on the PLLA membrane using the same solutions. hPDLSC proliferation was measured via CCK-8 at 1, 7, 14, and 21 days. Cellular differentiation was assessed by alkaline phosphatase activity (7 days) and alizarin red staining (21 days) in clonogenic and osteogenic media (ODM). Data were analyzed using one or two-way ANOVA and Tukey test. Electrospun membranes with dexamethasone and those with 4 layers showed immediate drug release within 24 h, whereas 10 layers exhibited gradual release over 14 days. Cumulative drug release was higher for electrospun membranes at 1 and 7 days, similar to 10 layers at 14 and 21 days. The 4 LBL membrane promoted lower hPDLSC proliferation compared to the 10 LBL and electrospun membranes at 21 days but showed increased extracellular matrix mineralization in osteogenic media. No significant differences in alkaline phosphatase expression were observed between materials. Therefore, the addition of dexamethasone in 10 layers, combined with heparin, enables gradual drug release. However, lower drug release in the first 24 h by four LBL membranes improved the material's osteogenesis properties. None of the materials improved the osteodifferentiation in the clonogenic medium.
Collapse
Affiliation(s)
- Flavia Gonçalves
- Faculdade de Odontologia, Universidade Santo Amaro, Av. Prof. Eneas de Siqueira Neto, 340, São Paulo 04829-300, SP, Brazil (R.M.L.); (M.d.R.A.A.); (Y.S.M.)
| | - Roberta Molisani Letomai
- Faculdade de Odontologia, Universidade Santo Amaro, Av. Prof. Eneas de Siqueira Neto, 340, São Paulo 04829-300, SP, Brazil (R.M.L.); (M.d.R.A.A.); (Y.S.M.)
| | - Marjory Muraro Gomes
- Faculdade de Odontologia, Universidade Santo Amaro, Av. Prof. Eneas de Siqueira Neto, 340, São Paulo 04829-300, SP, Brazil (R.M.L.); (M.d.R.A.A.); (Y.S.M.)
| | - Maria dos Remédios Aguiar Araújo
- Faculdade de Odontologia, Universidade Santo Amaro, Av. Prof. Eneas de Siqueira Neto, 340, São Paulo 04829-300, SP, Brazil (R.M.L.); (M.d.R.A.A.); (Y.S.M.)
| | - Yasmin Silva Muniz
- Faculdade de Odontologia, Universidade Santo Amaro, Av. Prof. Eneas de Siqueira Neto, 340, São Paulo 04829-300, SP, Brazil (R.M.L.); (M.d.R.A.A.); (Y.S.M.)
| | - Maria Stella Moreira
- Departamento de Estomatologia, Hospital AC Camargo, São Paulo 01509-010, SP, Brazil;
| | - Leticia Cidreira Boaro
- College of Dentistry, University of Saskatchewan, 107 Wiggins Rd., Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
2
|
Mai TP, Park JB, Nguyen HD, Min KA, Moon C. Current application of dexamethasone-incorporated drug delivery systems for enhancing bone formation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:643-665. [DOI: 10.1007/s40005-023-00629-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/31/2023] [Indexed: 03/10/2025]
|
3
|
Counteractions of a Novel Hydroalcoholic Extract from Lens Culinaria against the Dexamethasone-Induced Osteoblast Loss of Native Murine Cells. Cells 2022; 11:cells11192936. [PMID: 36230898 PMCID: PMC9563349 DOI: 10.3390/cells11192936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
The cytoprotective effects of a novel hydroalcoholic extract (0.01–5 mg/mL) from Lens culinaria (Terre di Altamura Srl) were investigated within murine native skeletal muscle fibers, bone marrow cells, and osteoblasts, and in cell lines treated with the apoptotic agent staurosporine (2.14 × 10−6 M), the alkylating drug cisplatin (10−4 M), the topoisomerase I inhibitor irinotecan (10−4 M), the antimitotic pro-oxidant doxorubicin (10−6 M), and the immunosuppressant dexamethasone (2 × 10−6 M). An amount of 10g of plant material was used to obtain a 70% ethanol/water product, following two-step extraction, evaporation, lyophilization, and storage at −20 °C. For the murine osteoblasts, doxorubicin reduced survival by −65%, dexamethasone by −32% and −60% after 24 and 48 h of incubation time, respectively. The extract was effective in preventing the osteoblast count-reduction induced by dexamethasone; it was also effective at preventing the inhibition of mineralization induced by dexamethasone. Doxorubicin and cisplatin caused a significant reduction in cell growth by −77% for bone marrow cells, −43% for irinotecan, and −60% for dexamethasone, but there was no evidence for the cytoprotective effects of the extract in these cells. Staurosporine and doxorubicin caused a fiber death rate of >−40% after 18 and 24 h of incubation, yet the extract was not effective at preventing these effects. The extract was effective in preventing the staurosporine-induced reduction of HEK293 proliferation and colony formation in the crystal violet DNA staining and the clonogenic assays. It was also effective for the cisplatin-induced reduction in HEK293 cell proliferation. The extract, however, failed to protect the SHSY5Y neurons against cisplatin and irinotecan-induced cytotoxicity. A UV/VIS spectroscopy analysis showed three peaks at the wavelengths of 350, 260, and 190 nm, which correspond to flavonoids, proanthocyanins, salicylates, and AA, constituting the extract. These data suggest the possible development of this extract for use against dexamethasone-induced bone loss and renal chemotherapy-induced damage.
Collapse
|
4
|
Helmi SA, Rohani L, Zaher AR, El Hawary YM, Rancourt DE. Enhanced Osteogenic Differentiation of Pluripotent Stem Cells via γ-Secretase Inhibition. Int J Mol Sci 2021; 22:ijms22105215. [PMID: 34069142 PMCID: PMC8156631 DOI: 10.3390/ijms22105215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Bone healing is a complex, well-organized process. Multiple factors regulate this process, including growth factors, hormones, cytokines, mechanical stimulation, and aging. One of the most important signaling pathways that affect bone healing is the Notch signaling pathway. It has a significant role in controlling the differentiation of bone mesenchymal stem cells and forming new bone. Interventions to enhance the healing of critical-sized bone defects are of great importance, and stem cell transplantations are eminent candidates for treating such defects. Understanding how Notch signaling impacts pluripotent stem cell differentiation can significantly enhance osteogenesis and improve the overall healing process upon transplantation. In Rancourt’s lab, mouse embryonic stem cells (ESC) have been successfully differentiated to the osteogenic cell lineage. This study investigates the role of Notch signaling inhibition in the osteogenic differentiation of mouse embryonic and induced pluripotent stem cells (iPS). Our data showed that Notch inhibition greatly enhanced the differentiation of both mouse embryonic and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Summer A. Helmi
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt; (A.R.Z.); (Y.M.E.H.)
| | - Leili Rohani
- Department of Medicine, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Ahmed R. Zaher
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt; (A.R.Z.); (Y.M.E.H.)
| | - Youssry M. El Hawary
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt; (A.R.Z.); (Y.M.E.H.)
| | - Derrick E. Rancourt
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Correspondence: ; Tel.: +1-403-220-2888
| |
Collapse
|
5
|
Endocrine disruption of vitamin D activity by perfluoro-octanoic acid (PFOA). Sci Rep 2020; 10:16789. [PMID: 33033332 PMCID: PMC7545187 DOI: 10.1038/s41598-020-74026-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023] Open
Abstract
Perfluoroalkyl substances (PFAS) are a class of compounds used in industry and consumer products. Perfluorooctanoic acid (PFOA) is the predominant form in human samples and has been shown to induce severe health consequences, such as neonatal mortality, neurotoxicity, and immunotoxicity. Toxicological studies indicate that PFAS accumulate in bone tissues and cause altered bone development. Epidemiological studies have reported an inverse relationship between PFAS and bone health, however the associated mechanisms are still unexplored. Here, we present computational, in silico and in vitro evidence supporting the interference of PFOA on vitamin D (VD). First, PFOA competes with calcitriol on the same binding site of the VD receptor, leading to an alteration of the structural flexibility and a 10% reduction by surface plasmon resonance analysis. Second, this interference leads to an altered response of VD-responsive genes in two cellular targets of this hormone, osteoblasts and epithelial cells of the colorectal tract. Third, mineralization in human osteoblasts is reduced upon coincubation of PFOA with VD. Finally, in a small cohort of young healthy men, PTH levels were higher in the exposed group, but VD levels were comparable. Altogether these results provide the first evidence of endocrine disruption by PFOA on VD pathway by competition on its receptor and subsequent inhibition of VD-responsive genes in target cells.
Collapse
|
6
|
Li X, Xu L, Nie H, Lei L. Dexamethasone-loaded β-cyclodextrin for osteogenic induction of mesenchymal stem/progenitor cells and bone regeneration. J Biomed Mater Res A 2020; 109:1125-1135. [PMID: 32981208 DOI: 10.1002/jbm.a.37104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 01/11/2023]
Abstract
Dexamethasone (DEX) is a glucocorticoid commonly used as an in vitro osteogenic inducer of mesenchymal stem/progenitor cells (abbreviated MSCs). However, several studies investigating the effects of glucocorticoids on bone regeneration through systemic injections have demonstrated negative impacts of the drugs at high concentration on the healing of hard tissues. These contrasting evidences suggest that application of glucocorticoids should be limited to low dosages but at the same time a long enough treatment period is preferred, which prompted us to evaluate the effects of different local release systems of DEX on MSC differentiation and bone repair. Two types of DEX-loaded β-cyclodextrin (CD) complexes, including CD/DEX and CD/AD-DEX, were fabricated via host-guest interactions and characterized by FTIR, 1H-NMR, MS-ESI, and UV-vis. The results demonstrated that these CD-based assemblies released DEX in differentiated profiles, with CD/DEX releasing significantly faster than CD/AD-DEX. Although CD/DEX were slightly more powerful than CD/AD-DEX in inducing rat bone marrow MSCs (rBMSCs) into osteogenic lineage in vitro, CD/AD-DEX was advantageous over CD/DEX in accelerating bone regeneration over a time period of 4 weeks in a rat tibia defect model. The results suggest that DEX-loaded assemblies via host-guest interactions are flexible in modulating DEX release patterns and have great potential in bone tissue engineering.
Collapse
Affiliation(s)
- Xing Li
- Department of Orthodontics, Central South University Xiangya Stomatological Hospital, Changsha, China
| | - Lu Xu
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
| | - Hemin Nie
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
| | - Lei Lei
- Department of Orthodontics, Central South University Xiangya Stomatological Hospital, Changsha, China
| |
Collapse
|
7
|
Sharma AK, Roberts RL, Benson RD, Pierce JL, Yu K, Hamrick MW, McGee-Lawrence ME. The Senolytic Drug Navitoclax (ABT-263) Causes Trabecular Bone Loss and Impaired Osteoprogenitor Function in Aged Mice. Front Cell Dev Biol 2020; 8:354. [PMID: 32509782 PMCID: PMC7252306 DOI: 10.3389/fcell.2020.00354] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/21/2020] [Indexed: 12/02/2022] Open
Abstract
Senescence is a cellular defense mechanism that helps cells prevent acquired damage, but chronic senescence, as in aging, can contribute to the development of age-related tissue dysfunction and disease. Previous studies clearly show that removal of senescent cells can help prevent tissue dysfunction and extend healthspan during aging. Senescence increases with age in the skeletal system, and selective depletion of senescent cells or inhibition of their senescence-associated secretory phenotype (SASP) has been reported to maintain or improve bone mass in aged mice. This suggests that promoting the selective removal of senescent cells, via the use of senolytic agents, can be beneficial in the treatment of aging-related bone loss and osteoporosis. Navitoclax (also known as ABT-263) is a chemotherapeutic drug reported to effectively clear senescent hematopoietic stem cells, muscle stem cells, and mesenchymal stromal cells in previous studies, but its in vivo effects on bone mass had not yet been reported. Therefore, the purpose of this study was to assess the effects of short-term navitoclax treatment on bone mass and osteoprogenitor function in old mice. Aged (24 month old) male and female mice were treated with navitoclax (50 mg/kg body mass daily) for 2 weeks. Surprisingly, despite decreasing senescent cell burden, navitoclax treatment decreased trabecular bone volume fraction in aged female and male mice (−60.1% females, −45.6% males), and BMSC-derived osteoblasts from the navitoclax treated mice were impaired in their ability to produce a mineralized matrix (−88% females, −83% males). Moreover, in vitro administration of navitoclax decreased BMSC colony formation and calcified matrix production by aged BMSC-derived osteoblasts, similar to effects seen with the primary BMSC from the animals treated in vivo. Navitoclax also significantly increased metrics of cytotoxicity in both male and female osteogenic cultures (+1.0 to +11.3 fold). Taken together, these results suggest a potentially harmful effect of navitoclax on skeletal-lineage cells that should be explored further to definitively assess navitoclax’s potential (or risk) as a therapeutic agent for combatting age-related musculoskeletal dysfunction and bone loss.
Collapse
Affiliation(s)
- Anuj K Sharma
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rachel L Roberts
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Reginald D Benson
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jessica L Pierce
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Orthopaedic Surgery, Augusta University, Augusta, GA, United States
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To review the available literature regarding a possible relationship between vitamin D and bone marrow adipose tissue (BMAT), and to identify future avenues of research that warrant attention. RECENT FINDINGS Results from in vivo animal and human studies all support the hypothesis that vitamin D can suppress BMAT expansion. This is achieved by antagonizing adipogenesis in bone marrow stromal cells, through inhibition of PPARγ2 activity and stimulation of pro-osteogenic Wnt signalling. However, our understanding of the functions of BMAT is still evolving, and studies on the role of vitamin D in modulating BMAT function are lacking. In addition, many diseases and chronic conditions are associated with low vitamin D status and low bone mineral density (BMD), but BMAT expansion has not been studied in these patient populations. Vitamin D suppresses BMAT expansion, but its role in modulating BMAT function is poorly understood.
Collapse
Affiliation(s)
- Hanel Sadie-Van Gijsen
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Francie van Zijl Drive, PO Box 241, Parow, Cape Town, 8000, South Africa.
| |
Collapse
|
9
|
Yue D, Zhang M, Lu J, Zhou J, Bai Y, Pan J. The rate of fluid shear stress is a potent regulator for the differentiation of mesenchymal stem cells. J Cell Physiol 2019; 234:16312-16319. [PMID: 30784070 DOI: 10.1002/jcp.28296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 01/24/2023]
Abstract
We have previously demonstrated that the rate of fluid shear stress (ΔSS) can manipulate the fate of mesenchymal stem cells (MSCs) to osteogenic or chondrogenic cells. However, whether ΔSS is comparable to other two means of induction medium and substrate stiffness that have been proven to be potent in differentiation control is unknown. In this study, we subjected MSCs to 1-7 days of osteogenic or chondrogenic chemical induction, or 1-4 days of 37 or 86 kPa of substrate stiffness induction, followed by 20 min of Fast ΔSS (0-0') or Slow ΔSS (0-2'), which is a laminar FSS that linearly increased from 0 to 10 dyn/cm 2 in 0 (Fast) or 2 min (Slow) and maintained at 10 dyn/cm 2 for a total of 20 min. We found that 20 min of ΔSS could compete with 5 days' chemical and 2 days' substrate stiffness inductions. Our study confirmed that ΔSS is a powerful tool to control the differentiation of MSCs, which stressed the possible application in MSCs linage specification.
Collapse
Affiliation(s)
- Danyang Yue
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Mengxue Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Juan Lu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jin Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuying Bai
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jun Pan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Kasoju N, Wang H, Zhang B, George J, Gao S, Triffitt JT, Cui Z, Ye H. Transcriptomics of human multipotent mesenchymal stromal cells: Retrospective analysis and future prospects. Biotechnol Adv 2017; 35:407-418. [DOI: 10.1016/j.biotechadv.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/28/2022]
|
11
|
Chen Y, Li J, Kawazoe N, Chen G. Preparation of dexamethasone-loaded calcium phosphate nanoparticles for the osteogenic differentiation of human mesenchymal stem cells. J Mater Chem B 2017; 5:6801-6810. [DOI: 10.1039/c7tb01727h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dexamethasone (DEX)-loaded biphasic calcium phosphate nanoparticles (BCP-NPs) are prepared by incorporation of DEX during or after the formation of BCP-NPs. The DEX-loaded BCP-NPs release DEX in a sustained manner and enhance the osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Ying Chen
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| | - Jingchao Li
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| | - Naoki Kawazoe
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Guoping Chen
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| |
Collapse
|
12
|
A Subset of Malignant Mesothelioma Tumors Retain Osteogenic Potential. Sci Rep 2016; 6:36349. [PMID: 27886205 PMCID: PMC5122867 DOI: 10.1038/srep36349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 10/13/2016] [Indexed: 01/16/2023] Open
Abstract
Malignant mesothelioma (MM) is an aggressive serosal tumor associated with asbestos exposure. We previously demonstrated that mesothelial cells differentiate into cells of different mesenchymal lineages and hypothesize that osseous tissue observed in a subset of MM patients is due to local differentiation of MM cells. In this study, the capacity of human and mouse MM cells to differentiate into osteoblast-like cells was determined in vitro using a functional model of bone nodule formation and in vivo using an established model of MM. Human and murine MM cell lines cultured in osteogenic medium expressed alkaline phosphatase and formed mineralized bone-like nodules. Several human and mouse MM cell lines also expressed a number of osteoblast phenotype markers, including runt-related transcription factor 2 (RUNX2), osteopontin, osteonectin and bone sialoprotein mRNA and protein. Histological analysis of murine MM tumors identified areas of ossification within the tumor, similar to those observed in human MM biopsies. These data demonstrate the ability of MM to differentiate into another mesenchymal cell type and suggest that MM cells may contribute to the formation of the heterologous elements observed in MM tumors.
Collapse
|
13
|
Sun L, Danoux CB, Wang Q, Pereira D, Barata D, Zhang J, LaPointe V, Truckenmüller R, Bao C, Xu X, Habibovic P. Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCs. Acta Biomater 2016; 42:364-377. [PMID: 27318269 DOI: 10.1016/j.actbio.2016.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/06/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Within the general aim of finding affordable and sustainable regenerative solutions for damaged and diseased tissues and organs, significant efforts have been invested in developing synthetic alternatives to natural bone grafts, such as autografts. Calcium phosphate (CaP) ceramics are among widely used synthetic bone graft substitutes, but their mechanical properties and bone regenerative capacity are still outperformed by their natural counterparts. In order to improve the existing synthetic bone graft substitutes, it is imperative to understand the effects of their individual properties on a biological response, and to find a way to combine the desired properties into new, improved functional biomaterials. To this end, we studied the independent effects of the chemical composition and surface microstructure of a poly(lactic acid)/hydroxyapatite (PLA/HA) composite material on the proliferation and osteogenic differentiation of clinically relevant bone marrow-derived human mesenchymal stromal cells (hMSCs). While the molecular weight of the polymer and presence/absence of the ceramic phase were used as the chemical variables, a soft embossing technique was used to pattern the surfaces of all materials with either pits or pillars with identical microscale dimensions. The results indicated that, while cell morphology was affected by both the presence and availability of HA and by the surface microstructure, the effect of the latter parameter on cell proliferation was negligible. The osteogenic differentiation of hMSCs, and in particular the expression of bone morphogenetic protein 2 (BMP-2) and osteopontin (OP) were significantly enhanced when cells were cultured on the composite based on low-molecular-weight PLA, as compared to the high-molecular-weight PLA-based composite and the two pure polymers. The OP expression on the low-molecular-weight PLA-based composite was further enhanced when the surface was patterned with pits. Taken together, within this experimental set up, the individual effect of the chemistry, and in particular of the presence of CaP, was more pronounced than the individual effect of the surface microstructure, although their combined effects were, in some cases, synergistic. The approach presented here opens new routes to study the interactions of biomaterials with the biological environment in greater depths, which can serve as a starting point for developing biomaterials with improved bioactivity. STATEMENT OF SIGNIFICANCE The aim of the this study was to obtain insight into independent effects of the chemical composition and surface microstructure of a poly(lactic acid)/hydroxyapatite (PLA/HA) composite material on the morphology, proliferation and osteogenic differentiation of clinically relevant bone marrow-derived human mesenchymal stromal cells (hMSCs). While the need for synthetic alternatives for natural bone in bone regenerative strategies is rapidly increasing, the clinical performance of synthetic biomaterials needs to be further improved. To do this successfully, we believe that a better understanding of the relationship between a property of a material and a biological response is imperative. This study is a step forward in this direction, and we are therefore convinced that it will be of interest to the readers of Acta Biomaterialia.
Collapse
|
14
|
Amjadian S, Seyedjafari E, Zeynali B, Shabani I. The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(l-lactide) on the osteogenesis of mesenchymal stem cells. Int J Pharm 2016; 507:1-11. [PMID: 27107902 DOI: 10.1016/j.ijpharm.2016.04.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023]
Abstract
Recently, electrospun nanofibrous scaffolds are vastly taken into consideration in the bone tissue engineering due to mimicking the natural structure of native tissue. In our study, surface features of nanofibers were modified through simultaneous electrospining of the synthetic and natural polymers using poly l-lactide (PLLA) and gelatin to fabricate the hybrid scaffold (PLLA/gelatin). Then, hydroxyapatite nanoparticles (nHA) were loaded in electrospun PLLA nanofibers (PLLA,nHA/gelatin) and also dexamethasone (DEX) was incorporated in these fibers (PLLA,nHA,DEX/gelatin) in the second experiment. Fabricated nanofibrous composite scaffolds were characterized via SEM, FTIR spectroscopy, contact angle, tensile strength measurements, DEX release profile and MTT assay. After seeding adipose derived mesenchymal stem cells, osteoinductivity and osteoconductivity of fabricated scaffolds were analyzed using common osteogenic markers such as alkaline phosphatase activity, calcium depositions and gene expression. These results confirmed that all properties of nanofibers were improved by modifications. Moreover, osteogenic differentiation of stem cells increased in PLLA,nHA/gelatin group in comparison with PLLA/gelatin. The sustained release of DEX was obtained from PLLA,nHA,DEX/gelatin which subsequently led to more osteogenic differentiation. Taken together, PLLA,nHA,DEX/gelatin showed significant potential to support the stem cell proliferation and ostogenic differentiation, and can be a good candidates for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sara Amjadian
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran; School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Bahman Zeynali
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
15
|
Birgani ZT, Malhotra A, van Blitterswijk CA, Habibovic P. Human mesenchymal stromal cells response to biomimetic octacalcium phosphate containing strontium. J Biomed Mater Res A 2016; 104:1946-60. [PMID: 27012665 DOI: 10.1002/jbm.a.35725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 11/10/2022]
Abstract
The incorporation of bioinorganics into synthetic biomaterials is a promising approach to improve the biological performance of bone graft substitutes, while still retaining their synthetic nature. Among these bioinorganics, strontium ions (Sr(2+) ) have reported enhanced bone formation, and a reduced risk of bone fractures. While previous results have been encouraging, more detailed studies are needed to further develop specific applications. This study demonstrates the effects of Sr(2+) on the osteogenic differentiation of human mesenchymal stromal cells (hMSCs) when introduced as either a dissolved salt, or incorporated into biomimetic calcium phosphate (CaP) coatings. Upon attachment, hMSCs seeded in the presence of higher Sr(2+) concentrations presented with a more elongated shape as compared to the controls without Sr(2+) . Both Sr(2+) as a dissolved salt in the medium, or incorporated into CaP coatings, positively influenced hMSC alkaline phosphatase (ALP) activity in a dose-dependent manner. At the mRNA level, the expression of osteogenic markers ALP, bone sialoprotein, bone morphogenetic protein 2, osteopontin, and osteoclacin were increased in the presence of Sr(2+) , independent of the delivery method. Overall, this study demonstrates the positive effects of strontium on the osteogenic differentiation of human MSCs, and supports the use of strontium-incorporated CaPs for bone regeneration applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1946-1960, 2016.
Collapse
Affiliation(s)
- Zeinab Tahmasebi Birgani
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Angad Malhotra
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Clemens A van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Pamela Habibovic
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
16
|
McGee-Lawrence ME, Carpio LR, Schulze RJ, Pierce JL, McNiven MA, Farr JN, Khosla S, Oursler MJ, Westendorf JJ. Hdac3 Deficiency Increases Marrow Adiposity and Induces Lipid Storage and Glucocorticoid Metabolism in Osteochondroprogenitor Cells. J Bone Miner Res 2016; 31. [PMID: 26211746 PMCID: PMC4758691 DOI: 10.1002/jbmr.2602] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone loss and increased marrow adiposity are hallmarks of aging skeletons. Conditional deletion of histone deacetylase 3 (Hdac3) in murine osteochondroprogenitor cells causes osteopenia and increases marrow adiposity, even in young animals, but the origins of the increased adiposity are unclear. To explore this, bone marrow stromal cells (BMSCs) from Hdac3-depleted and control mice were cultured in osteogenic medium. Hdac3-deficient cultures accumulated lipid droplets in greater abundance than control cultures and expressed high levels of genes related to lipid storage (Fsp27/Cidec, Plin1) and glucocorticoid metabolism (Hsd11b1) despite normal levels of Pparγ2. Approximately 5% of the lipid containing cells in the wild-type cultures expressed the master osteoblast transcription factor Runx2, but this population was threefold greater in the Hdac3-depleted cultures. Adenoviral expression of Hdac3 restored normal gene expression, indicating that Hdac3 controls glucocorticoid activation and lipid storage within osteoblast lineage cells. HDAC3 expression was reduced in bone cells from postmenopausal as compared to young women, and in osteoblasts from aged as compared to younger mice. Moreover, phosphorylation of S424 in Hdac3, a posttranslational mark necessary for deacetylase activity, was suppressed in osseous cells from old mice. Thus, concurrent declines in transcription and phosphorylation combine to suppress Hdac3 activity in aging bone, and reduced Hdac3 activity in osteochondroprogenitor cells contributes to increased marrow adiposity associated with aging. © 2015 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Meghan E McGee-Lawrence
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Lomeli R Carpio
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Ryan J Schulze
- Department of Medicine, Division of Gastroenterology and Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Jessica L Pierce
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Medicine, Division of Gastroenterology and Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Joshua N Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Merry Jo Oursler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D. Review and the state of the art: Sol-gel and melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res B Appl Biomater 2015; 104:1248-75. [PMID: 26060931 DOI: 10.1002/jbm.b.33443] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/19/2015] [Accepted: 04/14/2015] [Indexed: 01/26/2023]
Abstract
Biomaterial development is currently the most active research area in the field of biomedical engineering. The bioglasses possess immense potential for being the ideal biomaterials due to their high adaptiveness to the biological environment as well as tunable properties. Bioglasses like 45S5 has shown great clinical success over the past 10 years. The bioglasses like 45S5 were prepared using melt-quenching techniques but recently porous bioactive glasses have been derived through sol-gel process. The synthesis route exhibits marked effect on the specific surface area, as well as degradability of the material. This article is an attempt to provide state of the art of the sol-gel and melt quenched bioactive bioglasses for tissue regeneration. Fabrication routes for bioglasses suitable for bone tissue engineering are highlighted and the effect of these fabrication techniques on the porosity, pore-volume, mechanical properties, cytocompatibilty and especially apatite layer formation on the surface of bioglasses is analyzed in detail. Drug delivery capability of bioglasses is addressed shortly along with the bioactivity of mesoporous glasses. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1248-1275, 2016.
Collapse
Affiliation(s)
- Gurbinder Kaur
- Department of Material Science and Engineering, Holden Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24060, USA.,School of Physics & Materials Science, Thapar University, Patiala, 147004, India
| | - Gary Pickrell
- Department of Material Science and Engineering, Holden Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24060, USA
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24060, USA
| | - Vishal Kumar
- Department of Material Science and Engineering, Holden Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24060, USA.,Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, India
| | - Daniel Homa
- Department of Material Science and Engineering, Holden Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24060, USA
| |
Collapse
|
18
|
Satué M, Ramis JM, Monjo M. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts. J Biomater Appl 2015; 30:770-9. [DOI: 10.1177/0885328215582324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants.
Collapse
Affiliation(s)
- María Satué
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, Spain
| | - Joana M Ramis
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, Spain
| | - Marta Monjo
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, Spain
| |
Collapse
|
19
|
Sehgal RR, Roohani-Esfahani SI, Zreiqat H, Banerjee R. Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration. J Tissue Eng Regen Med 2015; 11:1195-1211. [PMID: 25846217 DOI: 10.1002/term.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/20/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
Controlled delivery of biological cues through synthetic scaffolds to enhance the healing capacity of bone defects is yet to be realized clinically. The purpose of this study was development of a bioactive tissue-engineered scaffold providing the sustained delivery of an osteoinductive drug, dexamethasone disodium phosphate (DXP), encapsulated within chitosan nanoparticles (CN). Porous baghdadite (BD; Ca3 ZrSi2 O9 ) scaffolds, a zirconia-modified calcium silicate ceramic, was coated with DXP-encapsulated CN nanoparticles (DXP-CN) using nanostructured gellan and xanthan hydrogel (GX). Crosslinker and GX polymer concentrations were optimized to achieve a homogeneous distribution of hydrogel coating within BD scaffolds. Dynamic laser scattering indicated an average size of 521 ± 21 nm for the DXP-CN nanoparticles. In vitro drug-release studies demonstrated that the developed DXP-CN-GX hydrogel-coated BD scaffolds (DXP-CN-GX-BD) resulted in a sustained delivery of DXP over the 5 days (78 ± 6% of drug release) compared with burst release over 1 h, seen from free DXP loaded in uncoated BD scaffolds (92 ± 8% release in 1 h). To estimate the influence of controlled delivery of DXP from the developed scaffolds, the effect on MG 63 cells was evaluated using various bone differentiation assays. Cell culture within DXP-CN-GX-BD scaffolds demonstrated a significant increase in the expression of early and late osteogenic markers of alkaline phosphatase activity, collagen type 1 and osteocalcin, compared to the uncoated BD scaffold. The results suggest that the DXP-releasing nanostructured hydrogel integrated within the BD scaffold caused sustained release of DXP, improving the potential for osteogenic differentiation. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rekha R Sehgal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - S I Roohani-Esfahani
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace Mechanical and Mechatronic Engineering, University of Sydney, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace Mechanical and Mechatronic Engineering, University of Sydney, Australia
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
20
|
De Godoy RF, Hutchens S, Campion C, Blunn G. Silicate-substituted calcium phosphate with enhanced strut porosity stimulates osteogenic differentiation of human mesenchymal stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5387. [PMID: 25596863 DOI: 10.1007/s10856-015-5387-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
While many synthetic ceramic bone graft substitutes (BGSs) have osteoconductive properties (e.g. provide a physical scaffold for osteointegration of surrounding bone tissue), certain BGSs are osteostimulative in that they actively upregulate mesenchymal stem cell proliferation and stimulate differentiation into osteoblast-like cells. The osteostimulative properties of silicate-substituted calcium phosphate with enhanced porosity (SiCaP EP) were evaluated in vitro with STRO-1+ immunoselected human bone marrow derived mesenchymal stem cells (HBMSCs). Osteostimulative materials (SiCaP) and Bioglass 45S5 (Bioglass) were also assessed as positive controls along with non-silicate substituted hydroxyapatite as a negative control. HBMSCs were also assessed on Thermanox discs cultured in basal and osteogenic media to determine when osteogenic differentiation could be significantly detected with this in vitro cell system. HBMSC viability and necrosis, total DNA content, alkaline phosphatase (ALP) expression, and osteocalcin expression were evaluated after 7, 14, 21, and 28 days. It was demonstrated that SiCaP EP is osteostimulative based on its propensity to support STRO-1+ HBMSC proliferation and ability to promote the differentiation of HBMSCs down the osteoblastic lineage from ALP-expressing, matrix-producing osteoblasts to Osteocalcin-producing pre-osteocytes without the presence of external osteogenic factors. SiCaP EP permitted greater HBMSC attachment as well as ALP and Osteocalcin expression than Bioglass which may be attributed to its microstructure and chemistry.
Collapse
Affiliation(s)
- Roberta Ferro De Godoy
- Institute of Orthopaedics and Musculo-Skeletal Science, John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculo-Skeletal Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex, HA7 4LP, UK
| | | | | | | |
Collapse
|
21
|
Harini D, Indra R, Rajaram A, Rama R. Induction of osteoblast differentiation in human adipose derived stem cells by lanthanum ions. J RARE EARTH 2014. [DOI: 10.1016/s1002-0721(14)60186-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Furuya H, Tabata Y, Kaneko K. Bone Regeneration for Murine Femur Fracture by Gelatin Hydrogels Incorporating Basic Fibroblast Growth Factor with Different Release Profiles. Tissue Eng Part A 2014; 20:1531-41. [DOI: 10.1089/ten.tea.2012.0763] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hiroyuki Furuya
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasuhiko Tabata
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuo Kaneko
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Cordeiro-Spinetti E, de Mello W, Trindade LS, Taub DD, Taichman RS, Balduino A. Human bone marrow mesenchymal progenitors: perspectives on an optimized in vitro manipulation. Front Cell Dev Biol 2014; 2:7. [PMID: 25364715 PMCID: PMC4207019 DOI: 10.3389/fcell.2014.00007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/24/2014] [Indexed: 01/14/2023] Open
Abstract
When it comes to regenerative medicine, mesenchymal stem cells (MSCs) are considered one of the most promising cell types for use in many cell therapies and bioengineering protocols. The International Society of Cellular Therapy recommended minimal criteria for defining multipotential MSC is based on adhesion and multipotency in vitro, and the presence or absence of select surface markers. Though these criteria help minimize discrepancies and allow some comparisons of data generated in different laboratories, the conditions in which cells are isolated and expanded are often not considered. Herein, we propose and recommend a few procedures to be followed to facilitate the establishment of quality control standards when working with mesenchymal progenitors isolation and expansion. Following these procedures, the classic Colony-Forming Unit-Fibroblast (CFU-f) assay is revisited and three major topics are considered to define conditions and to assist on protocol optimization and data interpretation. We envision that the creation of a guideline will help in the identification and isolation of long-term stem cells and short-term progenitors to better explore their regenerative potential for multiple therapeutic purposes.
Collapse
Affiliation(s)
| | - Wallace de Mello
- LaBioTeC, Universidade Veiga de Almeida Rio de Janeiro, Brazil ; Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz Fiocruz, Rio de Janeiro, Brazil
| | | | - Dennis D Taub
- Department of Vetarans Affairs, Hematology and Immunology Research, Washington DC Veterans Affairs Medical Center Washington, DC, USA
| | - Russell S Taichman
- School of Dentistry, Department of Periodontics and Oral Medicine, University of Michigan Ann Arbor, MI, USA
| | - Alex Balduino
- LaBioTeC, Universidade Veiga de Almeida Rio de Janeiro, Brazil ; Excellion Serviços Biomédicos Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Curtis KM, Aenlle KK, Roos BA, Howard GA. 24R,25-dihydroxyvitamin D3 promotes the osteoblastic differentiation of human mesenchymal stem cells. Mol Endocrinol 2014; 28:644-58. [PMID: 24597546 DOI: 10.1210/me.2013-1241] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] is considered the most biologically active vitamin D3 metabolite, the vitamin D3 prohormone, 25-hydroxyvitamin D3 [25(OH)D3], is metabolized into other forms, including 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3]. Herein we show that 24R,25(OH)2D3 is fundamental for osteoblastic differentiation of human mesenchymal stem cells (hMSCs). Our approach involved analyses of cell proliferation, alkaline phosphatase activity, and pro-osteogenic genes (collagen 1A1, osteocalcin, vitamin D receptor [VDR], vitamin D3-hydroxylating enzymes [cytochrome P450 hydroxylases: CYP2R1, CYP27A1, CYP27B1 and CYP24A1]) and assessment of Ca(2+) mineralization of extracellular matrix. 24R,25(OH)2D3 inhibited hMSC proliferation, decreased 1α-hydroxylase (CYP27B) expression, thereby reducing the ability of hMSCs to convert 25(OH)D3 to 1α,25(OH)2D3, and promoted osteoblastic differentiation through increased alkaline phosphatase activity and Ca(2+) mineralization. 24R,25(OH)2D3 decreased expression of the 1α,25(OH)2D3 receptor, VDR. 24R,25(OH)2D3 but not 1α,25(OH)2D3 induced Ca(2+) mineralization dependent on the absence of the glucocorticoid analog, dexamethasone. To elucidate the mechanism(s) for dexamethasone-independent 1α,25(OH)2D3 inhibition/24R,25(OH)2D3 induction of Ca(2+) mineralization, we demonstrated that 1α,25(OH)2D3 increased whereas 24R,25(OH)2D3 decreased reactive oxygen species (ROS) production. 25(OH)D3 also decreased ROS production, potentially by conversion to 24R,25(OH)2D3. Upon inhibition of the vitamin D3-metabolizing enzymes (cytochrome P450s), 25(OH)D3 increased ROS production, potentially due to its known (low) affinity for VDR. We hypothesize that vitamin D3 actions on osteoblastic differentiation involve a regulatory relationship between 24R,25(OH)2D3 and 1α,25(OH)2D3. These results implicate 24R,25(OH)2D3 as a key player during hMSC maturation and bone development and support the concept that 24R,25(OH)2D3 has a bioactive role in the vitamin D3 endocrine system.
Collapse
Affiliation(s)
- Kevin M Curtis
- Geriatric Research, Education, and Clinical Center and Research Service (K.M.C., K.K.A., B.A.R., G.A.H.), Bruce W. Carter Veterans Affairs Medical Center, Miami, Florida 33125; and Departments of Biochemistry and Molecular Biology (K.M.C., G.A.H.), Medicine (B.A.R., G.A.H.), and Neurology (B.A.R.), University of Miami Miller School of Medicine, Miami, Florida 33101
| | | | | | | |
Collapse
|
25
|
Wnt-dependent osteogenic commitment of bone marrow stromal cells using a novel GSK3β inhibitor. Stem Cell Res 2014; 12:415-27. [DOI: 10.1016/j.scr.2013.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 11/23/2022] Open
|
26
|
Scheller K, Frerich B. Ca(2+)-deposition in cell matrix correlates significantly with osteocalcin-expression in osteogenic differentiated ATSC: Even in a coculture system with HUVEC. J Oral Maxillofac Pathol 2014; 17:340-5. [PMID: 24574649 PMCID: PMC3927332 DOI: 10.4103/0973-029x.125181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Tissue engineering offers the means for replacing or repairing diseased organs within the patient's body. The current problem in its clinical use is sufficient and fast revascularization of the transplanted tissues. The idea of bone-reconstruction deals with three-dimensional bone equivalents that are composed of endothelial cells (ECs) and adipose tissue derived stromal cells (ATSCs) showing osteogenic differentiation. MATERIALS AND METHODS ATSC were isolated, cultivated until third passage and osteogenically differentiated by 1.25-dihydroxycholecalciferol. Coculture systems with human umbilical vein endothelial cells (HUVEC) were performed. Osteogenic differentiation was analyzed in FACS-analyses (n = 7), by the measurement of Ca(2+)-deposition in the cell matrix (marker for osteogenic differentiation) and the expression of alkaline phosphatase (AP). RESULTS Ca(2+)-deposition in the cell matrix and osteocalcin-expression correlated significantly (P = 0.030) during osteogenic differentiation (n = 7). The osteogenic cell differentiated ATSC in the coculture system (n = 6) even showed a clear increase of Ca(2+)-deposition. The time of starting the coculture did not influence the differentiation. Measurement of the Ca(2+)-deposition correlates significantly to the osteogenic differentiation and osteocalcin-expression. CONCLUSION ATSC are a promising source for bone tissue engineering. They can be differentiated into osteoblasts in a coculture system with HUVEC without the loss of any differentiation capacity. For bone tissue-equivalent fabrication, this is an encouraging procedure that is feasible and provides fast revascularization of the bone-equivalents.
Collapse
Affiliation(s)
- Konstanze Scheller
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University of Halle-Wittenberg, Halle, Germany
| | - Bernhard Frerich
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University of Rostock, Germany
| |
Collapse
|
27
|
Phenol red inhibits chondrogenic differentiation and affects osteogenic differentiation of human mesenchymal stem cells in vitro. Stem Cell Rev Rep 2013; 9:132-9. [PMID: 23135703 DOI: 10.1007/s12015-012-9417-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The purpose with this study was to investigate the effect of phenol red (PR) on chondrogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs). hMSCs were differentiated into chondrogenic and osteogenic directions in DMEM with and without PR for 2, 7, 14, 21, and 28 days. Gene expression of chondrogenic and osteogenic markers were analyzed by RT-qPCR. The presence of proteoglycans was visualized histologically. Osteogenic matrix deposition and mineralization were examined measuring the alkaline phophatase activity and calcium deposition. During chondrogenic differentiation PR decreased sox9, collagen type 2, aggrecan on day 14 and 21 (P < 0.05), and proteoglycan synthesis on day 21 and 28. Collagen type 10 was decreased on day 21 (P < 0.05). During osteogenic differentiation PR increased alkaline phosphatase on day 7 while decreased on day 21 (P < 0.05). PR increased collagen type 1 on day 7, 14, and day 21 (P < 0.05). The alkaline phosphatase activity was increased after 2, 7, and 14 days (P < 0.05). The deposition of calcium was decreased on day 21 (P < 0.05). Our results indicate that PR should be removed from the culture media when differentiating hMSCs into chondrogenic and osteogenic directions due to the effects on these differentiation pathways.
Collapse
|
28
|
Miron RJ, Caluseru OM, Guillemette V, Zhang Y, Gemperli AC, Chandad F, Sculean A. Influence of enamel matrix derivative on cells at different maturation stages of differentiation. PLoS One 2013; 8:e71008. [PMID: 23951068 PMCID: PMC3741386 DOI: 10.1371/journal.pone.0071008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/01/2013] [Indexed: 01/12/2023] Open
Abstract
Enamel matrix derivative (EMD), a porcine extract harvested from developing porcine teeth, has been shown to promote formation of new cementum, periodontal ligament and alveolar bone. Despite its widespread use, an incredibly large variability among in vitro studies has been observed. The aim of the present study was to determine the influence of EMD on cells at different maturation stages of osteoblast differentiation by testing 6 cell types to determine if cell phenotype plays a role in cell behaviour following treatment with EMD. Six cell types including MC3T3-E1 pre-osteoblasts, rat calvarial osteoblasts, human periodontal ligament (PDL) cells, ROS cells, MG63 cells and human alveolar osteoblasts were cultured in the presence or absence of EMD and proliferation rates were quantified by an MTS assay. Gene expression of collagen1(COL1), alkaline phosphate(ALP) and osteocalcin(OC) were investigated by real-time PCR. While EMD significantly increased cell proliferation of all cell types, its effect on osteoblast differentiation was more variable. EMD significantly up-regulated gene expression of COL1, ALP and OC in cells early in their differentiation process when compared to osteoblasts at later stages of maturation. Furthermore, the effect of cell passaging of primary human PDL cells (passage 2 to 15) was tested in response to treatment with EMD. EMD significantly increased cell proliferation and differentiation of cells at passages 2-5 however had completely lost their ability to respond to EMD by passages 10+. The results from the present study suggest that cell stimulation with EMD has a more pronounced effect on cells earlier in their differentiation process and may partially explain why treatment with EMD primarily favors regeneration of periodontal defects (where the periodontal ligament contains a higher number of undifferentiated progenitor cells) over regeneration of pure alveolar bone defects containing no periodontal ligament and a more limited number of osteoprogenitor cells.
Collapse
Affiliation(s)
- Richard J Miron
- Faculté de medecine dentaire, Pavillon de médecine dentaire, rue de la Terrasse, Université Laval, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
29
|
Schäck LM, Noack S, Winkler R, Wißmann G, Behrens P, Wellmann M, Jagodzinski M, Krettek C, Hoffmann A. The Phosphate Source Influences Gene Expression and Quality of Mineralization during In Vitro Osteogenic Differentiation of Human Mesenchymal Stem Cells. PLoS One 2013; 8:e65943. [PMID: 23823126 PMCID: PMC3688813 DOI: 10.1371/journal.pone.0065943] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/30/2013] [Indexed: 02/02/2023] Open
Abstract
For in vitro differentiation of bone marrow-derived mesenchymal stem cells/mesenchymal stromal cells into osteoblasts by 2-dimensional cell culture a variety of protocols have been used and evaluated in the past. Especially the external phosphate source used to induce mineralization varies considerably both in respect to chemical composition and concentration. In light of the recent findings that inorganic phosphate directs gene expression of genes crucial for bone development, the need for a standardized phosphate source in in vitro differentiation becomes apparent. We show that chemical composition (inorganic versus organic phosphate origin) and concentration of phosphate supplementation exert a severe impact on the results of gene expression for the genes commonly used as markers for osteoblast formation as well as on the composition of the mineral formed. Specifically, the intensity of gene expression does not necessarily correlate with a high quality mineralized matrix. Our study demonstrates advantages of using inorganic phosphate instead of β-glycerophosphate and propose colorimetric quantification methods for calcium and phosphate ions as cost- and time-effective alternatives to X-ray diffraction and Fourier-transform infrared spectroscopy for determination of the calcium phosphate ratio and concentration of mineral matrix formed under in vitro-conditions. We critically discuss the different assays used to assess in vitro bone formation in respect to specificity and provide a detailed in vitro protocol that could help to avoid contradictory results due to variances in experimental design.
Collapse
Affiliation(s)
- Luisa M. Schäck
- Trauma Department, Medical School Hannover, Hannover, Germany
| | - Sandra Noack
- Trauma Department, Medical School Hannover, Hannover, Germany
| | - Ramona Winkler
- Trauma Department, Medical School Hannover, Hannover, Germany
| | - Gesa Wißmann
- Institute for Inorganic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Peter Behrens
- Institute for Inorganic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Mathias Wellmann
- Clinic for Orthopedic Surgery, Medical School Hannover, Hannover, Germany
| | | | | | - Andrea Hoffmann
- Trauma Department, Medical School Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
30
|
Kuznetsov SA, Mankani MH, Robey PG. In vivo formation of bone and haematopoietic territories by transplanted human bone marrow stromal cells generated in medium with and without osteogenic supplements. J Tissue Eng Regen Med 2013; 7:226-35. [PMID: 22052864 PMCID: PMC3276737 DOI: 10.1002/term.515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 05/25/2011] [Accepted: 09/14/2011] [Indexed: 12/30/2022]
Abstract
Autologous transplantation of human bone marrow stromal cells (BMSCs) has been successfully used for bone reconstruction. However, in order to advance this approach into the mainstream of bone tissue engineering, the conditions for BMSC cultivation and transplantation must be optimized. In a recent report, cultivation with dexamethasone (Dex) significantly increased bone formation by human BMSCs in vivo. Based on this important conclusion, we analysed the data accumulated by our laboratory, where human BMSCs have been routinely generated using media both with and without a combination of two osteogenic supplements: Dex at 10(-8) m and ascorbic acid phosphate (AscP) at 10(-4) m. Our data demonstrate that for 22/24 donors, BMSC strains propagated with and without Dex/AscP formed similar amounts of bone in vivo. Thus, human BMSCs do not appear to need to be induced to osteogenic differentiation ex vivo prior to transplantation. Similarly, for 12/14 donors, BMSC strains cultured with and without Dex/AscP formed haematopoietic territories to a comparable extent. While Dex/AscP did not increase bone formation, they significantly stimulated BMSC in vitro proliferation without affecting the number of BMSC colonies formed by the colony-forming units-fibroblasts. We conclude that for the substantial majority of donors, Dex/AscP have no effect on the ability of BMSCs to form bone and myelosupportive stroma in vivo. However, due to increased BMSC proliferation, the total osteogenic population obtained from a single marrow sample is larger after cultivation with Dex/AscP than without them. Secondary to increased BMSC proliferation, Dex/AscP may stimulate bone formation if BMSCs and/or the transplantation system are less than optimal. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Sergei A Kuznetsov
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892–4370, USA.
| | | | | |
Collapse
|
31
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
32
|
Metzger W, Schimmelpfennig L, Schwab B, Sossong D, Dorst N, Bubel M, Görg A, Pütz N, Wennemuth G, Pohlemann T, Oberringer M. Expansion and differentiation of human primary osteoblasts in two- and three-dimensional culture. Biotech Histochem 2012; 88:86-102. [PMID: 23210615 DOI: 10.3109/10520295.2012.741262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the regenerative capability of bone, treatment of large defects often requires bone grafts. The challenge for bone grafting is to establish rapid and sufficient vascularization. Three-dimensional (3D) multicellular spheroids consisting of the relevant cell types can be used as "mini tissues" to study the complexity of angiogenesis. We investigated two-dimensional (2D) expansion, differentiation and characterization of primary osteoblasts as steps toward the establishment of 3D multicellular spheroids. Supplementation of cell culture medium with vitamin D(3) induces the osteocalcin expression of osteoblasts. An increased osteocalcin concentration of 10.8 ± 0.58 ng/ml could be measured after 19 days in supplemented medium. Vitamin D(3) has no influence on the expression of alkaline phosphatase or the deposition of calcium. Expression of these additional osteogenic markers requires addition of a cocktail of osteogenic factors that, conversely, have no influence on the expression of osteocalcin. Supplementation of the cell culture medium with both vitamin D(3) and a cocktail of osteogenic factors is recommended to produce an osteoblast phenotype that secretes osteocalcin, expresses alkaline phosphatase and deposits calcium. In such a supplemented medium, a mean osteocalcin concentration of 11.63 ± 4.85 ng/ml was secreted by the osteoblasts. Distinguishing osteoblasts and fibroblasts remains a challenge. Neither differentiated nor undifferentiated osteoblasts can be distinguished from fibroblasts by the expression of CD90, ED-A-fibronectin or α-smooth muscle actin; however, these cell types exhibit clear differences in their growth characteristics. Osteoblasts can be arranged as 3D spheroids by coating the bottom of the cell culture device with agarose. The cellular composition of 3D multicellular spheroids can be evaluated quantitatively using vital fluorescence labeling techniques. Spheroids are a promising tool for studying angiogenic and osteogenic phenomena in vivo and in vitro.
Collapse
Affiliation(s)
- W Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Building. 57, 66421 Homburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sollazzo V, Palmieri A, Scapoli L, Martinelli M, Girardi A, Alviano F, Pellati A, Perrotti V, Carinci F. Bio-Oss®acts on Stem cells derived from Peripheral Blood. Oman Med J 2012; 25:26-31. [PMID: 22125694 DOI: 10.5001/omj.2010.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/02/2009] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES This study aims to study how Bio-Oss® can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells markers using real time Reverse Transcription-Polymerase Chain Reaction. METHODS PB-hMSCs stem preparations were obtained for gradient centrifugation from peripheral blood of healthy anonymous volunteers, using the Acuspin System-Histopaque 1077. The samples were then cultured for 7 days for RNA processing, and the expression was quantified using real time PCR. RESULTS Bio-Oss® caused an induction of osteoblast transcriptional factor like RUNX2 and of bone related genes; SPP1 and FOSL1. In contrast, the expression of ENG was significantly decreased in stem cells treated with Bio-Oss® with respect to untreated cells, indicating the differentiation effect of this biomaterial on stem cells. CONCLUSION The results obtained can be relevant to enhance the understanding of the molecular mechanism of bone regeneration and can act as a model for comparing other materials with similar clinical effects.
Collapse
|
34
|
Hum J, Boccaccini AR. Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2317-2333. [PMID: 22361998 DOI: 10.1007/s10856-012-4580-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
Bioactive glasses (BG) show great promise for bone tissue engineering based on their key properties, e.g., biocompatibility, biodegradability, osteoconductivity as well as osteogenic and angiogenic potential, which make them excellent candidates for bone tissue scaffolds and bone substitute materials. Recent work has shown that dissolution products of bioactive glasses have the potential to induce angiogenesis in addition to their known effect of influencing gene expression and promoting osteoblastic differentiation. One of the most interesting features of BG is their ability to bond both to soft and hard tissues, depending on their composition. To intensify the positive impact of BG for medical applications, there are considerable research efforts on using bioactive glass based platforms as carriers for the encapsulation, delivery and controlled release of bioactive molecules and therapeutic drugs. Different types of bioactive glasses have been considered in combination with different therapeutic drugs, hormones, growth factors and peptides. Using bioactive glasses as drug delivery system combines thus the effectiveness of therapeutic drugs (or bioactive/signaling molecules) with the intrinsic advantages of this inorganic biomaterial. Considering research carried out in the last 15 years, this review presents the different chemical compositions and morphologies of bioactive glasses used as carrier for bioactive molecules and therapeutic drugs and discusses the expanding potential of BG with drug delivery capability focusing in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Jasmin Hum
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | | |
Collapse
|
35
|
Inhibition of Wnt/β-catenin signaling by dexamethasone promotes adipocyte differentiation in mesenchymal progenitor cells, ROB-C26. Histochem Cell Biol 2012; 138:833-45. [DOI: 10.1007/s00418-012-1007-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2012] [Indexed: 12/25/2022]
|
36
|
Cameron K, Travers P, Chander C, Buckland T, Campion C, Noble B. Directed osteogenic differentiation of human mesenchymal stem/precursor cells on silicate substituted calcium phosphate. J Biomed Mater Res A 2012; 101:13-22. [PMID: 22733430 DOI: 10.1002/jbm.a.34261] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/13/2012] [Accepted: 05/03/2012] [Indexed: 12/31/2022]
Abstract
Insufficient, underactive, or inappropriate osteoblast function results in serious clinical conditions such as osteoporosis, osteogenesis imperfecta and fracture nonunion and therefore the control of osteogenesis is a medical priority. In vitro mesenchymal stem cells (MSCs) can be directed to form osteoblasts through the addition of soluble factors such as β-glycerophosphate, ascorbic acid, and dexamethasone; however this is unlikely to be practical in the clinical setting. An alternative approach would be to use a scaffold or matrix engineered to provide cues for differentiation without the need for soluble factors. Here we describe studies using Silicate-substituted calcium phosphate (Si-CaP) and unmodified hydroxyapatite (HA) to test whether these materials are capable of promoting osteogenic differentiation of MSCs in the absence of soluble factors. Si-CaP supported attachment and proliferation of MSCs and induced osteogenesis to a greater extent than HA, as evidenced through upregulation of the osteoblast-related genes: Runx2 (1.2 fold), Col1a1 (2 fold), Pth1r (1.5 fold), and Bglap (1.7 fold) Dmp1 (1.1 fold), respectively. Osteogenic-associated proteins, alkaline phosphatase (1.4 fold), RUNX2, COL1A1, and BGLAP, were also upregulated and there was an increased production of mineralized bone matrix (1.75 fold), as detected by the Von Kossa Assay. These data indicate that inorganic substrates are capable of directing the differentiation programme of stem cells in the absence of known chemical drivers and therefore may provide the basis for bone repair in the clinical setting.
Collapse
Affiliation(s)
- Kate Cameron
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | |
Collapse
|
37
|
Alm JJ, Heino TJ, Hentunen TA, Väänänen HK, Aro HT. Transient 100 nM dexamethasone treatment reduces inter- and intraindividual variations in osteoblastic differentiation of bone marrow-derived human mesenchymal stem cells. Tissue Eng Part C Methods 2012; 18:658-66. [PMID: 22428545 DOI: 10.1089/ten.tec.2011.0675] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of in vitro culturing techniques for osteoblastic differentiation of human mesenchymal stem cells (hMSC) is important for cell biology research and the development of tissue-engineering applications. Dexamethasone (Dex) is a commonly used supplement, but the optimal use of Dex treatment is still unclear. By adjusting the timing of Dex supplementation, the negative effects of long-term Dex treatment could be overcome. Transient Dex treatment could contribute toward minimizing broad donor variation, which is a major challenge. We compared the two most widely used Dex concentrations of 10 and 100 nM as transient or continuous treatment and studied inter- and intraindividual variations in osteoblastic differentiation of hMSC. Characterized bone marrow-derived hMSC from 17 female donors of different age groups were used. During osteoblastic induction, the cells were treated with 10 or 100 nM Dex either transiently for different time periods or continuously. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity and staining for ALP, von Kossa, collagen type I, and osteocalcin. Cell proliferation, cell viability, and apoptosis were also monitored. The strongest osteoblastic differentiation was observed when 100 nM Dex was present for the first week. In terms of inter- and intraindividual coefficients of variations, transient treatment with 100 nM Dex was superior to the other culture conditions and showed the lowest variations in all age groups. This study demonstrates that the temporary presence of 100 nM Dex during the first week of induction culture promotes hMSC osteoblastic differentiation and reduces inter- and intraindividual variations. With this protocol, we can reproducibly produce functional osteoblasts in vitro from the hMSC of different donor populations.
Collapse
Affiliation(s)
- Jessica J Alm
- Department of Orthopaedic Surgery and Traumatology, University of Turku and Turku University Hospital, Turku, Finland
| | | | | | | | | |
Collapse
|
38
|
Chiang ZC, Yu SH, Chao AC, Dong GC. Preparation and characterization of dexamethasone-immobilized chitosan scaffold. J Biosci Bioeng 2012; 113:654-60. [DOI: 10.1016/j.jbiosc.2012.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/27/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
|
39
|
Su Y, Su Q, Liu W, Lim M, Venugopal JR, Mo X, Ramakrishna S, Al-Deyab SS, El-Newehy M. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Acta Biomater 2012; 8:763-71. [PMID: 22100346 DOI: 10.1016/j.actbio.2011.11.002] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 10/29/2011] [Accepted: 11/02/2011] [Indexed: 02/08/2023]
Abstract
Electrospun nanofibers mimic the native extracellular matrix of bone and have generated considerable interest in bone tissue regeneration. The aim of this study was to fabricate novel poly(l-lactide-co-caprolactone) (PLLACL), PLLACL/collagen nanofibers blended with bone morphogenetic protein 2 (BMP2) and dexamethasone (DEX) for controlled release during bone tissue engineering (BTE). The morphology, surface hydrophilicity, and mechanical properties of the PLLACL/collagen nanofibrous mats were analyzed by scanning electron microscopy and water contact angle and mechanical stability determination. The performance of the scaffolds was investigated in terms of the viability and morphology of human mesenchymal stromal cells (hMSC) on the nanofibrous mats. BMP2 and DEX were successfully incorporated into PLLACL/collagen nanofibers by means of blending or coaxial electrospinning and the PLLACL/collagen blended fibers proved useful for hMSC culture. Release of the two growth factors from PLLACL/collagen nanofibrous mats in vitro was investigated by UV spectrophotometry. The release profiles for core-shell nanofibers showed more controlled release of the growth factors compared with the blended electrospun fibers. The experimental results show that controlled release of BMP2 and DEX can induce hMSC to differentiate into osteogenic cells for bone tissue engineering. The results imply that PLLACL/collagen nanofibers encapsulating two drugs and/or proteins have great potential in bone tissue engineering.
Collapse
|
40
|
Beitzel K, McCarthy MB, Cote MP, Chowaniec D, Falcone LM, Falcone JA, Dugdale EM, Deberardino TM, Arciero RA, Mazzocca AD. Rapid isolation of human stem cells (connective progenitor cells) from the distal femur during arthroscopic knee surgery. Arthroscopy 2012; 28:74-84. [PMID: 21996407 DOI: 10.1016/j.arthro.2011.06.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 02/06/2023]
Abstract
PURPOSE (1) To safely obtain bone marrow aspirates from the distal femur during arthroscopic knee surgery, (2) to purify and efficiently concentrate connective tissue progenitor cells (CTPs) in the operating room (OR), and (3) to confirm that these are CTPs through their ability to differentiate into bone cells. METHODS Bone marrow aspirates were harvested from the distal femur during arthroscopic knee surgery in 26 patients. Twenty-five matched control subjects were selected to evaluate for increased incidence of complications. CTPs were isolated using a rapid method designed for use in the OR compared with 2 accepted methods. Cytochemical and molecular analysis was used to assess osteogenic potential. RESULTS Osteogenic potential of the CTPs was confirmed by reverse transcription polymerase chain reaction analysis and cellular staining. Bone marrow was successfully aspirated in 25 cases, with 3 incidences of stiffness in the aspirate group compared with 2 in the control group, 1 incidence of a wound irregularity in the aspirate group compared with 1 in the control group, and 3 incidences of hemarthrosis/persistent effusion in the aspirate group compared with 1 in the control group. The rate of complications for the aspirate group was 36% compared with 25% in the control group. CONCLUSIONS Our intention was to develop a technique for extracting and purifying bone marrow so that the orthopaedic surgeon would have a simple, safe, and efficient process by which to isolate CTPs during arthroscopic knee surgery. This method of aspiration did not lead to a significant increase in complications. Further bone marrow aspirate was successfully purified in the OR, with only a slight increase in surgery time, and resulted in a fractionated layer rich with CTPs. These cells showed osteogenic potential, as evidenced by their osteoblastic differentiation. These CTPs may have future use in enhancing the incorporation of the graft into the bone. LEVEL OF EVIDENCE Level III, matched case-control study.
Collapse
Affiliation(s)
- Knut Beitzel
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06031, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Heinemann S, Heinemann C, Jäger M, Neunzehn J, Wiesmann HP, Hanke T. Effect of silica and hydroxyapatite mineralization on the mechanical properties and the biocompatibility of nanocomposite collagen scaffolds. ACS APPLIED MATERIALS & INTERFACES 2011; 3:4323-4331. [PMID: 21942510 DOI: 10.1021/am200993q] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A recently established materials concept of biomimetic composites based on silica, collagen, and calcium phosphates was adapted for the preparation of porous scaffolds suitable for tissue engineering applications. Mineralization was achieved by directed nucleation of silica on the templating organic phase during a sol-gel process with or without addition of hydroxyapatite. Both mineral phases (25 wt %, individually or combined in equal shares) influenced the scaffold's morphology at the nanoscale. Enhancement of apparent density and compressive strength was similar for silica or hydroxyapatite mineralization; however the stiffening effect of hydroxyapatite was much higher. All scaffold modifications provided proper conditions for adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells. The open porosity allowed cells to migrate throughout the scaffolds while maintaining their viability, both confirmed by MTT staining and confocal laser scanning microscopy. Initial cell distributions were graduated due to collagen mineralization, but balanced out over the cultivation time of 28 days. RT-PCR analyses revealed higher gene expression of ALP but lower expression of BSP II and osteocalcin because of collagen mineralization. The results demonstrate that both silica and hydroxyapatite offer comparable possibilities to tailor mechanical properties of collagen-based scaffolds without being detrimental to in vitro biocompatibility.
Collapse
Affiliation(s)
- S Heinemann
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Budapester Strasse 27, D-01069 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Mostafa NZ, Fitzsimmons R, Major PW, Adesida A, Jomha N, Jiang H, Uludağ H. Osteogenic differentiation of human mesenchymal stem cells cultured with dexamethasone, vitamin D3, basic fibroblast growth factor, and bone morphogenetic protein-2. Connect Tissue Res 2011; 53:117-31. [PMID: 21966879 DOI: 10.3109/03008207.2011.611601] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Human mesenchymal stem cells (hMSCs) are pursued for cell-based therapies of bone defects. Successful use of hMSCs will require them to be osteogenically differentiated before transplantation. This study was intended to determine the optimal combination(s) of supplements needed for inducing osteogenesis in hMSCs. METHODS The hMSCs were cultured with combinations of β-glycerophosphate, dexamethasone (Dex), vitamin D3 (Vit-D3), basic fibroblast growth factor (bFGF), and bone morphogenetic protein-2 (BMP-2) to assess cell growth and osteogenesis. Osteogenic responses of the supplements were evaluated by alkaline phosphatase (ALP) activity, mineralization, and gene expression of ALP, Runx2, bone sialoprotein, and osteonectin. Adipogenesis was characterized based on Oil Red O staining, gene expression of peroxisome proliferator-activated receptor γ2, and adipocyte protein-2. RESULTS Dex was found to be essential for mineralization of hMSCs. Cultures treated with Dex (100 nM), Vit-D3 (10/50 nM), and BMP-2 (500 ng/mL) demonstrated maximal calcification and up-regulation of ALP and bone sialoprotein expression. However, adipogenesis was up-regulated in parallel with osteogenesis in these cultures, as evident by the presence of lipid droplets and significant up-regulation of peroxisome proliferator-activated receptor γ2 and adipocyte protein-2 expression. An optimal condition was obtained at Dex (10 nM) and BMP-2 (500 ng/mL) for mineralization without increasing adipogenesis-related markers. The bFGF mitigated osteogenesis and enhanced adipogenesis. Vit-D3 appears essential for calcification only in the presence of bFGF. CONCLUSION Treatment of hMSCs with appropriate supplements at optimal doses results in robust osteogenic differentiation with minimal adipogenesis. These findings could be used in the cultivation of hMSCs for cell-based strategies for bone regeneration.
Collapse
Affiliation(s)
- Nesrine Z Mostafa
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Sollazzo V, Palmieri A, Girardi A, Zollino I, Brunelli G, Spinelli G, Carinci F. Osteoplant acts on stem cells derived from peripheral blood. J Indian Soc Periodontol 2011; 14:12-7. [PMID: 20922073 PMCID: PMC2933523 DOI: 10.4103/0972-124x.65429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/10/2009] [Accepted: 11/14/2009] [Indexed: 11/05/2022] Open
Abstract
Objectives: The osteoplant is an equine, flexible, heterologous, deantigenic, cortical, and spongy bone tissue, totally reabsorbable, used for implantation of bone tissue, to restore skeletal, even weight-bearing structures. However, how the osteoplant alters osteoblast activity to promote bone formation is poorly understood. Materials and Methods: To study how the osteoplant induces osteoblast differentiation in mesenchymal stem cells, the expression levels of bone-related genes, and mesenchymal stem cell markers are analyzed, using real time Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Results: The osteoplant causes induction of osteoblast transcriptional factors such as osterix (RUNX2), and of bone-related genes such as osteopontin (SPP1) and osteocalcin (BGLAP). In contrast the expression of ENG (CD105) is significantly decreased in stem cells treated with osteoplant, with respect to untreated cells, indicating the differentiation effect of this biomaterial on stem cells. Conclusion: The obtained results can be relevant to better understand the molecular mechanism of bone regeneration and as a model for comparing other materials with similar clinical effects.
Collapse
|
44
|
Energy Balance, Myostatin, and GILZ: Factors Regulating Adipocyte Differentiation in Belly and Bone. PPAR Res 2011; 2007:92501. [PMID: 18309369 PMCID: PMC2246068 DOI: 10.1155/2007/92501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 08/16/2007] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) belongs to the nuclear hormone receptor subfamily of transcription factors. PPARs are expressed in key target tissues such as liver, fat, and muscle and thus they play a major role in the regulation of energy balance. Because of PPAR-gamma's role in energy balance, signals originating from the gut (e.g., GIP), fat (e.g., leptin), muscle (e.g., myostatin), or bone (e.g., GILZ) can in turn modulate PPAR expression and/or function. Of the two PPAR-gamma isoforms, PPAR-gamma2 is the key regulator of adipogenesis and also plays a role in bone development. Activation of this receptor favors adipocyte differentiation of mesenchymal stem cells, while inhibition of PPAR-gamma2 expression shifts the commitment towards the osteoblastogenic pathway. Clinically, activation of this receptor by antidiabetic agents of the thiazolidinedione class results in lower bone mass and increased fracture rates. We propose that inhibition of PPAR-gamma2 expression in mesenchymal stem cells by use of some of the hormones/factors mentioned above may be a useful therapeutic strategy to favor bone formation.
Collapse
|
45
|
Gurkan UA, Kishore V, Condon KW, Bellido TM, Akkus O. A scaffold-free multicellular three-dimensional in vitro model of osteogenesis. Calcif Tissue Int 2011; 88:388-401. [PMID: 21318400 PMCID: PMC10132772 DOI: 10.1007/s00223-011-9467-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/21/2011] [Indexed: 01/28/2023]
Abstract
In vitro models of osteogenesis are essential for investigating bone biology and the effects of pharmaceutical, chemical, and physical cues on bone formation. Osteogenesis takes place in a complex three-dimensional (3D) environment with cells from both mesenchymal and hematopoietic origins. Existing in vitro models of osteogenesis include two-dimensional (2D) single type cell monolayers and 3D cultures. However, an in vitro scaffold-free multicellular 3D model of osteogenesis is missing. We hypothesized that the self-inductive ossification capacity of bone marrow tissue can be harnessed in vitro and employed as a scaffold-free multicellular 3D model of osteogenesis. Therefore, rat bone marrow tissue was cultured for 28 days in three settings: 2D monolayer, 3D homogenized pellet, and 3D organotypic explant. The ossification potential of marrow in each condition was quantified by micro-computed tomography. The 3D organotypic marrow explant culture resulted in the greatest level of ossification with plate-like bone formations (up to 5 mm in diameter and 0.24 mm in thickness). To evaluate the mimicry of the organotypic marrow explants to newly forming native bone tissue, detailed compositional and morphological analyses were performed, including characterization of the ossified matrix by histochemistry, immunohistochemistry, Raman microspectroscopy, energy dispersive X-ray spectroscopy, backscattered electron microscopy, and micromechanical tests. The results indicated that the 3D organotypic marrow explant culture model mimics newly forming native bone tissue in terms of the characteristics studied. Therefore, this platform holds significant potential to be used as a model of osteogenesis, offering an alternative to in vitro monolayer cultures and in vivo animal models.
Collapse
Affiliation(s)
- Umut A Gurkan
- Center for Biomedical Engineering at Brigham and Women's Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | | | | | | | | |
Collapse
|
46
|
Geng S, Zhou S, Glowacki J. Effects of 25-hydroxyvitamin D(3) on proliferation and osteoblast differentiation of human marrow stromal cells require CYP27B1/1α-hydroxylase. J Bone Miner Res 2011; 26:1145-53. [PMID: 21542014 PMCID: PMC3179303 DOI: 10.1002/jbmr.298] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1,25-Dihydroxyvitamin D(3)[1,25(OH)(2)D(3)] has many noncalcemic actions that rest on inhibition of proliferation and promotion of differentiation in malignant and normal cell types. 1,25(OH)(2)D(3) stimulates osteoblast differentiation of human marrow stromal cells (hMSCs), but little is known about the effects of 25-hydroxyvitamin D(3)[25(OH)D(3)] on these cells. Recent evidence shows that hMSCs participate in vitamin D metabolism and can activate 25(OH)D(3) by CYP27B1/1α-hydroxylase. These studies test the hypothesis that antiproliferative and prodifferentiation effects of 25(OH)D(3) in hMSCs depend on CYP27B1. We studied hMSCs that constitutively express high (hMSCs(hi-1α) ) or low (hMSCs(lo-1α)) levels of CYP27B1 with equivalent expression of CYP24A1 and vitamin D receptor. In hMSCs(hi-1α), 25(OH)D(3) reduced proliferation, downregulated proliferating cell nuclear antigen (PCNA), upregulated p21(Waf1/Cip1), and decreased cyclin D1. Unlike 1,25(OH)(2)D(3), the antiapoptotic effects of 25(OH)D(3) on Bax and Bcl-2 were blocked by the P450 inhibitor ketoconazole. The antiproliferative effects of 25(OH)D(3) in hMSCs(hi-1α) and of 1,25(OH)(2)D(3) in both samples of hMSCs were explained by cell cycle arrest, not by increased apoptosis. Stimulation of osteoblast differentiation in hMSCs(hi-1α) by 25(OH)D(3) was prevented by ketoconazole and upon transfection with CYP27B1 siRNA. These data indicate that CYP27B1 is required for 25(OH)D(3)'s action in hMSCs. Three lines of evidence indicate that CYP27B1 is required for the antiproliferative and prodifferentiation effects of 25(OH)D(3) on hMSCs: Those effects were not seen (1) in hMSCs with low constitutive expression of CYP27B1, (2) in hMSCs treated with ketoconazole, and (3) in hMSCs in which CYP27B1 expression was silenced. Osteoblast differentiation and skeletal homeostasis may be regulated by autocrine/paracrine actions of 25(OH)D(3) in hMSCs.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
47
|
Song I, Kim BS, Kim CS, Im GI. Effects of BMP-2 and vitamin D3 on the osteogenic differentiation of adipose stem cells. Biochem Biophys Res Commun 2011; 408:126-31. [PMID: 21463608 DOI: 10.1016/j.bbrc.2011.03.135] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 11/16/2022]
Abstract
We studied the effect of bone morphogenetic protein-2 (BMP-2) and vitamin D(3) on the osteogenic differentiation of adipose stem cells (ASCs). ASCs were treated with 10, 50, and 100 ng/ml of BMP-2, and 10(-8), 10(-7), 10(-6)M vitamin D(3). Then, to investigate the effects of combined treatment, ASCs were treated with BMP-2 and vitamin D(3) dose-dependently and time-dependently. The osteogenic differentiation was assessed by alkaline phosphatase (ALP) activities/staining and the mineralization was evaluated by Alizarin red S staining. ALP activity and mineralization dose-dependently increased in early stages (ALP on 7th day and mineralization on the 14th day) while all three doses of BMP-2 or vitamin D(3) showed comparable effects in late stages (ALP on the 14th day and mineralization on the 21st day) in ASCs. BMP-2 and vitamin D(3) had synergistic effect on the osteogenic differentiation of ASCs. While all three doses of BMP-2 acted similarly in reinforcing the effect of vitamin D(3), vitamin D(3) dose-dependently augmented the osteogenic effect of BMP-2. When BMP-2 was constantly treated, vitamin D(3) effect did not differ depending on the period of vitamin D(3) treatment. However, when vitamin D(3) was constantly treated, the BMP was more effective when treated for the last 7 days than when treated for the first 7 days. In conclusion, BMP-2 and vitamin D(3) promote osteogenic differentiation of ASCs, and can work synergistically. These results can be used to induce effective and economical osteogenic induction of ASCs for bone tissue engineering.
Collapse
Affiliation(s)
- Insun Song
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | | | | | | |
Collapse
|
48
|
Paredes B, Santana A, Arribas MI, Vicente-Salar N, de Aza PN, Roche E, Such J, Reig JA. Phenotypic differences during the osteogenic differentiation of single cell-derived clones isolated from human lipoaspirates. J Tissue Eng Regen Med 2010; 5:589-99. [PMID: 21774082 DOI: 10.1002/term.351] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 07/12/2010] [Indexed: 12/12/2022]
Abstract
Osteogenic precursors can be obtained from mesenchymal stem cells, which can be isolated from different sources, including adipose tissue. Optimal osteogenic differentiation in in vitro conditions and the selection of the potential precursors that could be further used in bone regeneration still have two main questions left to solve, viz. the heterogeneity of the mesenchymal cell population and the presence of a basal transcription level of several characteristic genes of the osteogenic lineage, which makes rapid and effective comparisons during cell differentiation difficult. Single-cell clones were isolated and expanded from human lipoaspirate cells. Osteogenic differentiation was induced and studied in defined media, using four representative isolated cell clones showing differences in the basal expression of a set of characteristic osteogenic genes. The clones showing a low constitutive expression of these genes were able to display comparatively higher levels of mineralization. In addition, the cells from these clones displayed a characteristic pattern of bundle fibres of collagen during osteogenic induction and showed a higher potency to differentiate towards the adipogenic lineage. These results demonstrate that specific multipotent precursors can be isolated from human lipoaspirate cells with a higher differentiation potential, allowing the maturation of specific lineages in a shorter time. These results additionally demonstrate that, since the basal expressions of the several genes were used as osteogenic markers, a phenotypic biochemical analysis should always be utilized to study optimal osteogenesis conditions. Copyright © 2010 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Beatriz Paredes
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang Y, Shi X, Ren L, Yao Y, Wang DA. In vitro osteogenesis of synovium mesenchymal cells induced by controlled release of alendronate and dexamethasone from a sintered microspherical scaffold. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 21:1227-38. [PMID: 20507717 DOI: 10.1163/092050609x12481751806259] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In vitro osteogenesis was successfully achieved with synovium-derived mesenchymal stem cells (SMSCs), which intrinsically have a strong chondrogenic tendency, by in situ release of alendronate (AL) and dexamethasone (Dex) from poly(lactic-co-glycolic acid) (PLGA)/hydroxyapatite (HA) sintered microspherical scaffold (PLGA/HA-SMS). Cumulative release profiles of AL and Dex from PLGA/HA-SMS and the influence on SMSCs osteogenic commitment were investigated. SMSCs seeded in Al-/Dex-loaded PLGA/HA-SMS (PLGA/HA-Com-SMS) exhibited significant osteogenic differentiation, as indicated by high yields of alkaline phosphatase (ALP) and bone calcification. In addition, mechanical properties (compressional) of PLGA/HA-Com-SMSs were also evaluated and approved. In conclusion, by promoting osteogenic commitment of SMSCs in vitro, this newly designed controlled-release system opens a new door to bone reparation and regeneration.
Collapse
Affiliation(s)
- Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | | | | | | | | |
Collapse
|
50
|
Osteogenic differentiation of intact human amniotic membrane. Biomaterials 2010; 31:8659-65. [PMID: 20719379 DOI: 10.1016/j.biomaterials.2010.07.090] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/25/2010] [Indexed: 11/20/2022]
Abstract
Tissue engineering strategies usually require cell isolation and combination with a suitable biomaterial. Human amniotic membrane (AM) represents a natural two-layered sheet comprising cells with proven stem cell characteristics. In our approach, we evaluated the differentiation potential of AM in toto with its sessile stem cells as alternative to conventional approaches requiring cell isolation and combination with biomaterials. For this, AM-biopsies were differentiated in vitro using two osteogenic media compared with control medium (CM) for 28 days. Mineralization and osteocalcin expression was demonstrated by (immuno)histochemistry. Alkaline phosphatase (AP) activity, calcium contents and mRNA expression of RUNX2, AP, osteopontin, osteocalcin, BMP-2 (bone morphogenetic protein), and BMP-4 were quantified and AM viability was evaluated. Under osteogenic conditions, AM-biopsies mineralized successfully and by day 28 the majority of cells expressed osteocalcin. This was confirmed by a significant rise in calcium contents (up to 27.4 ± 6.8 mg/dl d28), increased AP activity, and induction of RUNX2, AP, BMP-2 and BMP-4 mRNA expression. Relatively high levels of viability were retained, especially in osteogenic media (up to 78.3 ± 19.0% d14; 62.9 ± 22.3% d28) compared to CM (42.2 ± 15.2% d14; 35.1 ± 8.6% d28). By this strategy, stem cells within human AM can successfully be driven along the osteogenic pathways while residing within their natural environment.
Collapse
|