1
|
Berscheid A, Straetener J, Schilling NA, Ruppelt D, Konnerth MC, Schittek B, Krismer B, Peschel A, Steinem C, Grond S, Brötz-Oesterhelt H. The microbiome-derived antibacterial lugdunin acts as a cation ionophore in synergy with host peptides. mBio 2024; 15:e0057824. [PMID: 39133006 PMCID: PMC11389392 DOI: 10.1128/mbio.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Lugdunin is a microbiome-derived antibacterial agent with good activity against Gram-positive pathogens in vitro and in animal models of nose colonization and skin infection. We have previously shown that lugdunin depletes bacterial energy resources by dissipating the membrane potential of Staphylococcus aureus. Here, we explored the mechanism of action of lugdunin in more detail and show that lugdunin quickly depolarizes cytoplasmic membranes of different bacterial species and acidifies the cytoplasm of S. aureus within minutes due to protonophore activity. Varying the salt species and concentrations in buffers revealed that not only protons are transported, and we demonstrate the binding of the monovalent cations K+, Na+, and Li+ to lugdunin. By comparing known ionophores with various ion transport mechanisms, we conclude that the ion selectivity of lugdunin largely resembles that of 15-mer linear peptide gramicidin A. Direct interference with the main bacterial metabolic pathways including DNA, RNA, protein, and cell wall biosyntheses can be excluded. The previously observed synergism of lugdunin with dermcidin-derived peptides such as DCD-1 in killing S. aureus is mechanistically based on potentiated membrane depolarization. We also found that lugdunin was active against certain eukaryotic cells, however strongly depending on the cell line and growth conditions. While adherent lung epithelial cell lines were almost unaffected, more sensitive cells showed dissipation of the mitochondrial membrane potential. Lugdunin seems specifically adapted to its natural environment in the respiratory tract. The ionophore mechanism is refractory to resistance development and benefits from synergy with host-derived antimicrobial peptides. IMPORTANCE The vast majority of antimicrobial peptides produced by members of the microbiome target the bacterial cell envelope by many different mechanisms. These compounds and their producers have evolved side-by-side with their host and were constantly challenged by the host's immune system. These molecules are optimized to be well tolerated at their physiological site of production, and their modes of action have proven efficient in vivo. Imbalancing the cellular ion homeostasis is a prominent mechanism among antibacterial natural products. For instance, over 120 naturally occurring polyether ionophores are known to date, and antimicrobial peptides with ionophore activity have also been detected in microbiomes. In this study, we elucidated the mechanism underlying the membrane potential-dissipating activity of the thiazolidine-containing cycloheptapeptide lugdunin, the first member of the fibupeptides discovered in a commensal bacterium from the human nose, which is a promising future probiotic candidate that is not prone to resistance development.
Collapse
Affiliation(s)
- Anne Berscheid
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
- Microbial Bioactive Compounds, University of Tübingen, German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Jan Straetener
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Nadine A Schilling
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Dominik Ruppelt
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Göttingen, Germany
| | - Martin C Konnerth
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Microbial Bioactive Compounds, University of Tübingen, German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, Tübingen, Germany
- Microbial Bioactive Compounds, University of Tübingen, Cluster of Excellence EXC 2124-Controlling Microbes to Fight Infections, Tubingen, Germany
| | - Andreas Peschel
- Microbial Bioactive Compounds, University of Tübingen, German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, Tübingen, Germany
- Microbial Bioactive Compounds, University of Tübingen, Cluster of Excellence EXC 2124-Controlling Microbes to Fight Infections, Tubingen, Germany
| | - Claudia Steinem
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Göttingen, Germany
- Max-Planck-Institute for Dynamics and Self Organization, Göttingen, Germany
| | - Stephanie Grond
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
- Microbial Bioactive Compounds, University of Tübingen, Cluster of Excellence EXC 2124-Controlling Microbes to Fight Infections, Tubingen, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
- Microbial Bioactive Compounds, University of Tübingen, German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Microbial Bioactive Compounds, University of Tübingen, Cluster of Excellence EXC 2124-Controlling Microbes to Fight Infections, Tubingen, Germany
| |
Collapse
|
2
|
Bava R, Castagna F, Lupia C, Poerio G, Liguori G, Lombardi R, Naturale MD, Mercuri C, Bulotta RM, Britti D, Palma E. Antimicrobial Resistance in Livestock: A Serious Threat to Public Health. Antibiotics (Basel) 2024; 13:551. [PMID: 38927217 PMCID: PMC11200672 DOI: 10.3390/antibiotics13060551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial resistance represents an alarming public health problem; its importance is related to the significant clinical implications (increased morbidity, mortality, disease duration, development of comorbidities, and epidemics), as well as its economic effects on the healthcare sector. In fact, therapeutic options are severely limited by the advent and spread of germs resistant to many antibiotics. The situation worldwide is worrying, especially in light of the prevalence of Gram-negative bacteria-Klebsiella pneumoniae and Acinetobacter baumannii-which are frequently isolated in hospital environments and, more specifically, in intensive care units. The problem is compounded by the ineffective treatment of infections by patients who often self-prescribe therapy. Resistant bacteria also show resistance to the latest generation antibiotics, such as carbapenems. In fact, superbacteria, grouped under the acronym extended-spectrum betalactamase (ESBL), are becoming common. Antibiotic resistance is also found in the livestock sector, with serious repercussions on animal production. In general, this phenomenon affects all members of the biosphere and can only be addressed by adopting a holistic "One Health" approach. In this literature overview, a stock is taken of what has been learned about antibiotic resistance, and suggestions are proposed to stem its advance.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Giusi Poerio
- ATS Val Padana, Via dei Toscani, 46100 Mantova, Italy;
| | | | - Renato Lombardi
- IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy;
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy;
| | - Caterina Mercuri
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Lekshmi M, Ortiz-Alegria A, Kumar S, Varela MF. Major facilitator superfamily efflux pumps in human pathogens: Role in multidrug resistance and beyond. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100248. [PMID: 38974671 PMCID: PMC11225705 DOI: 10.1016/j.crmicr.2024.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
The major facilitator superfamily (MFS) of proteins constitutes a large group of related solute transporters found across all known living taxa of organisms. The transporters of the MFS contain an extremely diverse array of substrates, including ions, molecules of intermediary metabolism, and structurally different antimicrobial agents. First discovered over 30 years ago, the MFS represents an important collection of integral membrane transporters. Bacterial microorganisms expressing multidrug efflux pumps belonging to the MFS are considered serious pathogens, accounting for alarming morbidity and mortality numbers annually. This review article considers recent advances in the structure-function relationships, the transport mechanism, and modulation of MFS multidrug efflux pumps within the context of drug resistance mechanisms of bacterial pathogens of public health concerns.
Collapse
Affiliation(s)
- Manjusha Lekshmi
- QC Laboratory, Post Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, United States
| | - Sanath Kumar
- QC Laboratory, Post Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, United States
| |
Collapse
|
4
|
Stephen J, Salam F, Lekshmi M, Kumar SH, Varela MF. The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus. Antibiotics (Basel) 2023; 12:343. [PMID: 36830254 PMCID: PMC9952236 DOI: 10.3390/antibiotics12020343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The ESKAPEE bacterial pathogen Staphylococcus aureus has posed a serious public health concern for centuries. Throughout its evolutionary course, S. aureus has developed strains with resistance to antimicrobial agents. The bacterial pathogen has acquired multidrug resistance, causing, in many cases, untreatable infectious diseases and raising serious public safety and healthcare concerns. Amongst the various mechanisms for antimicrobial resistance, integral membrane proteins that serve as secondary active transporters from the major facilitator superfamily constitute a chief system of multidrug resistance. These MFS transporters actively export structurally different antimicrobial agents from the cells of S. aureus. This review article discusses the S. aureus-specific MFS multidrug efflux pump systems from a molecular mechanistic perspective, paying particular attention to structure-function relationships, modulation of antimicrobial resistance mediated by MFS drug efflux pumps, and direction for future investigation.
Collapse
Affiliation(s)
- Jerusha Stephen
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Fathima Salam
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manjusha Lekshmi
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Sanath H. Kumar
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| |
Collapse
|
5
|
Stephen J, Lekshmi M, Ammini P, Kumar SH, Varela MF. Membrane Efflux Pumps of Pathogenic Vibrio Species: Role in Antimicrobial Resistance and Virulence. Microorganisms 2022; 10:microorganisms10020382. [PMID: 35208837 PMCID: PMC8875612 DOI: 10.3390/microorganisms10020382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/15/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Infectious diseases caused by bacterial species of the Vibrio genus have had considerable significance upon human health for centuries. V. cholerae is the causative microbial agent of cholera, a severe ailment characterized by profuse watery diarrhea, a condition associated with epidemics, and seven great historical pandemics. V. parahaemolyticus causes wound infection and watery diarrhea, while V. vulnificus can cause wound infections and septicemia. Species of the Vibrio genus with resistance to multiple antimicrobials have been a significant health concern for several decades. Mechanisms of antimicrobial resistance machinery in Vibrio spp. include biofilm formation, drug inactivation, target protection, antimicrobial permeability reduction, and active antimicrobial efflux. Integral membrane-bound active antimicrobial efflux pump systems include primary and secondary transporters, members of which belong to closely related protein superfamilies. The RND (resistance-nodulation-division) pumps, the MFS (major facilitator superfamily) transporters, and the ABC superfamily of efflux pumps constitute significant drug transporters for investigation. In this review, we explore these antimicrobial transport systems in the context of Vibrio spp. pathogenesis and virulence.
Collapse
Affiliation(s)
- Jerusha Stephen
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India; (J.S.); (M.L.); (S.H.K.)
| | - Manjusha Lekshmi
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India; (J.S.); (M.L.); (S.H.K.)
| | - Parvathi Ammini
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India;
| | - Sanath H. Kumar
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India; (J.S.); (M.L.); (S.H.K.)
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
- Correspondence:
| |
Collapse
|
6
|
High-speed atomic force microscopy reveals a three-state elevator mechanism in the citrate transporter CitS. Proc Natl Acad Sci U S A 2022; 119:2113927119. [PMID: 35101979 PMCID: PMC8833178 DOI: 10.1073/pnas.2113927119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
As cellular membranes are impermeable to most molecules, transporter proteins are typically present in the membrane to transport small molecules in or out of the cell. Due to the small, nanometer size of these transporters, it is challenging to study their transport mechanism. Here, we use advanced microscopy approaches to study in real time and at the single-molecule level the mode of action of the dimeric CitS tranpsorter. Using high-speed atomic force microscopy, we visualize the dynamic, elevator-like movement of the transporter, and we reveal that the two protomers move independently. We also discovered an intermediate state, reminiscent of another, unrelated transporter, indicating that independent evolutionary pathways have led to similar three-state elevator mechanisms. The secondary active transporter CitS shuttles citrate across the cytoplasmic membrane of gram-negative bacteria by coupling substrate translocation to the transport of two Na+ ions. Static crystal structures suggest an elevator type of transport mechanism with two states: up and down. However, no dynamic measurements have been performed to substantiate this assumption. Here, we use high-speed atomic force microscopy for real-time visualization of the transport cycle at the level of single transporters. Unexpectedly, instead of a bimodal height distribution for the up and down states, the experiments reveal movements between three distinguishable states, with protrusions of ∼0.5 nm, ∼1.0 nm, and ∼1.6 nm above the membrane, respectively. Furthermore, the real-time measurements show that the individual protomers of the CitS dimer move up and down independently. A three-state elevator model of independently operating protomers resembles the mechanism proposed for the aspartate transporter GltPh. Since CitS and GltPh are structurally unrelated, we conclude that the three-state elevators have evolved independently.
Collapse
|
7
|
Major Facilitator Superfamily Transporter Gene FgMFS1 Is Essential for Fusarium graminearum to Deal with Salicylic Acid Stress and for Its Pathogenicity towards Wheat. Int J Mol Sci 2021; 22:ijms22168497. [PMID: 34445203 PMCID: PMC8395176 DOI: 10.3390/ijms22168497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Wheat is a major staple food crop worldwide, due to its total yield and unique processing quality. Its grain yield and quality are threatened by Fusarium head blight (FHB), which is mainly caused by Fusarium graminearum. Salicylic acid (SA) has a strong and toxic effect on F. graminearum and is a hopeful target for sustainable control of FHB. F. graminearum is capable of efficientdealing with SA stress. However, the underlying mechanisms remain unclear. Here, we characterized FgMFS1 (FGSG_03725), a major facilitator superfamily (MFS) transporter gene in F. graminearum. FgMFS1 was highly expressed during infection and was upregulated by SA. The predicted three-dimensional structure of the FgMFS1 protein was consistent with the schematic for the antiporter. The subcellular localization experiment indicated that FgMFS1 was usually expressed in the vacuole of hyphae, but was alternatively distributed in the cell membrane under SA treatment, indicating an element of F. graminearum in response to SA. ΔFgMFS1 (loss of function mutant of FgMFS1) showed enhanced sensitivity to SA, less pathogenicity towards wheat, and reduced DON production under SA stress. Re-introduction of a functional FgMFS1 gene into ∆FgMFS1 recovered the mutant phenotypes. Wheat spikes inoculated with ΔFgMFS1 accumulated more SA when compared to those inoculated with the wild-type strain. Ecotopic expression of FgMFS1 in yeast enhanced its tolerance to SA as expected, further demonstrating that FgMFS1 functions as an SA exporter. In conclusion, FgMFS1 encodes an SA exporter in F. graminearum, which is critical for its response to wheat endogenous SA and pathogenicity towards wheat.
Collapse
|
8
|
Galera-Laporta L, Comerci CJ, Garcia-Ojalvo J, Süel GM. IonoBiology: The functional dynamics of the intracellular metallome, with lessons from bacteria. Cell Syst 2021; 12:497-508. [PMID: 34139162 PMCID: PMC8570674 DOI: 10.1016/j.cels.2021.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022]
Abstract
Metal ions are essential for life and represent the second most abundant constituent (after water) of any living cell. While the biological importance of inorganic ions has been appreciated for over a century, we are far from a comprehensive understanding of the functional roles that ions play in cells and organisms. In particular, recent advances are challenging the traditional view that cells maintain constant levels of ion concentrations (ion homeostasis). In fact, the ionic composition (metallome) of cells appears to be purposefully dynamic. The scientific journey that started over 60 years ago with the seminal work by Hodgkin and Huxley on action potentials in neurons is far from reaching its end. New evidence is uncovering how changes in ionic composition regulate unexpected cellular functions and physiology, especially in bacteria, thereby hinting at the evolutionary origins of the dynamic metallome. It is an exciting time for this field of biology, which we discuss and refer to here as IonoBiology.
Collapse
Affiliation(s)
- Leticia Galera-Laporta
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Colin J Comerci
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Gürol M Süel
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; San Diego Center for Systems Biology, University of California, San Diego, La Jolla, CA 92093- 0380, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093-0380, USA.
| |
Collapse
|
9
|
Bacterial Resistance to Antimicrobial Agents. Antibiotics (Basel) 2021; 10:antibiotics10050593. [PMID: 34067579 PMCID: PMC8157006 DOI: 10.3390/antibiotics10050593] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial pathogens as causative agents of infection constitute an alarming concern in the public health sector. In particular, bacteria with resistance to multiple antimicrobial agents can confound chemotherapeutic efficacy towards infectious diseases. Multidrug-resistant bacteria harbor various molecular and cellular mechanisms for antimicrobial resistance. These antimicrobial resistance mechanisms include active antimicrobial efflux, reduced drug entry into cells of pathogens, enzymatic metabolism of antimicrobial agents to inactive products, biofilm formation, altered drug targets, and protection of antimicrobial targets. These microbial systems represent suitable focuses for investigation to establish the means for their circumvention and to reestablish therapeutic effectiveness. This review briefly summarizes the various antimicrobial resistance mechanisms that are harbored within infectious bacteria.
Collapse
|
10
|
Drew D, North RA, Nagarathinam K, Tanabe M. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chem Rev 2021; 121:5289-5335. [PMID: 33886296 PMCID: PMC8154325 DOI: 10.1021/acs.chemrev.0c00983] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
The major facilitator superfamily (MFS) is the largest known superfamily of secondary active transporters. MFS transporters are responsible for transporting a broad spectrum of substrates, either down their concentration gradient or uphill using the energy stored in the electrochemical gradients. Over the last 10 years, more than a hundred different MFS transporter structures covering close to 40 members have provided an atomic framework for piecing together the molecular basis of their transport cycles. Here, we summarize the remarkable promiscuity of MFS members in terms of substrate recognition and proton coupling as well as the intricate gating mechanisms undergone in achieving substrate translocation. We outline studies that show how residues far from the substrate binding site can be just as important for fine-tuning substrate recognition and specificity as those residues directly coordinating the substrate, and how a number of MFS transporters have evolved to form unique complexes with chaperone and signaling functions. Through a deeper mechanistic description of glucose (GLUT) transporters and multidrug resistance (MDR) antiporters, we outline novel refinements to the rocker-switch alternating-access model, such as a latch mechanism for proton-coupled monosaccharide transport. We emphasize that a full understanding of transport requires an elucidation of MFS transporter dynamics, energy landscapes, and the determination of how rate transitions are modulated by lipids.
Collapse
Affiliation(s)
- David Drew
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Rachel A. North
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Kumar Nagarathinam
- Center
of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, D-23538, Lübeck, Germany
| | - Mikio Tanabe
- Structural
Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
11
|
Stautz J, Hellmich Y, Fuss MF, Silberberg JM, Devlin JR, Stockbridge RB, Hänelt I. Molecular Mechanisms for Bacterial Potassium Homeostasis. J Mol Biol 2021; 433:166968. [PMID: 33798529 DOI: 10.1016/j.jmb.2021.166968] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Potassium ion homeostasis is essential for bacterial survival, playing roles in osmoregulation, pH homeostasis, regulation of protein synthesis, enzyme activation, membrane potential adjustment and electrical signaling. To accomplish such diverse physiological tasks, it is not surprising that a single bacterium typically encodes several potassium uptake and release systems. To understand the role each individual protein fulfills and how these proteins work in concert, it is important to identify the molecular details of their function. One needs to understand whether the systems transport ions actively or passively, and what mechanisms or ligands lead to the activation or inactivation of individual systems. Combining mechanistic information with knowledge about the physiology under different stress situations, such as osmostress, pH stress or nutrient limitation, one can identify the task of each system and deduce how they are coordinated with each other. By reviewing the general principles of bacterial membrane physiology and describing the molecular architecture and function of several bacterial K+-transporting systems, we aim to provide a framework for microbiologists studying bacterial potassium homeostasis and the many K+-translocating systems that are still poorly understood.
Collapse
Affiliation(s)
- Janina Stautz
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael F Fuss
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jakob M Silberberg
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jason R Devlin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Chen G, Widdel F, Musat F. Effect of energy deprivation on metabolite release by anaerobic marine naphthalene‐degrading sulfate‐reducing bacteria. Environ Microbiol 2020; 22:4057-4066. [DOI: 10.1111/1462-2920.15195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Gao Chen
- Max Planck Institute for Marine Microbiology Celsiusstraße 1 Bremen D‐28359 Germany
- Department of Civil and Environmental Engineering University of Tennessee Knoxville, TN 37996 USA
| | - Friedrich Widdel
- Max Planck Institute for Marine Microbiology Celsiusstraße 1 Bremen D‐28359 Germany
| | - Florin Musat
- Max Planck Institute for Marine Microbiology Celsiusstraße 1 Bremen D‐28359 Germany
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ, Permoserstr., 15, 04318 Leipzig Germany
| |
Collapse
|
13
|
Benarroch JM, Asally M. The Microbiologist’s Guide to Membrane Potential Dynamics. Trends Microbiol 2020; 28:304-314. [DOI: 10.1016/j.tim.2019.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
|
14
|
Li J, Zhao Z, Tajkhorshid E. Locking Two Rigid-body Bundles in an Outward-Facing Conformation: The Ion-coupling Mechanism in a LeuT-fold Transporter. Sci Rep 2019; 9:19479. [PMID: 31862903 PMCID: PMC6925253 DOI: 10.1038/s41598-019-55722-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/02/2019] [Indexed: 01/26/2023] Open
Abstract
Secondary active transporters use electrochemical gradient of ions to fuel the "uphill" translocation of the substrate following the alternating-access model. The coupling of ions to conformational dynamics of the protein remains one of the least characterized aspects of the transporter function. We employ extended molecular dynamics (MD) simulations to examine the Na+-binding effects on the structure and dynamics of a LeuT-fold, Na+-coupled secondary transporter (Mhp1) in its major conformational states, i.e., the outward-facing (OF) and inward-facing (IF) states, as well as on the OF ↔ IF state transition. Microsecond-long, unbiased MD simulations illustrate that Na+ stabilizes an OF conformation favorable for substrate association, by binding to a highly conserved site at the interface between the two helical bundles and restraining their relative position and motion. Furthermore, a special-protocol biased simulation for state transition suggests that Na+ binding hinders the OF ↔ IF transition. These synergistic Na+-binding effects allosterically couple the ion and substrate binding sites and modify the kinetics of state transition, collectively increasing the lifetime of an OF conformation with high substrate affinity, thereby facilitating substrate recruitment from a low-concentration environment. Based on the similarity between our findings for Mhp1 and experimental reports on LeuT, we propose that this model may represent a general Na+-coupling mechanism among LeuT-fold transporters.
Collapse
Affiliation(s)
- Jing Li
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, United States
| | - Zhiyu Zhao
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
15
|
Henderson RK, Fendler K, Poolman B. Coupling efficiency of secondary active transporters. Curr Opin Biotechnol 2018; 58:62-71. [PMID: 30502621 DOI: 10.1016/j.copbio.2018.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Secondary active transporters are fundamental to a myriad of biological processes. They use the electrochemical gradient of one solute to drive transport of another solute against its concentration gradient. Central to this mechanism is that the transport of one does not occur in the absence of the other. However, like in most of biology, imperfections in the coupling mechanism exist and we argue that these are innocuous and may even be beneficial for the cell. We discuss the energetics and kinetics of alternating-access in secondary transport and focus on the mechanistic aspects of imperfect coupling that give rise to leak pathways. Additionally, inspection of available transporter structures gives valuable insight into coupling mechanics, and we review literature where proteins have been altered to change their coupling efficiency.
Collapse
Affiliation(s)
- Ryan K Henderson
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Klaus Fendler
- Department of Biophysical Chemistry, Max-Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
16
|
Zhang XC, Liu M, Lu G, Heng J. Thermodynamic secrets of multidrug resistance: A new take on transport mechanisms of secondary active antiporters. Protein Sci 2017; 27:595-613. [PMID: 29193407 DOI: 10.1002/pro.3355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022]
Abstract
Multidrug resistance (MDR) presents a growing challenge to global public health. Drug extrusion transporters play a critical part in MDR; thus, their mechanisms of substrate recognition are being studied in great detail. In this work, we review common structural features of key transporters involved in MDR. Based on our membrane potential-driving hypothesis, we propose a general energy-coupling mechanism for secondary-active antiporters. This putative mechanism provides a common framework for understanding poly-specificity of most-if not all-MDR transporters.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyuan Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Heng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| |
Collapse
|
17
|
North RA, Horne CR, Davies JS, Remus DM, Muscroft-Taylor AC, Goyal P, Wahlgren WY, Ramaswamy S, Friemann R, Dobson RCJ. "Just a spoonful of sugar...": import of sialic acid across bacterial cell membranes. Biophys Rev 2017; 10:219-227. [PMID: 29222808 DOI: 10.1007/s12551-017-0343-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic cell surfaces are decorated with a complex array of glycoconjugates that are usually capped with sialic acids, a large family of over 50 structurally distinct nine-carbon amino sugars, the most common member of which is N-acetylneuraminic acid. Once made available through the action of neuraminidases, bacterial pathogens and commensals utilise host-derived sialic acid by degrading it for energy or repurposing the sialic acid onto their own cell surface to camouflage the bacterium from the immune system. A functional sialic acid transporter has been shown to be essential for the uptake of sialic acid in a range of human bacterial pathogens and important for host colonisation and persistence. Here, we review the state-of-play in the field with respect to the molecular mechanisms by which these bio-nanomachines transport sialic acids across bacterial cell membranes.
Collapse
Affiliation(s)
- Rachel A North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - Christopher R Horne
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - James S Davies
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - Daniela M Remus
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - Andrew C Muscroft-Taylor
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - Parveen Goyal
- Department of Chemistry and Molecular Biology, Biochemistry and Structural Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, Biochemistry and Structural Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - S Ramaswamy
- The Institute for Stem Cell Biology and Regenerative Medicine (InStem), G.K.V.K. Post Office, Bangalore, Karnataka, 560065, India
| | - Rosmarie Friemann
- Department of Chemistry and Molecular Biology, Biochemistry and Structural Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden. .,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, 40530, Gothenburg, Sweden.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand. .,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
18
|
Lekshmi M, Ammini P, Kumar S, Varela MF. The Food Production Environment and the Development of Antimicrobial Resistance in Human Pathogens of Animal Origin. Microorganisms 2017; 5:E11. [PMID: 28335438 PMCID: PMC5374388 DOI: 10.3390/microorganisms5010011] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 02/08/2023] Open
Abstract
Food-borne pathogens are a serious human health concern worldwide, and the emergence of antibiotic-resistant food pathogens has further confounded this problem. Once-highly-efficacious antibiotics are gradually becoming ineffective against many important pathogens, resulting in severe treatment crises. Among several reasons for the development and spread of antimicrobial resistance, their overuse in animal food production systems for purposes other than treatment of infections is prominent. Many pathogens of animals are zoonotic, and therefore any development of resistance in pathogens associated with food animals can spread to humans through the food chain. Human infections by antibiotic-resistant pathogens such as Campylobacter spp., Salmonella spp., Escherichia coli and Staphylococcus aureus are increasing. Considering the human health risk due to emerging antibiotic resistance in food animal-associated bacteria, many countries have banned the use of antibiotic growth promoters and the application in animals of antibiotics critically important in human medicine. Concerted global efforts are necessary to minimize the use of antimicrobials in food animals in order to control the development of antibiotic resistance in these systems and their spread to humans via food and water.
Collapse
Affiliation(s)
- Manjusha Lekshmi
- QC Laboratory, Harvest and Post Harvest Technology Department, ICAR-Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Parvathi Ammini
- CSIR-National Institute of Oceanography (NIO), Regional Centre, Dr. Salim Ali Road, Kochi 682018, India.
| | - Sanath Kumar
- QC Laboratory, Harvest and Post Harvest Technology Department, ICAR-Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
19
|
Tintino SR, Oliveira-Tintino CD, Campina FF, Silva RL, Costa MDS, Menezes IR, Calixto-Júnior JT, Siqueira-Junior JP, Coutinho HD, Leal-Balbino TC, Balbino VQ. Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus. Microb Pathog 2016; 97:9-13. [DOI: 10.1016/j.micpath.2016.04.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 01/11/2023]
|
20
|
Zhang XC, Han L, Zhao Y. Thermodynamics of ABC transporters. Protein Cell 2015; 7:17-27. [PMID: 26408021 PMCID: PMC4707154 DOI: 10.1007/s13238-015-0211-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/11/2015] [Indexed: 01/09/2023] Open
Abstract
ABC transporters form the largest of all transporter families, and their structural study has made tremendous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the conformational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the discussion. We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lei Han
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Zhao
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
21
|
Zhang XC, Zhao Y, Heng J, Jiang D. Energy coupling mechanisms of MFS transporters. Protein Sci 2015; 24:1560-79. [PMID: 26234418 DOI: 10.1002/pro.2759] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 01/01/2023]
Abstract
Major facilitator superfamily (MFS) is a large class of secondary active transporters widely expressed across all life kingdoms. Although a common 12-transmembrane helix-bundle architecture is found in most MFS crystal structures available, a common mechanism of energy coupling remains to be elucidated. Here, we discuss several models for energy-coupling in the transport process of the transporters, largely based on currently available structures and the results of their biochemical analyses. Special attention is paid to the interaction between protonation and the negative-inside membrane potential. Also, functional roles of the conserved sequence motifs are discussed in the context of the 3D structures. We anticipate that in the near future, a unified picture of the functions of MFS transporters will emerge from the insights gained from studies of the common architectures and conserved motifs.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China, 100101
| | - Yan Zhao
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China, 100101
| | - Jie Heng
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China, 100101
| | - Daohua Jiang
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China, 100101
| |
Collapse
|
22
|
Kim S, Ihara K, Katsube S, Hori H, Ando T, Isogai E, Yoneyama H. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives. Microbiologyopen 2015; 4:632-43. [PMID: 26073055 PMCID: PMC4554458 DOI: 10.1002/mbo3.269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/21/2015] [Accepted: 05/04/2015] [Indexed: 11/14/2022] Open
Abstract
We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [3H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [3H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [3H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed.
Collapse
Affiliation(s)
- Seryoung Kim
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan
| | - Kohei Ihara
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan
| | - Satoshi Katsube
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan
| | - Hatsuhiro Hori
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan
| | - Tasuke Ando
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan
| | - Emiko Isogai
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan
| | - Hiroshi Yoneyama
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan
| |
Collapse
|
23
|
Andersen JL, He GX, Kakarla P, K C R, Kumar S, Lakra WS, Mukherjee MM, Ranaweera I, Shrestha U, Tran T, Varela MF. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1487-547. [PMID: 25635914 PMCID: PMC4344678 DOI: 10.3390/ijerph120201487] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023]
Abstract
Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.
Collapse
Affiliation(s)
- Jody L Andersen
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Gui-Xin He
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ranjana K C
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Sanath Kumar
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Wazir Singh Lakra
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Mun Mun Mukherjee
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ugina Shrestha
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Thuy Tran
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
24
|
Shimizu K. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:1-54. [PMID: 25712586 DOI: 10.1007/10_2015_320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP-Crp, Cra, Csr, Fis, P(II)(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan. .,Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
| |
Collapse
|
25
|
Modulation of Bacterial Multidrug Resistance Efflux Pumps of the Major Facilitator Superfamily. INTERNATIONAL JOURNAL OF BACTERIOLOGY 2013; 2013. [PMID: 25750934 PMCID: PMC4347946 DOI: 10.1155/2013/204141] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial infections pose a serious public health concern, especially when an infectious disease has a multidrug resistant causative agent. Such multidrug resistant bacteria can compromise the clinical utility of major chemotherapeutic antimicrobial agents. Drug and multidrug resistant bacteria harbor several distinct molecular mechanisms for resistance. Bacterial antimicrobial agent efflux pumps represent a major mechanism of clinical resistance. The major facilitator superfamily (MFS) is one of the largest groups of solute transporters to date and includes a significant number of bacterial drug and multidrug efflux pumps. We review recent work on the modulation of multidrug efflux pumps, paying special attention to those transporters belonging primarily to the MFS.
Collapse
|
26
|
Shimizu K. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism. ISRN BIOCHEMISTRY 2013; 2013:645983. [PMID: 25937963 PMCID: PMC4393010 DOI: 10.1155/2013/645983] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Fukuoka, Iizuka 820-8502, Japan
- Institute of Advanced Bioscience, Keio University, Yamagata, Tsuruoka 997-0017, Japan
| |
Collapse
|
27
|
Enkavi G, Li J, Mahinthichaichan P, Wen PC, Huang Z, Shaikh SA, Tajkhorshid E. Simulation studies of the mechanism of membrane transporters. Methods Mol Biol 2013; 924:361-405. [PMID: 23034756 DOI: 10.1007/978-1-62703-017-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Membrane transporters facilitate active transport of their specific substrates, often against their electrochemical gradients across the membrane, through coupling the process to various sources of cellular energy, for example, ATP binding and hydrolysis in primary transporters, and pre-established electrochemical gradient of molecular species other than the substrate in the case of secondary transporters. In order to provide efficient energy-coupling mechanisms, membrane transporters have evolved into molecular machines in which stepwise binding, translocation, and transformation of various molecular species are closely coupled to protein conformational changes that take the transporter from one functional state to another during the transport cycle. Furthermore, in order to prevent the formation of leaky states and to be able to pump the substrate against its electrochemical gradient, all membrane transporters use the widely-accepted "alternating access mechanism," which ensures that the substrate is only accessible from one side of the membrane at a given time, but relies on complex and usually global protein conformational changes that differ for each family of membrane transporters. Describing the protein conformational changes of different natures and magnitudes is therefore at the heart of mechanistic studies of membrane transporters. Here, using a number of membrane transporters from diverse families, we present common protocols used in setting up and performing molecular dynamics simulations of membrane transporters and in analyzing the results, in order to characterize relevant motions of the system. The emphasis will be on highlighting how optimal design of molecular dynamics simulations combined with mechanistically oriented analysis can shed light onto key functionally relevant protein conformational changes in this family of membrane proteins.
Collapse
Affiliation(s)
- Giray Enkavi
- Department of Biochemistry, Center for Biophysics and Computational Biology, College of Medicine, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Sponges harbour complex communities of diverse microorganisms, which have been postulated to form intimate symbiotic relationships with their host. Here we unravel some of these interactions by characterising the functional features of the microbial community of the sponge Cymbastela concentrica through a combined metagenomic and metaproteomic approach. We discover the expression of specific transport functions for typical sponge metabolites (for example, halogenated aromatics, dipeptides), which indicates metabolic interactions between the community and the host. We also uncover the simultaneous performance of aerobic nitrification and anaerobic denitrification, which would aid to remove ammonium secreted by the sponge. Our analysis also highlights the requirement for the microbial community to respond to variable environmental conditions and hence express an array of stress protection proteins. Molecular interactions between symbionts and their host might also be mediated by a set of expressed eukaryotic-like proteins and cell-cell mediators. Finally, some sponge-associated bacteria (for example, a Phyllobacteriaceae phylotype) appear to undergo an evolutionary adaptation process to the sponge environment as evidenced by active mobile genetic elements. Our data clearly show that a combined metaproteogenomic approach can provide novel information on the activities, physiology and interactions of sponge-associated microbial communities.
Collapse
|
29
|
Mulligan C, Leech AP, Kelly DJ, Thomas GH. The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777-1779) from Vibrio cholerae. J Biol Chem 2011; 287:3598-608. [PMID: 22167185 DOI: 10.1074/jbc.m111.281030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are widespread in bacteria but poorly characterized. They contain three subunits, a small membrane protein, a large membrane protein, and a substrate-binding protein (SBP). Although the function of the SBP is well established, the membrane components have only been studied in detail for the sialic acid TRAP transporter SiaPQM from Haemophilus influenzae, where the membrane proteins are genetically fused. Herein, we report the first in vitro characterization of a truly tripartite TRAP transporter, the SiaPQM system (VC1777-1779) from the human pathogen Vibrio cholerae. The active reconstituted transporter catalyzes unidirectional Na(+)-dependent sialic acid uptake having similar biochemical features to the orthologous system in H. influenzae. However, using this tripartite transporter, we demonstrate the tight association of the small, SiaQ, and large, SiaM, membrane proteins that form a 1:1 complex. Using reconstituted proteoliposomes containing particular combinations of the three subunits, we demonstrate biochemically that all three subunits are likely to be essential to form a functional TRAP transporter.
Collapse
Affiliation(s)
- Christopher Mulligan
- Department of Biology (Area 10), University of York, York YO10 5YW, United Kingdom
| | | | | | | |
Collapse
|
30
|
Li J, Tajkhorshid E. A gate-free pathway for substrate release from the inward-facing state of the Na⁺-galactose transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:263-71. [PMID: 21978597 DOI: 10.1016/j.bbamem.2011.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/02/2011] [Accepted: 09/10/2011] [Indexed: 10/17/2022]
Abstract
Employing molecular dynamics (MD) simulations, the pathway and mechanism of substrate unbinding from the inward-facing state of the Na(+)-coupled galactose transporter, vSGLT, have been investigated. During a 200-ns equilibrium simulation, repeated spontaneous unbinding events of the substrate from its binding site have been observed. In contrast to the previously proposed gating role of a tyrosine residue (Y263), the unbinding mechanism captured in the present equilibrium simulation does not rely on the displacement and/or rotation of this side chain. Rather, the unbinding involves an initial lateral displacement of the substrate out of the binding site which allows the substrate to completely emerge from the region covered by the side chain of Y263 without any noticeable conformational changes of the latter. Starting with the snapshots taken from this equilibrium simulation with the substrate outside the binding site, steered MD (SMD) simulations were then used to probe the translocation of the substrate along the remaining of the release pathway within the protein's lumen and to characterize the nature of protein-substrate interactions involved in the process. Combining the results of the equilibrium and SMD simulations, we provide a description of the full translocation pathway for the substrate release from the binding site into the cytoplasm. Residues E68, N142, T431, and N267 facilitate the initial substrate's displacement out of the binding site, while the translocation of the substrate along the remainder of the exit pathway formed between TM6 and TM8 is facilitated by H-bond interactions between the substrate and a series of conserved, polar residues (Y138, N267, R273, S365, S368, N371, S372, and T375). The observed molecular events indicate that no gating is required for the release of the substrate from the crystallographically captured structure of the inward-facing state of SGLT, suggesting that this conformation might represent an open, rather than occluded, state of the transporter. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry, College of Medicine, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
31
|
Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev 2011; 35:68-86. [PMID: 20584082 DOI: 10.1111/j.1574-6976.2010.00236.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The tripartite ATP-independent periplasmic (TRAP) transporters are the best-studied family of substrate-binding protein (SBP)-dependent secondary transporters and are ubiquitous in prokaryotes, but absent from eukaryotes. They are comprised of an SBP of the DctP or TAXI families and two integral membrane proteins of unequal sizes that form the DctQ and DctM protein families, respectively. The SBP component has a structure comprised of two domains connected by a hinge that closes upon substrate binding. In DctP-TRAP transporters, substrate binding is mediated through a conserved and specific arginine/carboxylate interaction in the SBP. While the SBP component has now been relatively well characterized, the membrane components of TRAP transporters are still poorly understood both in terms of their structure and function. We review the expanding repertoire of substrates and physiological roles for experimentally characterized TRAP transporters in bacteria and discuss mechanistic aspects of these transporters using data primarily from the sialic acid-specific TRAP transporter SiaPQM from Haemophilus influenzae, which suggest that TRAP transporters are high-affinity, Na(+)-dependent unidirectional secondary transporters.
Collapse
|
32
|
Zhao C, Noskov SY. The Role of Local Hydration and Hydrogen-Bonding Dynamics in Ion and Solute Release from Ion-Coupled Secondary Transporters. Biochemistry 2011; 50:1848-56. [DOI: 10.1021/bi101454f] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chunfeng Zhao
- Institute for Biocomplexity and Informatics and Department of Biological Sciences, University of Calgary, 2500 University Drive, BI558, Calgary, Alberta, Canada T2N 1N4
| | - Sergei Yu. Noskov
- Institute for Biocomplexity and Informatics and Department of Biological Sciences, University of Calgary, 2500 University Drive, BI558, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
33
|
Hermann T, Kramer R. Mechanism and Regulation of Isoleucine Excretion in Corynebacterium glutamicum. Appl Environ Microbiol 2010; 62:3238-44. [PMID: 16535397 PMCID: PMC1388935 DOI: 10.1128/aem.62.9.3238-3244.1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole cells of Corynebacterium glutamicum were loaded with high cytoplasmic l-isoleucine concentrations, and isoleucine excretion from these cells was studied in terms of mechanism and regulation. The transmembrane isoleucine flux could be differentiated into carrier-mediated uptake, carrier-mediated excretion, and diffusion. After discrimination from the other transmembrane solute movements, the outward-directed flux, which was due to the activity of the isoleucine excretion carrier, was characterized with respect to its energy dependence and its regulation at the level of expression. Isoleucine excretion was shown to function as a secondary transport process, driven by the membrane potential and coupled to the movement of protons, presumably with a stoichiometry of 2:1 (H(sup+)/isoleucine). Of a variety of putative transport substrates, only leucine was able to compete for isoleucine at the cis (cytosolic) side of the export carrier. Cytoplasmic isoleucine concentrations higher than 20 mM induce the activity of the isoleucine excretion system. This effect is specific for isoleucine and is inhibited by the presence of chloramphenicol. Apart from leucine, other amino acids and related amino acid analogs are not able to induce isoleucine excretion. The complex pattern of regulation of the isoleucine excretion system at the level of activity and expression is shown to be related to the pattern of regulation of the isoleucine uptake system in C. glutamicum in terms of physiological significance.
Collapse
|
34
|
Severi E, Hosie AHF, Hawkhead JA, Thomas GH. Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters. FEMS Microbiol Lett 2009; 304:47-54. [PMID: 20100283 DOI: 10.1111/j.1574-6968.2009.01881.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The function of sialic acids in the biology of bacterial pathogens is reflected by the diverse range of solute transporters that can recognize these sugar acids. Here, we use an Escherichia coliDeltananT strain to characterize the function of known and proposed bacterial sialic acid transporters. We discover that the STM1128 gene from Salmonella enterica serovar Typhimurium, which encodes a member of the sodium solute symporter family, is able to restore growth on sialic acid to the DeltananT strain and is able to transport [(14)C]-sialic acid. Using the DeltananT genetic background, we performed a direct in vivo comparison of the transport properties of the STM1128 protein with those of sialic acid transporters of the major facilitator superfamily and tripartite ATP-independent periplasmic families, E. coli NanT and Haemophilus influenzae SiaPQM, respectively. This revealed that both STM1128 and SiaPQM are sodium-dependent and, unlike SiaPQM, both STM1128 and NanT are reversible secondary carriers, demonstrating qualitative functional differences in the properties of sialic acid transporters used by bacteria that colonize humans.
Collapse
|
35
|
Plantinga TH, Van Der Does C, Badia J, Aguilar J, Konings WN, Driessen AJM. Functional characterization of theEscherichia coliK-12 yiaMNO transport protein genes. Mol Membr Biol 2009; 21:51-7. [PMID: 14668138 DOI: 10.1080/09687680310001607369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The yiaMNO genes of Escherichia coli K-12 encode a binding protein-dependent secondary, or tri-partite ATP-independent periplasmic (TRAP), transporter. Since only a few members of this family have been functionally characterized to date, we aimed to identify the substrate for this transporter. Cells that constitutively express the yiaK-S gene cluster metabolized the rare pentose L-xylulose, while deletion of the yiaMNO transporter genes reduced L-xylulose metabolism. The periplasmic substrate-binding protein YiaO was found to bind L-xylulose, and stimulated L-xylulose uptake by spheroplasts. These date indicate that the yiaMNO transporter mediates uptake of this rare pentose.
Collapse
Affiliation(s)
- Titia H Plantinga
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
An alternative succinate (2-oxoglutarate) transport system in Rhizobium tropici is induced in nodules of Phaseolus vulgaris. J Bacteriol 2009; 191:5057-67. [PMID: 19502401 DOI: 10.1128/jb.00252-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rhizobial DctA permease is essential for the development of effective nitrogen-fixing bacteroids, which was correlated with its requirement for growth on C(4)-dicarboxylates. A previously described dctA mutant of Rhizobium tropici CIAT899, strain GA1 (dctA), however, was unexpectedly still able to grow on succinate as a sole carbon source but less efficiently than CIAT899. Like other rhizobial dctA mutants, GA1 was unable to grow on fumarate or malate as a carbon source and induced the formation of ineffective nodules. We report an alternative succinate uptake system identified by Tn5 mutagenesis of strain GA1 that was required for the remaining ability to transport and utilize succinate. The alternative uptake system required a three-gene cluster that is highly characteristic of a dctABD locus. The predicted permease-encoding gene had high sequence similarity with open reading frames encoding putative 2-oxoglutarate permeases (KgtP) of Ralstonia solanacearum and Agrobacterium tumefaciens. This analysis was in agreement with the requirement for this gene for optimal growth on and induction by 2-oxoglutarate. The permease-encoding gene of the alternative system was also designated kgtP in R. tropici. The dctBD-like genes in this cluster were found to be required for kgtP expression and were designated kgtSR. Analysis of a kgtP::lacZ transcriptional fusion indicated that a kgtSR-dependent promoter of kgtP was specifically induced by 2-oxoglutarate. The expression of kgtPp was found in bacteroids of nodules formed with either CIAT899 or GA1 on roots of Phaseolus vulgaris. Results suggested that 2-oxoglutarate might be transported or conceivably exported in nodules induced by R. tropici on roots of P. vulgaris.
Collapse
|
37
|
Mulligan C, Geertsma ER, Severi E, Kelly DJ, Poolman B, Thomas GH. The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter. Proc Natl Acad Sci U S A 2009; 106:1778-83. [PMID: 19179287 PMCID: PMC2644114 DOI: 10.1073/pnas.0809979106] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Indexed: 11/18/2022] Open
Abstract
Substrate-binding protein-dependent secondary transporters are widespread in prokaryotes and are represented most frequently by members of the tripartite ATP-independent periplasmic (TRAP) transporter family. Here, we report the membrane reconstitution of a TRAP transporter, the sialic acid-specific SiaPQM system from Haemophilus influenzae, and elucidate its mechanism of energy coupling. Uptake of sialic acid via membrane-reconstituted SiaQM depends on the presence of the sialic acid-binding protein, SiaP, and is driven by the electrochemical sodium gradient. The interaction between SiaP and SiaQM is specific as transport is not reconstituted using the orthologous sialic acid-binding protein VC1779. Importantly, the binding protein also confers directionality on the transporter, and reversal of sialic acid transport from import to export is only possible in the presence of an excess of unliganded SiaP.
Collapse
Affiliation(s)
- Christopher Mulligan
- Department of Biology (Area 10), University of York, P.O. Box 373, York YO10 5YW, United Kingdom
| | - Eric R. Geertsma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; and
| | - Emmanuele Severi
- Department of Biology (Area 10), University of York, P.O. Box 373, York YO10 5YW, United Kingdom
| | - David J. Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; and
| | - Gavin H. Thomas
- Department of Biology (Area 10), University of York, P.O. Box 373, York YO10 5YW, United Kingdom
| |
Collapse
|
38
|
Hall JA, Pajor AM. Functional reconstitution of SdcS, a Na+-coupled dicarboxylate carrier protein from Staphylococcus aureus. J Bacteriol 2007; 189:880-5. [PMID: 17114260 PMCID: PMC1797332 DOI: 10.1128/jb.01452-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 11/07/2006] [Indexed: 01/09/2023] Open
Abstract
In Staphylococcus aureus, the transport of dicarboxylates is mediated in part by the Na+-linked carrier protein SdcS. This transporter is a member of the divalent-anion/Na+ symporter (DASS) family, a group that includes the mammalian Na+/dicarboxylate cotransporters NaDC1 and NaDC3. In earlier work, we cloned and expressed SdcS in Escherichia coli and found it to have transport properties similar to those of its eukaryotic counterparts (J. A. Hall and A. M. Pajor, J. Bacteriol. 187:5189-5194, 2005). Here, we report the partial purification and subsequent reconstitution of functional SdcS into liposomes. These proteoliposomes exhibited succinate counterflow activity, as well as Na+ electrochemical-gradient-driven transport. Examination of substrate specificity indicated that the minimal requirement necessary for transport was a four-carbon terminal dicarboxylate backbone and that productive substrate-transporter interaction was sensitive to substitutions at the substrate C-2 and C-3 positions. Further analysis established that SdcS facilitates an electroneutral symport reaction having a 2:1 cation/dicarboxylate ratio. This study represents the first characterization of a reconstituted Na+-coupled DASS family member, thus providing an effective method to evaluate functional, as well as structural, aspects of DASS transporters in a system free of the complexities and constraints associated with native membrane environments.
Collapse
Affiliation(s)
- Jason A Hall
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0645, USA
| | | |
Collapse
|
39
|
Franco PJ, Matzke EA, Johnson JL, Wiczer BM, Brooker RJ. A suppressor analysis of residues involved in cation transport in the lactose permease: identification of a coupling sensor. J Membr Biol 2006; 211:101-13. [PMID: 16988863 DOI: 10.1007/s00232-005-7020-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 05/05/2006] [Indexed: 11/26/2022]
Abstract
Four amino acids critical for lactose permease function were altered using site-directed mutagenesis. The resulting Quad mutant (E269Q/R302L/H322Q/E325Q) was expressed at 60% of wild-type levels but found to have negligible transport activity. The Quad mutant was used as a parental strain to isolate suppressors that regained the ability to ferment the alpha-galactoside melibiose. Six different suppressors were identified involving five discrete amino acid changes and one amino acid deletion (Q60L, V229G, Y236D, S306L, K319N and DeltaI298). All of the suppressors transported alpha-galactosides at substantial rates. In addition, the Q60L, DeltaI298 and K319N suppressors regained a small but detectable amount of lactose transport. Assays of sugar-driven cation transport showed that both the Q60L and K319N suppressors couple the influx of melibiose with cations (H(+) or H(3)O(+)). Taken together, the data show that the cation-binding domain in the lactose permease is not a fixed structure as proposed in previous models. Rather, the data are consistent with a model in which several ionizable residues form a dynamic coupling sensor that also may interact directly with the cation and lactose.
Collapse
Affiliation(s)
- Peter J Franco
- Department of Genetics, Cell Biology and Development and the Biotechnology Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
40
|
Varrot A, Yip VLY, Li Y, Rajan SS, Yang X, Anderson WF, Thompson J, Withers SG, Davies GJ. NAD+ and metal-ion dependent hydrolysis by family 4 glycosidases: structural insight into specificity for phospho-beta-D-glucosides. J Mol Biol 2005; 346:423-35. [PMID: 15670594 DOI: 10.1016/j.jmb.2004.11.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 11/14/2004] [Accepted: 11/23/2004] [Indexed: 11/17/2022]
Abstract
The import of disaccharides by many bacteria is achieved through their simultaneous translocation and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). The imported phospho-disaccharides are, in some cases, subsequently hydrolyzed by members of the unusual glycoside hydrolase family GH4. The GH4 enzymes, occasionally found also in bacteria such as Thermotoga maritima that do not utilise a PEP-PTS system, require both NAD(+) and Mn(2+) for catalysis. A further curiosity of this family is that closely related enzymes may show specificity for either alpha-d- or beta-d-glycosides. Here, we present, for the first time, the three-dimensional structure (using single-wavelength anomalous dispersion methods, harnessing extensive non-crystallographic symmetry) of the 6-phospho-beta-glycosidase, BglT, from T.maritima in native and complexed (NAD(+) and Glc6P) forms. Comparison of the active-center structure with that of the 6-phospho-alpha-glucosidase GlvA from Bacillus subtilis reveals a striking degree of structural similarity that, in light of previous kinetic isotope effect data, allows the postulation of a common reaction mechanism for both alpha and beta-glycosidases. Given that the "chemistry" occurs primarily on the glycone sugar and features no nucleophilic attack on the intact disaccharide substrate, modulation of anomeric specificity for alpha and beta-linkages is accommodated through comparatively minor structural changes.
Collapse
Affiliation(s)
- Annabelle Varrot
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5YW, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mazurkiewicz P, Driessen AJM, Konings WN. Energetics of wild-type and mutant multidrug resistance secondary transporter LmrP of Lactococcus lactis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:252-61. [PMID: 15450963 DOI: 10.1016/j.bbabio.2004.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 06/18/2004] [Accepted: 06/21/2004] [Indexed: 11/26/2022]
Abstract
LmrP, a proton/multidrug antiporter of Lactococcus lactis, transports a variety of cationic substrates. Previously, two membrane-embedded acidic residues, Asp142 and Glu327, have been reported to be important for multidrug transport activity of LmrP. Here we show that neither Glu327 nor Asp142 is essential for ethidium binding but that Glu327 is a critical residue for the high affinity binding of Hoechst 33342. Substitution of these two residues, however, negatively influences the transport activity. The energetics of transport was studied of two closely related cationic substrates ethidium and propidium that carry one and two positive charges, respectively. Extrusion of monovalent ethidium is dependent on both the electrical membrane potential (Deltapsi) and transmembrane proton gradient (DeltapH), while extrusion of propidium predominantly depends on the DeltapH only. The LmrP mutants D142C and E327C, however, mediate electroneutral ethidium extrusion, but are unable to mediate DeltapH-dependent extrusion of propidium. These data indicate that Asp142 and Glu327 are involved in proton translocation.
Collapse
Affiliation(s)
- Piotr Mazurkiewicz
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, NL-9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
42
|
Hirai T, Subramaniam S. Structure and transport mechanism of the bacterial oxalate transporter OxlT. Biophys J 2004; 87:3600-7. [PMID: 15339805 PMCID: PMC1304825 DOI: 10.1529/biophysj.104.049320] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane proteins that belong to the major facilitator superfamily (MFS) are found in organisms across the evolutionary spectrum and mediate the transport of a variety of substrates ranging from small metabolites to neurotransmitters. The oxalate transporter (OxlT) is a representative MFS protein, and exchanges formate for oxalate across the cytoplasmic membrane of the organism Oxalobacter formigenes. Here, we present a structural model for the protein conformational changes that occur during oxalate transport by combining a three-dimensional map of the oxalate-bound, "closed" state of OxlT at 6.5 A determined by cryo-electron microscopy with a model of the "open" state of OxlT based on the atomic structures of the related transporters, glycerol-3-phosphate transporter (GlpT) and lactose permease (LacY). We demonstrate that the principal structural change associated with substrate transport is a concerted rocking movement of the two structurally similar halves of the protein relative to each other. Our structural model places two positively charged residues, Arg-272 and Lys-355 in the central cavity, suggesting that electrostatic interactions between these residues and the oxalate anion is a key step in generating the conformational change between the open and closed states of the transporter.
Collapse
Affiliation(s)
- Teruhisa Hirai
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
43
|
Biemans-Oldehinkel E, Poolman B. On the role of the two extracytoplasmic substrate-binding domains in the ABC transporter OpuA. EMBO J 2004; 22:5983-93. [PMID: 14609945 PMCID: PMC275439 DOI: 10.1093/emboj/cdg581] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Members of two transporter families of the ATP-binding cassette (ABC) superfamily use two or even four extracytoplasmic substrate-binding domains (SBDs) for transport. We report on the role of the two SBDs in the translocation cycle of the ABC transporter OpuA from Lactococcus lactis. Heterooligomeric OpuA complexes with only one SBD or one functional and one non-functional SBD (inactivated by covalent linkage of a substrate mimic) have been constructed, and the substrate binding and transport kinetics of the purified transporters, reconstituted in liposomes, have been determined. The data indicate that the two SBDs of OpuA interact in a cooperative manner in the translocation process by stimulating either the docking of the SBDs onto the translocator or the delivery of glycine betaine to the translocator. It appears that one of these initial steps, but not the later steps in translocation or resetting of the system to the initial state, is rate determining for transport. These new insights on the functional role of the extracytoplasmic SBDs are discussed in the light of the current knowledge of substrate-binding-protein-dependent ABC transporters.
Collapse
Affiliation(s)
- Esther Biemans-Oldehinkel
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
44
|
Abstract
BACKGROUND The amino acid L-arginine is an essential requirement for growth of Helicobacter pylori. Several physiological roles of this amino acid have been identified in the bacterium, but very little is known about the transport of L-arginine and of other amino acids into H. pylori. METHODS Radioactive tracer techniques using L-(U-14C) arginine and the centrifugation through oil method were employed to measure the kinetic parameters, temperature dependence, substrate specificity, and effects of analogues and inhibitors on L-arginine transport. RESULTS The transport of arginine at millimolar concentrations was saturable with a Km of 2.4+/ 0.3 mM and Vmax of 1.3+/-0.2 pmole min(-1) (microl cell water)(-1) or 31+/-3 nmole per minute (mg protein)(-1) at 20 degrees C, depended on temperature between 4 and 40 degrees C, and was susceptible to inhibitors. These characteristics suggested the presence of one or more arginine carriers. The substrate specificity of the transport system was studied by measuring the effects of L-arginine analogues and amino acids on the rates of transport of L-arginine. The absence of inhibition in competition experiments with L-lysine and L-ornithine indicated that the transport system was not of the Lysine-Arginine-Ornithine or Arginine-Ornithine types. The presence of different monovalent cations did not affect the transport rates. Several properties of L-arginine transport were elucidated by investigating the effects of potential inhibitors. CONCLUSIONS The results provided evidence that the transport of L-arginine into H. pylori cells was carrier-mediated transport with the driving force supplied by the chemical gradient of the amino acid.
Collapse
Affiliation(s)
- George L Mendz
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
45
|
Shinnick SG, Perez SA, Varela MF. Altered substrate selection of the melibiose transporter (MelY) of Enterobacter cloacae involving point mutations in Leu-88, Leu-91, and Ala-182 that confer enhanced maltose transport. J Bacteriol 2003; 185:3672-7. [PMID: 12775706 PMCID: PMC156228 DOI: 10.1128/jb.185.12.3672-3677.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated mutants of Escherichia coli HS4006 containing the melibiose-H(+) symporter (MelY) from Enterobacter cloacae that had enhanced fermentation on 1% maltose MacConkey plates. DNA sequencing revealed three site classes of mutations: L-88-P, L-91-P, and A-182-P. The mutants L-88-P and L-91-P had 3.6- and 5.1-fold greater maltose uptake than the wild type and enhanced apparent affinities for maltose. Energy-coupled transport was defective for melibiose accumulation, but detectable maltose accumulation for the mutants indicated that active transport is dependent upon the substrate transported through the carrier. We conclude that the residues Leu-88, Leu-91 (transmembrane segment 3 [TMS-3]), and Ala-182 (TMS-6) of MelY mediate sugar selection. These data represent the first MelY mutations that confer changes in sugar selection.
Collapse
Affiliation(s)
- Steven G Shinnick
- Department of Biology, Eastern New Mexico University, Portales, New Mexico 88130, USA
| | | | | |
Collapse
|
46
|
Guan L, Sahin-Tóth M, Kálai T, Hideg K, Kaback HR. Probing the mechanism of a membrane transport protein with affinity inactivators. J Biol Chem 2003; 278:10641-8. [PMID: 12471022 DOI: 10.1074/jbc.m211355200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Affinity inactivators are useful for probing catalytic mechanisms. Here we describe the synthesis and properties of methanethiosulfonyl (MTS) galactose or glucose derivatives with respect to a well studied membrane transport protein, the lactose permease of Escherichia coli. The MTS-galactose derivatives behave as affinity inactivators of a functional mutant with Ala(122)-->Cys in a background otherwise devoid of Cys residues. A proton electrochemical gradient (Deltamu(H(+))) markedly increases the rate of reaction between Cys(122) and MTS-galactose derivatives; nonspecific labeling with the corresponding MTS-glucose derivatives is unaffected. When the Ala(122)-->Cys mutation is combined with a mutation (Cys(154)-->Gly) that blocks transport but increases binding affinity, discrimination between the MTS-galactose and -glucose derivatives is abolished, and Deltamu(H(+)) has no effect. The results provide strong confirmation that the non-galactosyl moiety of permease substrates abuts Ala(122) in helix IV. In addition, the findings demonstrate that the MTS-galactose derivatives do not react with the Cys residue at position 122 upon binding per se but at a subsequent step in the overall transport mechanism. Thus, these inactivators behave as unique suicide substrates.
Collapse
Affiliation(s)
- Lan Guan
- Howard Hughes Medical Institute, Department of Physiology, UCLA, Los Angeles, California 90095-1662, USA
| | | | | | | | | |
Collapse
|
47
|
Hall JA, Maloney PC. Pyridoxal 5-phosphate inhibition of substrate selectivity mutants of UhpT, the sugar 6-phosphate carrier of Escherichia coli. J Bacteriol 2002; 184:3756-8. [PMID: 12057975 PMCID: PMC135116 DOI: 10.1128/jb.184.13.3756-3758.2002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the sugar phosphate transporter UhpT, gain-of-function derivatives that prefer phosphoenolpyruvate (PEP) as substrate have an uncompensated lysine residue on transmembrane segment 11. We show here that these variants are also highly susceptible to substrate-protectable inhibition by covalent modification of lysine with pyridoxal 5-phosphate. The chemical requirements of this interaction provide evidence that the gain-of-function phenotype results from the pairing of the uncompensated lysines in these mutants with the anionic carboxyl group of PEP.
Collapse
Affiliation(s)
- Jason A Hall
- Department of Physiology, Johns Hopkins University Medical School, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|
48
|
Guan L, Sahin-Toth M, Kaback HR. Changing the lactose permease of Escherichia coli into a galactose-specific symporter. Proc Natl Acad Sci U S A 2002; 99:6613-8. [PMID: 12011425 PMCID: PMC124451 DOI: 10.1073/pnas.102178299] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
N-ethylmaleimide (NEM) modification of a lactose permease mutant containing a single-Cys in place of Ala-122 (helix IV) abolishes active lactose transport. Moreover, lactose, melibiose, and beta,d-galactopyranosyl 1-thio-beta,D-galactopyranoside protect against NEM inactivation of lactose transport and/or alkylation of Cys-122 by [(14)C]NEM. Remarkably, however, D-galactose transport is relatively unaffected by NEM, and the monosaccharide affords no protection against NEM inactivation of lactose transport. Consistently, competitive inhibition of [(14)C]galactose transport by lactose, melibiose, or beta,D-galactopyranosyl 1-thio-beta,D-galactopyranoside is drastically reduced after NEM modification, whereas inhibition by unlabeled galactose is unaffected. The results indicate that alkylation of Cys-122 selectively inhibits binding and transport of disaccharides, whereas transport of the monosaccharide galactose remains largely unaffected. In addition, although the conservative mutation Ala-122 --> Ser causes only mild inhibition of lactose transport, the mutations Ala-122 --> Phe and Ala-122 --> Tyr lead to marked inhibition. In contradistinction, none of these replacements has a marked effect on galactose transport. The results demonstrate that Ala-122 is a component of the ligand-binding site and provide a strong indication that the side chain at position 122 abuts on the non-galactosyl moiety of D-galactopyranosides. This is in contrast to Cys-148, a neighboring residue in helix V, that interacts with the hydrophobic face of the galactosyl moiety of D-galactopyranosides.
Collapse
Affiliation(s)
- Lan Guan
- Howard Hughes Medical Institute, Departments of Physiology and Microbiology and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1662
| | | | | |
Collapse
|
49
|
Guan L, Murphy FD, Kaback HR. Surface-exposed positions in the transmembrane helices of the lactose permease of Escherichia coli determined by intermolecular thiol cross-linking. Proc Natl Acad Sci U S A 2002; 99:3475-80. [PMID: 11904412 PMCID: PMC122548 DOI: 10.1073/pnas.052703699] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intermolecular thiol cross-linking was used to determine surface-exposed positions in 250 lactose permease mutants containing single-Cys replacements in each transmembrane helix. Significant cross-linking of monomers to produce homodimers is observed in nine mutants with a 5-A-long cross-linking agent containing bis-methane thiosulfonate reactive groups [position 78 (helix III); positions 185, 186, and 187 (helix VI); positions 263, 275, and 278 (helix VIII); and positions 308 (helix IX) and 398 (helix XII)]. The results are consistent with a current helix-packing model of the permease. Seven of the nine mutants that exhibit intermolecular cross-linking are located at or near the cytoplasmic ends of transmembrane helices; two are near periplasmic ends. The results suggest that only those Cys replacements accessible from the aqueous phase and not from the hydrophobic core of the membrane are susceptible to cross-linking because of the much higher reactivity of the thiolate anion relative to the thiol. Single-Cys mutants at positions 278 (helix VIII) and 398 (helix XII), which are located in opposite sides of the 12-helix bundle, exhibit similar rates of cross-linking with sigmoid kinetics. Furthermore, cross-linking is markedly decreased at 0 degrees C, suggesting that lateral diffusion of the permease within the plane of the membrane is important for intermolecular cross-linking. The findings confirm previous observations indicating that intermolecular cross-linking is a stochastic process resulting from random collisions and support a number of other lines of evidence that lactose permease is a monomer.
Collapse
Affiliation(s)
- Lan Guan
- Howard Hughes Medical Institute, Department of Physiology, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
50
|
Vázquez-Ibar JL, Weinglass AB, Kaback HR. Engineering a terbium-binding site into an integral membrane protein for luminescence energy transfer. Proc Natl Acad Sci U S A 2002; 99:3487-92. [PMID: 11891311 PMCID: PMC122550 DOI: 10.1073/pnas.052703599] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2001] [Indexed: 11/18/2022] Open
Abstract
Luminescence resonance energy transfer with a lanthanide like Tb(3+) as donor is a useful technique for estimating intra- and intermolecular distances in macromolecules. However, the technique usually requires the use of a bulky chelator with a flexible linker attached to a Cys residue to bind Tb(3+) and, for intramolecular studies, an acceptor fluorophor attached to another Cys residue in the same protein. Here, an engineered EF- hand motif is incorporated into the central cytoplasmic loop of the lactose permease of Escherichia coli generating a high-affinity site for Tb(3+) (K(Tb)(3+) approximately 4.5 microM) or Gd(3+) (K(Gd)(3+) approximately 2.3 microM). By exciting a Trp residue in the coordination sequence, Tb(3+) bound to the EF-hand motif is sensitized specifically, and the efficiency of energy transfer to strategically placed Cys residues labeled with fluorophors is measured. In this study, we use the technique to measure distance from the EF-hand in the central cytoplasmic loop of lactose permease to positions 179 or 169 at the center or periplasmic end of helix VI, respectively. The average calculated distances of approximately 23 A (position 179) and approximately 33 A (position 169) observed with three different fluorophors as acceptors agree well with the geometry of a slightly tilted alpha-helix. The approach should be of general use for studying static and dynamic aspects of polytopic membrane protein structure and function.
Collapse
Affiliation(s)
- José Luis Vázquez-Ibar
- Howard Hughes Medical Institute, Department of Physiology, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|