1
|
Wray V. Field guide to Nath's research work on ATP synthesis and hydrolysis. Biosystems 2025; 252:105461. [PMID: 40246269 DOI: 10.1016/j.biosystems.2025.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Adenosine triphosphate (ATP) is the universal biological energy source that participates in the most prevalent chemical reactions in all cell life through the vital processes of oxidative phosphorylation (OXPHOS) and photosynthesis. Its synthesis and utilisation is an area of basic research that has seen significant progress over the last three decades. A series of Nath's publications in the 1990s culminated in a detailed description of the molecular mechanism of ATP synthesis in the FO and F1 portions of FOF1-ATP synthase in which energy from transmembrane ion gradients in FO are converted into chemical energy of ATP in F1. Subsequent papers provided a thorough theoretical basis and exploration of the validity of the new theory-named by other authors as Nath's torsional mechanism of energy transduction and ATP synthesis and Nath's two-ion theory of energy coupling. Violation of several physical laws by previous theories have been dealt with in considerable detail. In particular he has reevaluated the extensive literature on ATP hydrolysis and provides a rigorously argued tri-site molecular mechanism involving the three filled β-catalytic sites during hydrolysis by FO F1/F1-ATPase. Numerous applications have been proposed throughout his work that has resulted in four substantial publications dealing with re-interpretation of the Warburg Effect in cancer cells and a trilogy of papers dealing with biological thermodynamics of ATP synthesis applied to problems in comparative physiology, biochemistry and ecology. Finally strict mathematical methods have opened up new approaches to validate mechanistic events in ATP synthesis/hydrolysis. Here we provide a field guide for easy access to the different aspects of this body of work.
Collapse
Affiliation(s)
- Victor Wray
- Department of Structural Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, D‒38124, Germany.
| |
Collapse
|
2
|
Kobayashi R, Nakano A, Mitsuoka K, Yokoyama K. ADP-inhibited structure of non-catalytic site-depleted F oF 1-ATPase from thermophilic Bacillus sp. PS-3. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149536. [PMID: 39788275 DOI: 10.1016/j.bbabio.2025.149536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
The F1 domain of FoF1-ATP synthases/ATPases (FoF1) possesses three catalytic sites on the three αβ interfaces, termed αEβE, αDβD, and αTβT, located mainly on the β subunits. The enzyme also has three non-catalytic ATP-binding sites on the three αβ interfaces, located mainly on the α subunits. When ATP does not bind to the non-catalytic site, FoF1 becomes significantly prone to ADP inhibition, ultimately resulting in the loss of ATPase activity. However, the underlying mechanism of ADP inhibition remains unclear. Here, we report the cryo-EM structure of the non-catalytic site-depleted (ΔNC) FoF1 from thermophilic Bacillus sp. PS-3, which completely lacks the ability to bind ATP (and ADP) upon transitioning to the ADP-inhibited form. The structure closely resembled the 81° rotated structure of the wild-type FoF1, except for minor movements in the C-terminal region of the α subunit. In this structure, unlike the wild-type enzyme, the catalytic site at αDβD, responsible for ATP hydrolysis, was occupied by ADP-Mg, with the absence of Pi. Furthermore, the catalytic site at αEβE, where ATP enters the F1 domain during steady-state catalysis, is occupied by ADP, seemingly impeding further ATP binding to the enzyme. The structure suggests that the ADP-inhibited form of the F1 domain is more likely due to differences in the nucleotide-binding states at the catalytic sites rather than structural differences.
Collapse
Affiliation(s)
- Ren Kobayashi
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Astuki Nakano
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan.
| |
Collapse
|
3
|
Nath S. Symmetry breaking and mismatch in the torsional mechanism of ATP synthesis by F OF 1-ATP synthase: mathematical number theory proof and its chemical and biological implications. Theory Biosci 2025; 144:81-93. [PMID: 39709580 DOI: 10.1007/s12064-024-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Can mathematical proofs be employed for the solution of fundamental molecular-level problems in biology? Recently, I mathematically tackled complex mechanistic problems arising during the synthesis of the universal biological currency, adenosine triphosphate (ATP) by the FOF1-ATP synthase, nature's smallest rotary molecular motor, using graph-theoretical and combinatorial approaches for the membrane-bound FO and water-soluble F1 domains of this fascinating molecule (see Nath in Theory Biosci 141:249‒260, 2022 and Theory Biosci 143:217‒227, 2024). In the third part of this trilogy, I investigate another critical aspect of the molecular mechanism-that of coupling between the FO and F1 domains of the ATP synthase mediated by the central γ-subunit of ∼ 1 nanometer diameter. According to Nath's torsional mechanism of energy transduction and ATP synthesis the γ-subunit twists during ATP synthesis and the release of stored torsional energy in the central γ-stalk causes conformational changes in the catalytic sites that lead to ATP synthesis, with 1 ATP molecule synthesized per discrete 120° rotation. The twisted γ-subunit breaks the symmetry of the molecule, and its residual torsional strain is shown to readily accommodate any symmetry mismatch existing between FO and F1. A mathematical number theory proof is developed to quantify the extent of symmetry mismatch at any angular position during rotation and derive the conditions for the regaining of symmetry at the end of a 360° rotation. The many chemical and biological implications of the mechanism and the mathematical proof are discussed in detail. Finally, suggestions for further mathematical development of the subject based on ideas from symmetry and group theory have been made. In sum, the answer to the question posed at the beginning of the Abstract is a resounding YES. There exists new, relatively unexplored territory at the interface of mathematics and molecular biology, especially at the level of molecular mechanism. It is hoped that more mathematicians and scientists interested in interdisciplinary work are encouraged to include in their research program approaches of this type-a mathematical proofs-inspired molecular biology-that have the power to lead to new vistas. Such molecular-scale mechanistic problems in biology have proved extraordinarily difficult to solve definitively using conventional experimental, theoretical, and computational approaches.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
4
|
Montserrat-Canals M, Cordara G, Krengel U. Allostery. Q Rev Biophys 2025; 58:e5. [PMID: 39849666 DOI: 10.1017/s0033583524000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Allostery describes the ability of biological macromolecules to transmit signals spatially through the molecule from an allosteric site – a site that is distinct from orthosteric binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field. Thereafter, we give an overview over central methods for investigating molecular mechanisms, covering experimental techniques as well as simulations and artificial intelligence (AI)-based methods. We conclude with a review of allostery-based drug discovery, with its challenges and opportunities: with the recent advent of AI-based methods, allosteric compounds are set to revolutionize drug discovery and medical treatments.
Collapse
Affiliation(s)
- Mateu Montserrat-Canals
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Kishikawa JI, Nishida Y, Nakano A, Kato T, Mitsuoka K, Okazaki KI, Yokoyama K. Rotary mechanism of the prokaryotic V o motor driven by proton motive force. Nat Commun 2024; 15:9883. [PMID: 39567487 PMCID: PMC11579504 DOI: 10.1038/s41467-024-53504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
ATP synthases play a crucial role in energy production by utilizing the proton motive force (pmf) across the membrane to rotate their membrane-embedded rotor c-ring, and thus driving ATP synthesis in the hydrophilic catalytic hexamer. However, the mechanism of how pmf converts into c-ring rotation remains unclear. This study presents a 2.8 Å cryo-EM structure of the Vo domain of V/A-ATPase from Thermus thermophilus, revealing precise orientations of glutamate (Glu) residues in the c12-ring. Three Glu residues face a water channel, with one forming a salt bridge with the Arginine in the stator (a/Arg). Molecular dynamics (MD) simulations show that protonation of specific Glu residues triggers unidirectional Brownian motion of the c12-ring towards ATP synthesis. When the key Glu remains unprotonated, the salt bridge persists, blocking rotation. These findings suggest that asymmetry in the protonation of c/Glu residues biases c12-ring movement, facilitating rotation and ATP synthesis.
Collapse
Affiliation(s)
- Jun-Ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki-Hashiuecho, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yui Nishida
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Atsuki Nakano
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, 567-0047, Japan
| | - Kei-Ichi Okazaki
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi, 444-8585, Japan.
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
6
|
Lebok L, Buchert F. The chloroplast ATP synthase redox domain in Chlamydomonas reinhardtii eludes activity regulation for heterotrophic dark metabolism. Proc Natl Acad Sci U S A 2024; 121:e2412589121. [PMID: 39503884 PMCID: PMC11573611 DOI: 10.1073/pnas.2412589121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/03/2024] [Indexed: 11/21/2024] Open
Abstract
To maintain CO2 fixation in the Calvin-Benson-Bassham cycle, multistep regulation of the chloroplast ATP synthase (CF1Fo) is crucial to balance the ATP output of photosynthesis with protection of the apparatus. A well-studied mechanism is thiol modulation; a light/dark regulation through reversible cleavage of a disulfide in the CF1Fo γ-subunit. The disulfide hampers ATP synthesis and hydrolysis reactions in dark-adapted CF1Fo from land plants by increasing the required transmembrane electrochemical proton gradient ([Formula: see text]). Here, we show in Chlamydomonas reinhardtii that algal CF1Fo is differently regulated in vivo. A specific hairpin structure in the γ-subunit redox domain disconnects activity regulation from disulfide formation in the dark. Electrochromic shift measurements suggested that the hairpin kept wild-type CF1Fo active, whereas the enzyme was switched off in algal mutant cells expressing a plant-like hairpin structure. The hairpin segment swap resulted in an elevated [Formula: see text] threshold to activate plant-like CF1Fo, increased by ~1.4 photosystem (PS) I charge separations. The resulting dark-equilibrated [Formula: see text] dropped in the mutants by ~2.7 PSI charge separation equivalents. Photobioreactor experiments showed no phenotypes in autotrophic aerated mutant cultures. In contrast, chlorophyll fluorescence measurements under heterotrophic dark conditions point to an altered dark metabolism in cells with the plant-like CF1Fo as the result of bioenergetic deviations from wild-type. Our results suggest that the lifestyle of C. reinhardtii requires a specific CF1Fo dark regulation that partakes in metabolic coupling between the chloroplast and acetate-fueled mitochondria.
Collapse
Affiliation(s)
- Lando Lebok
- Institute of Plant Biology and Biotechnology, Department of Biology, University of Münster, Münster48143, Germany
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, Department of Biology, University of Münster, Münster48143, Germany
| |
Collapse
|
7
|
Nath S. 2-Site versus 3-site models of ATP hydrolysis by F 1-ATPase: definitive mathematical proof using combinatorics and conservation equations. Theory Biosci 2024; 143:217-227. [PMID: 39078560 DOI: 10.1007/s12064-024-00421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
The F1-ATPase enzyme is the smallest-known molecular motor that rotates in 120° steps, driven by the hydrolysis of ATP. It is a multi-subunit enzyme that contains three catalytic sites. A central question is how the elementary chemical reactions that occur in the three sites are coupled to mechanical rotation. Various models and coupling schemes have been formulated in an attempt to answer this question. They can be classified as 2-site (bi-site) models, exemplified by Boyer's binding change mechanism first proposed 50 years ago, and 3-site (tri-site) models such as Nath's torsional mechanism, first postulated 25 years ago and embellished 1 year back. Experimental data collated using diverse approaches have conclusively shown that steady-state ATP hydrolysis by F1-ATPase occurs in tri-site mode. Hence older models have been continually modified to make them conform to the new facts. Here, we have developed a pure mathematical approach based on combinatorics and conservation laws to test if proposed models are 2-site or 3-site. Based on this novel combinatorial approach, we have proved that older and modified models are effectively bi‒site models in that catalysis and rotation in F1-ATPase occurs in these models with only two catalytic sites occupied by bound nucleotide. Hence these models contradict consensus experimental data. The recent 2023 model of ATP hydrolysis by F1-ATPase has been proved to be a true tri-site model based on our novel mathematical approach. Such pure mathematical proofs constitute an important step forward for ATP mechanism. However, in what must be considered an aspect with great scientific potential, the power of such mathematical proofs has not been fully exploited to solve molecular biological problems, in our opinion. We believe that the creative application of pure mathematical proofs (for another example see Nath in Theory Biosci 141:249-260, 2022) can help resolve with finality various longstanding molecular-level issues that arise as a matter of course in the analysis of fundamental biological problems. Such issues have proved extraordinarily difficult to resolve by standard experimental, theoretical, or computational approaches.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
8
|
Chen Z, Shi Z, Zhang Y, Shi Y, Sun M, Cui Y, Zhang S, Luo G. Metagenomic analysis towards understanding the effects of ammonia on chain elongation process for medium chain fatty acids production. BIORESOURCE TECHNOLOGY 2024; 395:130413. [PMID: 38310979 DOI: 10.1016/j.biortech.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
The production of medium chain fatty acids (MCFAs) through chain elongation (CE) from organic wastes/wastewater has attracted much attention, while the effects of a common inhibitor-ammonia has not been elucidated. The mechanism of ammonia affecting CE was studied by metagenomic. The lag phase duration of caproate production was increased, and the maximum caproate production rate was decreased by 43.4 % at 4 g-N/L, as compared to 0 g-N/L. And hydrochar (HC) alleviated the inhibition of ammonia at 4 g-N/L. Metagenomic analysis indicated that ammonia induced UBA4085 sp.FDU78 as the dominant microorganism, and metabolic reconstruction revealed its potential CE ability. Furthermore, ammonia inhibited the reverse β oxidation pathway and Acetyl-CoA production pathway. The tolerance of UBA4085 sp.FDU78 to ammonia was associated with the uptake of inorganic ions, energy conservation, and synthesis of osmoprotectants. The present study provided a deep-insight on the ammonia tolerance mechanism on the CE process.
Collapse
Affiliation(s)
- Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Yan Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Meichen Sun
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yong Cui
- Shanghai Wujiaochang Environmental Technology Co., Ltd, Shanghai 200438, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
9
|
Del Dotto V, Musiani F, Baracca A, Solaini G. Variants in Human ATP Synthase Mitochondrial Genes: Biochemical Dysfunctions, Associated Diseases, and Therapies. Int J Mol Sci 2024; 25:2239. [PMID: 38396915 PMCID: PMC10889682 DOI: 10.3390/ijms25042239] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial ATP synthase (Complex V) catalyzes the last step of oxidative phosphorylation and provides most of the energy (ATP) required by human cells. The mitochondrial genes MT-ATP6 and MT-ATP8 encode two subunits of the multi-subunit Complex V. Since the discovery of the first MT-ATP6 variant in the year 1990 as the cause of Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP) syndrome, a large and continuously increasing number of inborn variants in the MT-ATP6 and MT-ATP8 genes have been identified as pathogenic. Variants in these genes correlate with various clinical phenotypes, which include several neurodegenerative and multisystemic disorders. In the present review, we report the pathogenic variants in mitochondrial ATP synthase genes and highlight the molecular mechanisms underlying ATP synthase deficiency that promote biochemical dysfunctions. We discuss the possible structural changes induced by the most common variants found in patients by considering the recent cryo-electron microscopy structure of human ATP synthase. Finally, we provide the state-of-the-art of all therapeutic proposals reported in the literature, including drug interventions targeting mitochondrial dysfunctions, allotopic gene expression- and nuclease-based strategies, and discuss their potential translation into clinical trials.
Collapse
Affiliation(s)
- Valentina Del Dotto
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40127 Bologna, Italy;
| | - Alessandra Baracca
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| | - Giancarlo Solaini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| |
Collapse
|
10
|
Nath S. Coupling and biological free-energy transduction processes as a bridge between physics and life: Molecular-level instantiation of Ervin Bauer's pioneering concepts in biological thermodynamics. Biosystems 2024; 236:105134. [PMID: 38301737 DOI: 10.1016/j.biosystems.2024.105134] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The nonequilibrium coupled processes of oxidation and ATP synthesis in the biological process of oxidative phosphorylation (OXPHOS) are fundamental to all life on our planet. These steady-state energy transduction processes ‒ coupled by proton and anion/counter-cation concentration gradients in the OXPHOS pathway ‒ generate ∼95 % of the ATP requirement of aerobic systems for cellular function. The rapid energy cycling and homeostasis of metabolites involved in this coupling are shown to be responsible for maintenance and regulation of stable nonequilibrium states, the latter first postulated in pioneering biothermodynamics work by Ervin Bauer between 1920 and 1935. How exactly does this occur? This is shown to be answered by molecular considerations arising from Nath's torsional mechanism of ATP synthesis and two-ion theory of energy coupling developed in 25 years of research work on the subject. A fresh analysis of the biological thermodynamics of coupling that goes beyond the previous work of Stucki and others and shows how the system functions at the molecular level has been carried out. Thermodynamic parameters, such as the overall degree of coupling, q of the coupled system are evaluated for the state 4 to state 3 transition in animal mitochondria with succinate as substrate. The actual or operative P to O ratio, the efficiency of the coupled reactions, η, and the Gibbs energy dissipation, Φ have been calculated and shown to be in good agreement with experimental data. Novel mechanistic insights arising from the above have been discussed. A fourth law/principle of thermodynamics is formulated for a sub-class of physical and biological systems. The critical importance of constraints and time-varying boundary conditions for function and regulation is discussed in detail. Dynamic internal structural changes essential for torsional energy storage within the γ-subunit in a single molecule of the FOF1-ATP synthase and its transduction have been highlighted. These results provide a molecular-level instantiation of Ervin Bauer's pioneering concepts in biological thermodynamics.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
11
|
Nath S. Phosphorus Chemistry at the Roots of Bioenergetics: Ligand Permutation as the Molecular Basis of the Mechanism of ATP Synthesis/Hydrolysis by F OF 1-ATP Synthase. Molecules 2023; 28:7486. [PMID: 38005208 PMCID: PMC10673332 DOI: 10.3390/molecules28227486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The integration of phosphorus chemistry with the mechanism of ATP synthesis/hydrolysis requires dynamical information during ATP turnover and catalysis. Oxygen exchange reactions occurring at β-catalytic sites of the FOF1-ATP synthase/F1-ATPase imprint a unique record of molecular events during the catalytic cycle of ATP synthesis/hydrolysis. They have been shown to provide valuable time-resolved information on enzyme catalysis during ATP synthesis and ATP hydrolysis. The present work conducts new experiments on oxygen exchange catalyzed by submitochondrial particles designed to (i) measure the relative rates of Pi-ATP, Pi-HOH, and ATP-HOH isotope exchanges; (ii) probe the effect of ADP removal on the extent of inhibition of the exchanges, and (iii) test their uncoupler sensitivity/resistance. The objectives have been realized based on new experiments on submitochondrial particles, which show that both the Pi-HOH and ATP-HOH exchanges occur at a considerably higher rate relative to the Pi-ATP exchange, an observation that cannot be explained by previous mechanisms. A unifying explanation of the kinetic data that rationalizes these observations is given. The experimental results in (ii) show that ADP removal does not inhibit the intermediate Pi-HOH exchange when ATP and submitochondrial particles are incubated, and that the nucleotide requirement of the intermediate Pi-HOH exchange is adequately met by ATP, but not by ADP. These results contradicts the central postulate in Boyer's binding change mechanism of reversible catalysis at a F1 catalytic site with Keq~1 that predicts an absolute requirement of ADP for the occurrence of the Pi-HOH exchange. The prominent intermediate Pi-HOH exchange occurring under hydrolytic conditions is shown to be best explained by Nath's torsional mechanism of energy transduction and ATP synthesis/hydrolysis, which postulates an essentially irreversible cleavage of ATP by mitochondria/particles, independent from a reversible formation of ATP from ADP and Pi. The explanation within the torsional mechanism is also shown to rationalize the relative insensitivity of the intermediate Pi-HOH exchange to uncouplers observed in the experiments in (iii) compared to the Pi-ATP and ATP-HOH exchanges. This is shown to lead to new concepts and perspectives based on ligand displacement/substitution and ligand permutation for the elucidation of the oxygen exchange reactions within the framework of fundamental phosphorus chemistry. Fast mechanisms that realize the rotation/twist, tilt, permutation and switch of ligands, as well as inversion at the γ-phosphorus synchronously and simultaneously and in a concerted manner, have been proposed, and their stereochemical consequences have been analyzed. These considerations take us beyond the binding change mechanism of ATP synthesis/hydrolysis in bioenergetics.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; or
- Institute of Molecular Psychiatry, Rheinische-Friedrichs-Wilhelm Universität Bonn, D-53127 Bonn, Germany
| |
Collapse
|
12
|
Althaher AR, Alwahsh M. An overview of ATP synthase, inhibitors, and their toxicity. Heliyon 2023; 9:e22459. [PMID: 38106656 PMCID: PMC10722325 DOI: 10.1016/j.heliyon.2023.e22459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Mitochondrial complex V (ATP synthase) is a remarkable molecular motor crucial in generating ATP and sustaining mitochondrial function. Its importance in cellular metabolism cannot be overstated, as malfunction of ATP synthase has been linked to various pathological conditions. Both natural and synthetic ATP synthase inhibitors have been extensively studied, revealing their inhibitory sites and modes of action. These findings have opened exciting avenues for developing new therapeutics and discovering new pesticides and herbicides to safeguard global food supplies. However, it is essential to remember that these compounds can also adversely affect human and animal health, impacting vital organs such as the nervous system, heart, and kidneys. This review aims to provide a comprehensive overview of mitochondrial ATP synthase, its structural and functional features, and the most common inhibitors and their potential toxicities.
Collapse
Affiliation(s)
- Arwa R. Althaher
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mohammad Alwahsh
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
13
|
Nath S. Elucidating Events within the Black Box of Enzyme Catalysis in Energy Metabolism: Insights into the Molecular Mechanism of ATP Hydrolysis by F 1-ATPase. Biomolecules 2023; 13:1596. [PMID: 38002278 PMCID: PMC10669602 DOI: 10.3390/biom13111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Oxygen exchange reactions occurring at β-catalytic sites of the FOF1-ATP synthase/F1-ATPase imprint a unique record of molecular events during the catalytic cycle of ATP synthesis/hydrolysis. This work presents a new theory of oxygen exchange and tests it on oxygen exchange data recorded on ATP hydrolysis by mitochondrial F1-ATPase (MF1). The apparent rate constant of oxygen exchange governing the intermediate Pi-HOH exchange accompanying ATP hydrolysis is determined by kinetic analysis over a ~50,000-fold range of substrate ATP concentration (0.1-5000 μM) and a corresponding ~200-fold range of reaction velocity (3.5-650 [moles of Pi/{moles of F1-ATPase}-1 s-1]). Isotopomer distributions of [18O]Pi species containing 0, 1, 2, and 3 labeled oxygen atoms predicted by the theory have been quantified and shown to be in perfect agreement with the experimental distributions over the entire range of medium ATP concentrations without employing adjustable parameters. A novel molecular mechanism of steady-state multisite ATP hydrolysis by the F1-ATPase has been proposed. Our results show that steady-state ATP hydrolysis by F1-ATPase occurs with all three sites occupied by Mg-nucleotide. The various implications arising from models of energy coupling in ATP synthesis/hydrolysis by the ATP synthase/F1-ATPase have been discussed. Current models of ATP hydrolysis by F1-ATPase, including those postulated from single-molecule data, are shown to be effectively bisite models that contradict the data. The trisite catalysis formulated by Nath's torsional mechanism of energy transduction and ATP synthesis/hydrolysis since its first appearance 25 years ago is shown to be in better accord with the experimental record. The total biochemical information on ATP hydrolysis is integrated into a consistent model by the torsional mechanism of ATP synthesis/hydrolysis and shown to elucidate the elementary chemical and mechanical events within the black box of enzyme catalysis in energy metabolism by F1-ATPase.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; or
- Institute of Molecular Psychiatry, Rheinische-Friedrichs-Wilhelm Universität Bonn, D–53127 Bonn, Germany
| |
Collapse
|
14
|
Nesterov SV, Yaguzhinsky LS. Directed proton transfer from F o to F 1 extends the multifaceted proton functions in ATP synthase. Biophys Rev 2023; 15:859-873. [PMID: 37975013 PMCID: PMC10643803 DOI: 10.1007/s12551-023-01132-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 11/19/2023] Open
Abstract
The role of protons in ATP synthase is typically considered to be energy storage in the form of an electrochemical potential, as well as an operating element proving rotation. However, this review emphasizes that protons also act as activators of conformational changes in F1 and as direct participants in phosphorylation reaction. The protons transferred through Fo do not immediately leave to the bulk aqueous phase, but instead provide for the formation of a pH gradient between acidifying Fo and alkalizing F1. It facilitates a directed inter-subunit proton transfer to F1, where they are used in the ATP synthesis reaction. This ensures that the enzyme activity is not limited by a lack of protons in the alkaline mitochondrial matrix or chloroplast stroma. Up to one hundred protons bind to the carboxyl groups of the F1 subunit, altering the electrical interactions between the amino acids of the enzyme. This removes the inhibition of ATP synthase caused by the electrostatic attraction of charged amino acids of the stator and rotor and also makes the enzyme more prone to conformational changes. Protonation occurs during ATP synthesis initiation and during phosphorylation, while deprotonation blocks the rotation inhibiting both synthesis and hydrolysis. Thus, protons participate in the functioning of all main components of ATP synthase molecular machine making it effectively a proton-driven electric machine. The review highlights the key role of protons as a coupling factor in ATP synthase with multifaceted functions, including charge and energy transport, torque generation, facilitation of conformational changes, and participation in the ATP synthesis reaction.
Collapse
Affiliation(s)
- Semen V. Nesterov
- Kurchatov Complex of NBICS-Technologies, National Research Center Kurchatov Institute, 123182 Moscow, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Lev S. Yaguzhinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Belozersky Research Institute for Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
15
|
Wray V. Elucidating a Complex Mechanism. FUNCTION 2023; 4:zqad051. [PMID: 37799324 PMCID: PMC10548849 DOI: 10.1093/function/zqad051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Affiliation(s)
- Victor Wray
- Department of Structural Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| |
Collapse
|
16
|
Sato W, Ishimori K. Regulation of electron transfer in the terminal step of the respiratory chain. Biochem Soc Trans 2023; 51:1611-1619. [PMID: 37409479 DOI: 10.1042/bst20221449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
In mitochondria, electrons are transferred along a series of enzymes and electron carriers that are referred to as the respiratory chain, leading to the synthesis of cellular ATP. The series of the interprotein electron transfer (ET) reactions is terminated by the reduction in molecular oxygen at Complex IV, cytochrome c oxidase (CcO) that is coupled with the proton pumping from the matrix to the inner membrane space. Unlike the ET reactions from Complex I to Complex III, the ET reaction to CcO, mediated by cytochrome c (Cyt c), is quite specific in that it is irreversible with suppressed electron leakage, which characterizes the ET reactions in the respiratory chain and is thought to play a key role in the regulation of mitochondrial respiration. In this review, we summarize the recent findings regarding the molecular mechanism of the ET reaction from Cyt c to CcO in terms of specific interaction between two proteins, a molecular breakwater, and the effects of the conformational fluctuation on the ET reaction, conformational gating. Both of these are essential factors, not only in the ET reaction from Cyt c to CcO, but also in the interprotein ET reactions in general. We also discuss the significance of a supercomplex in the terminal ET reaction, which provides information on the regulatory factors of the ET reactions that are specific to the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
17
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
18
|
Nakano A, Kishikawa JI, Mitsuoka K, Yokoyama K. Mechanism of ATP hydrolysis dependent rotation of bacterial ATP synthase. Nat Commun 2023; 14:4090. [PMID: 37429854 DOI: 10.1038/s41467-023-39742-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
F1 domain of ATP synthase is a rotary ATPase complex in which rotation of central γ-subunit proceeds in 120° steps against a surrounding α3β3 fueled by ATP hydrolysis. How the ATP hydrolysis reactions occurring in three catalytic αβ dimers are coupled to mechanical rotation is a key outstanding question. Here we describe catalytic intermediates of the F1 domain in FoF1 synthase from Bacillus PS3 sp. during ATP mediated rotation captured using cryo-EM. The structures reveal that three catalytic events and the first 80° rotation occur simultaneously in F1 domain when nucleotides are bound at all the three catalytic αβ dimers. The remaining 40° rotation of the complete 120° step is driven by completion of ATP hydrolysis at αDβD, and proceeds through three sub-steps (83°, 91°, 101°, and 120°) with three associated conformational intermediates. All sub-steps except for one between 91° and 101° associated with phosphate release, occur independently of the chemical cycle, suggesting that the 40° rotation is largely driven by release of intramolecular strain accumulated by the 80° rotation. Together with our previous results, these findings provide the molecular basis of ATP driven rotation of ATP synthases.
Collapse
Affiliation(s)
- Atsuki Nakano
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Jun-Ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
19
|
López‐Pérez E, de Gómez‐Puyou MT, Nuñez CJ, Zapién DM, Guardado SA, Beltrán HI, Pérez‐Hernández G. Ordered-domain unfolding of thermophilic isolated β subunit ATP synthase. Protein Sci 2023; 32:e4689. [PMID: 37252686 PMCID: PMC10273367 DOI: 10.1002/pro.4689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
The flexibility of the ATP synthase's β subunit promotes its role in the ATP synthase rotational mechanism, but its domains stability remains unknown. A reversible thermal unfolding of the isolated β subunit (Tβ) of the ATP synthase from Bacillus thermophilus PS3, tracked through circular dichroism and molecular dynamics, indicated that Tβ shape transits from an ellipsoid to a molten globule through an ordered unfolding of its domains, preserving the β-sheet residual structure at high temperature. We determined that part of the stability origin of Tβ is due to a transversal hydrophobic array that crosses the β-barrel formed at the N-terminal domain and the Rossman fold of the nucleotide-binding domain (NBD), while the helix bundle of the C-terminal domain is the less stable due to the lack of hydrophobic residues, and thus the more flexible to trigger the rotational mechanism of the ATP synthase.
Collapse
Affiliation(s)
- Edgar López‐Pérez
- Unidad Cuajimalpa, Departamento de Ciencias NaturalesUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico
| | - Marietta Tuena de Gómez‐Puyou
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Concepción José Nuñez
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Denise Martínez Zapién
- Unidad Cuajimalpa, Departamento de Ciencias NaturalesUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico
| | - Salomón Alas Guardado
- Unidad Cuajimalpa, Departamento de Ciencias NaturalesUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico
| | - Hiram Isaac Beltrán
- División de Ciencias Básicas e Ingeniería, Departamento de Ciencias BásicasUniversidad Autónoma Metropolitana, Unidad AzcapotzalcoCiudad de MéxicoMexico
| | - Gerardo Pérez‐Hernández
- Unidad Cuajimalpa, Departamento de Ciencias NaturalesUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico
| |
Collapse
|
20
|
Nath S. Beyond binding change: the molecular mechanism of ATP hydrolysis by F 1-ATPase and its biochemical consequences. Front Chem 2023; 11:1058500. [PMID: 37324562 PMCID: PMC10266426 DOI: 10.3389/fchem.2023.1058500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
F1-ATPase is a universal multisubunit enzyme and the smallest-known motor that, fueled by the process of ATP hydrolysis, rotates in 120o steps. A central question is how the elementary chemical steps occurring in the three catalytic sites are coupled to the mechanical rotation. Here, we performed cold chase promotion experiments and measured the rates and extents of hydrolysis of preloaded bound ATP and promoter ATP bound in the catalytic sites. We found that rotation was caused by the electrostatic free energy change associated with the ATP cleavage reaction followed by Pi release. The combination of these two processes occurs sequentially in two different catalytic sites on the enzyme, thereby driving the two rotational sub-steps of the 120o rotation. The mechanistic implications of this finding are discussed based on the overall energy balance of the system. General principles of free energy transduction are formulated, and their important physical and biochemical consequences are analyzed. In particular, how exactly ATP performs useful external work in biomolecular systems is discussed. A molecular mechanism of steady-state, trisite ATP hydrolysis by F1-ATPase, consistent with physical laws and principles and the consolidated body of available biochemical information, is developed. Taken together with previous results, this mechanism essentially completes the coupling scheme. Discrete snapshots seen in high-resolution X-ray structures are assigned to specific intermediate stages in the 120o hydrolysis cycle, and reasons for the necessity of these conformations are readily understood. The major roles played by the "minor" subunits of ATP synthase in enabling physiological energy coupling and catalysis, first predicted by Nath's torsional mechanism of energy transduction and ATP synthesis 25 years ago, are now revealed with great clarity. The working of nine-stepped (bMF1, hMF1), six-stepped (TF1, EF1), and three-stepped (PdF1) F1 motors and of the α3β3γ subcomplex of F1 is explained by the same unified mechanism without invoking additional assumptions or postulating different mechanochemical coupling schemes. Some novel predictions of the unified theory on the mode of action of F1 inhibitors, such as sodium azide, of great pharmaceutical importance, and on more exotic artificial or hybrid/chimera F1 motors have been made and analyzed mathematically. The detailed ATP hydrolysis cycle for the enzyme as a whole is shown to provide a biochemical basis for a theory of "unisite" and steady-state multisite catalysis by F1-ATPase that had remained elusive for a very long time. The theory is supported by a probability-based calculation of enzyme species distributions and analysis of catalytic site occupancies by Mg-nucleotides and the activity of F1-ATPase. A new concept of energy coupling in ATP synthesis/hydrolysis based on fundamental ligand substitution chemistry has been advanced, which offers a deeper understanding, elucidates enzyme activation and catalysis in a better way, and provides a unified molecular explanation of elementary chemical events occurring at enzyme catalytic sites. As such, these developments take us beyond binding change mechanisms of ATP synthesis/hydrolysis proposed for oxidative phosphorylation and photophosphorylation in bioenergetics.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
21
|
Ovalle M, Kathan M, Toyoda R, Stindt CN, Crespi S, Feringa BL. Light-Fueled Transformations of a Dynamic Cage-Based Molecular System. Angew Chem Int Ed Engl 2023; 62:e202214495. [PMID: 36453623 DOI: 10.1002/anie.202214495] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
In a chemical equilibrium, the formation of high-energy species-in a closed system-is inefficient due to microscopic reversibility. Here, we demonstrate how this restriction can be circumvented by coupling a dynamic equilibrium to a light-induced E/Z isomerization of an azobenzene imine cage. The stable E-cage resists intermolecular imine exchange reactions that would "open" it. Upon switching, the strained Z-cage isomers undergo imine exchange spontaneously, thus opening the cage. Subsequent isomerization of the Z-open compounds yields a high-energy, kinetically trapped E-open species, which cannot be efficiently obtained from the initial E-cage, thus shifting an imine equilibrium energetically uphill in a closed system. Upon heating, the nucleophile is displaced back into solution and an opening/closing cycle is completed by regenerating the stable all-E-cage. Using this principle, a light-induced cage-to-cage transformation is performed by the addition of a ditopic aldehyde.
Collapse
Affiliation(s)
- Marco Ovalle
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands
| | - Michael Kathan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands.,Present address: Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Ryojun Toyoda
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands.,Present address: Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aobaku, Sendai, 980-8578, Japan
| | - Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands.,Present address: Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands
| |
Collapse
|
22
|
Hasimoto Y, Sugawa M, Nishiguchi Y, Aeba F, Tagawa A, Suga K, Tanaka N, Ueno H, Yamashita H, Yokota R, Masaike T, Nishizaka T. Direct identification of the rotary angle of ATP cleavage in F 1-ATPase from Bacillus PS3. Biophys J 2023; 122:554-564. [PMID: 36560882 PMCID: PMC9941720 DOI: 10.1016/j.bpj.2022.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
F1-ATPase is the world's smallest biological rotary motor driven by ATP hydrolysis at three catalytic β subunits. The 120° rotational step of the central shaft γ consists of 80° substep driven by ATP binding and a subsequent 40° substep. In order to correlate timing of ATP cleavage at a specific catalytic site with a rotary angle, we designed a new F1-ATPase (F1) from thermophilic Bacillus PS3 carrying β(E190D/F414E/F420E) mutations, which cause extremely slow rates of both ATP cleavage and ATP binding. We produced an F1 molecule that consists of one mutant β and two wild-type βs (hybrid F1). As a result, the new hybrid F1 showed two pausing angles that are separated by 200°. They are attributable to two slowed reaction steps in the mutated β, thus providing the direct evidence that ATP cleavage occurs at 200° rather than 80° subsequent to ATP binding at 0°. This scenario resolves the long-standing unclarified issue in the chemomechanical coupling scheme and gives insights into the mechanism of driving unidirectional rotation.
Collapse
Affiliation(s)
- Yuh Hasimoto
- Tsukuba Research Center, Central Research Laboratory, Hamamatsu Photonics K.K., Ibaraki 300-2635, Japan.
| | - Mitsuhiro Sugawa
- Graduate School of Arts & Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Yoshihiro Nishiguchi
- Department of Physics, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Fumihiro Aeba
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Ayari Tagawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Kenta Suga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Nobukiyo Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hiroki Yamashita
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Ryuichi Yokota
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Tomoko Masaike
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan.
| | - Takayuki Nishizaka
- Department of Physics, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan.
| |
Collapse
|
23
|
Relationship Between Microbial Energy Production and Material Cycles. Environ Microbiol 2023. [DOI: 10.1007/978-3-662-66547-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
24
|
Abstract
F1-ATPase is a rotary molecular motor that in vivo is subject to strong nonequilibrium driving forces. There is great interest in understanding the operational principles governing its high efficiency of free-energy transduction. Here we use a near-equilibrium framework to design a nontrivial control protocol to minimize dissipation in rotating F1 to synthesize adenosine triphosphate. We find that the designed protocol requires much less work than a naive (constant-velocity) protocol across a wide range of protocol durations. Our analysis points to a possible mechanism for energetically efficient driving of F1 in vivo and provides insight into free-energy transduction for a broader class of biomolecular and synthetic machines.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, BerlinD-10623, Germany
| | - Steven J Large
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| | - Shoichi Toyabe
- Department of Applied Physics, Tohoku University, Aoba 6-6-05, Sendai980-8579, Japan
| | - David A Sivak
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| |
Collapse
|
25
|
Structural Elements Involved in ATP Hydrolysis Inhibition and ATP Synthesis of Tuberculosis and Nontuberculous Mycobacterial F-ATP Synthase Decipher New Targets for Inhibitors. Antimicrob Agents Chemother 2022; 66:e0105622. [PMID: 36445139 PMCID: PMC9764993 DOI: 10.1128/aac.01056-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The F1FO-ATP synthase is required for the viability of tuberculosis (TB) and nontuberculous mycobacteria (NTM) and has been validated as a drug target. Here, we present the cryo-EM structures of the Mycobacterium smegmatis F1-ATPase and the F1FO-ATP synthase with different nucleotide occupation within the catalytic sites and visualize critical elements for latent ATP hydrolysis and efficient ATP synthesis. Mutational studies reveal that the extended C-terminal domain (αCTD) of subunit α is the main element for the self-inhibition mechanism of ATP hydrolysis for TB and NTM bacteria. Rotational studies indicate that the transition between the inhibition state by the αCTD and the active state is a rapid process. We demonstrate that the unique mycobacterial γ-loop and subunit δ are critical elements required for ATP formation. The data underline that these mycobacterium-specific elements of α, γ, and δ are attractive targets, providing a platform for the discovery of species-specific inhibitors.
Collapse
|
26
|
Chen J, Zang Y, Liang S, Xue S, Shang S, Zhu M, Wang Y, Tang X. Comparative analysis of mitochondrial genomes reveals marine adaptation in seagrasses. BMC Genomics 2022; 23:800. [PMID: 36463111 PMCID: PMC9719629 DOI: 10.1186/s12864-022-09046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Seagrasses are higher marine flowering plants that evolved from terrestrial plants, but returned to the sea during the early evolution of monocotyledons through several separate lineages. Thus, they become a good model for studying the adaptation of plants to the marine environment. Sequencing of the mitochondrial (mt) genome of seagrasses is essential for understanding their evolutionary characteristics. RESULTS In this study, we sequenced the mt genome of two endangered seagrasses (Zostera japonica and Phyllospadix iwatensis). These data and data on previously sequenced mt genomes from monocotyledons provide new evolutionary evidence of genome size reduction, gene loss, and adaptive evolution in seagrasses. The mt genomes of Z. japonica and P. iwatensis are circular. The sizes of the three seagrasses (including Zostera marine) that have been sequenced to date are smaller than that of other monocotyledons. Additionally, we found a large number of repeat sequences in seagrasses. The most abundant long repeat sequences were 31-40 bp repeats. Our study also found that seagrass species lost extensive ribosomal protein genes during evolution. The rps7 gene and the rpl16 gene of P. iwatensis are exceptions to this trend. The phylogenetic analysis based on the mt genome strongly supports the previous results. Furthermore, we identified five positive selection genes (atp8, nad3, nad6, ccmFn, and matR) in seagrasses that may be associated with their adaptation to the marine environment. CONCLUSIONS In this study, we sequenced and annotated the mt genomes of Z. japonica and P. iwatensis and compared them with the genome of other monocotyledons. The results of this study will enhance our understanding of seagrass adaptation to the marine environment and can inform further investigations of the seagrass mt genome.
Collapse
Affiliation(s)
- Jun Chen
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong China
| | - Yu Zang
- grid.508334.90000 0004 1758 3791Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong China
| | - Shuo Liang
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong China
| | - Song Xue
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong China
| | - Shuai Shang
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong China
| | - Meiling Zhu
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong China
| | - Ying Wang
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong China
| | - Xuexi Tang
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong China
| |
Collapse
|
27
|
Two Distinct Modes of DNA Binding by an MCM Helicase Enable DNA Translocation. Int J Mol Sci 2022; 23:ijms232314678. [PMID: 36499022 PMCID: PMC9735655 DOI: 10.3390/ijms232314678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
A six-subunit ATPase ring forms the central hub of the replication forks in all domains of life. This ring performs a helicase function to separate the two complementary DNA strands to be replicated and drives the replication machinery along the DNA. Disruption of this helicase/ATPase ring is associated with genetic instability and diseases such as cancer. The helicase/ATPase rings of eukaryotes and archaea consist of six minichromosome maintenance (MCM) proteins. Prior structural studies have shown that MCM rings bind one encircled strand of DNA in a spiral staircase, suggesting that the ring pulls this strand of DNA through its central pore in a hand-over-hand mechanism where the subunit at the bottom of the staircase dissociates from DNA and re-binds DNA one step above the staircase. With high-resolution cryo-EM, we show that the MCM ring of the archaeal organism Saccharolobus solfataricus binds an encircled DNA strand in two different modes with different numbers of subunits engaged to DNA, illustrating a plausible mechanism for the alternating steps of DNA dissociation and re-association that occur during DNA translocation.
Collapse
|
28
|
Marshansky V. Discovery and Study of Transmembrane Rotary Ion-Translocating Nano-Motors: F-ATPase/Synthase of Mitochondria/Bacteria and V-ATPase of Eukaryotic Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:702-719. [PMID: 36171652 DOI: 10.1134/s000629792208003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
This review discusses the history of discovery and study of the operation of the two rotary ion-translocating ATPase nano-motors: (i) F-ATPase/synthase (holocomplex F1FO) of mitochondria/bacteria and (ii) eukaryotic V-ATPase (holocomplex V1VO). Vacuolar adenosine triphosphatase (V-ATPase) is a transmembrane multisubunit complex found in all eukaryotes from yeast to humans. It is structurally and functionally similar to the F-ATPase/synthase of mitochondria/bacteria and the A-ATPase/synthase of archaebacteria, which indicates a common evolutionary origin of the rotary ion-translocating nano-motors built into cell membranes and invented by Nature billions of years ago. Previously we have published several reviews on this topic with appropriate citations of our original research. This review is focused on the historical analysis of the discovery and study of transmembrane rotary ion-translocating ATPase nano-motors functioning in bacteria, eukaryotic cells and mitochondria of animals.
Collapse
|
29
|
Shekhar M, Gupta C, Suzuki K, Chan CK, Murata T, Singharoy A. Revealing a Hidden Intermediate of Rotatory Catalysis with X-ray Crystallography and Molecular Simulations. ACS CENTRAL SCIENCE 2022; 8:915-925. [PMID: 35912346 PMCID: PMC9336149 DOI: 10.1021/acscentsci.1c01599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanism of rotatory catalysis in ATP-hydrolyzing molecular motors remains an unresolved puzzle in biological energy transfer. Notwithstanding the wealth of available biochemical and structural information inferred from years of experiments, knowledge on how the coupling between the chemical and mechanical steps within motors enforces directional rotatory movements remains fragmentary. Even more contentious is to pinpoint the rate-limiting step of a multistep rotation process. Here, using vacuolar or V1-type hexameric ATPase as an exemplary rotational motor, we present a model of the complete 4-step conformational cycle involved in rotatory catalysis. First, using X-ray crystallography, a new intermediate or "dwell" is identified, which enables the release of an inorganic phosphate (or Pi) after ATP hydrolysis. Using molecular dynamics simulations, this new dwell is placed in a sequence with three other crystal structures to derive a putative cyclic rotation path. Free-energy simulations are employed to estimate the rate of the hexameric protein transformations and delineate allosteric effects that allow new reactant ATP entry only after hydrolysis product exit. An analysis of transfer entropy brings to light how the side-chain-level interactions transcend into larger-scale reorganizations, highlighting the role of the ubiquitous arginine-finger residues in coupling chemical and mechanical information. An inspection of all known rates encompassing the 4-step rotation mechanism implicates the overcoming of the ADP interactions with V1-ATPase to be the rate-limiting step of motor action.
Collapse
Affiliation(s)
- Mrinal Shekhar
- Center
for Development of Therapeutics, Broad Institute
of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Chitrak Gupta
- School
of Molecular Sciences, Arizona State University, 797 East Tyler Street, Tempe, Arizona 85281, United States
| | - Kano Suzuki
- Department
of Chemistry, Graduate School of Science, Chiba University, Inage-ku, Chiba, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Chun Kit Chan
- School
of Molecular Sciences, Arizona State University, 797 East Tyler Street, Tempe, Arizona 85281, United States
| | - Takeshi Murata
- Department
of Chemistry, Graduate School of Science, Chiba University, Inage-ku, Chiba, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Membrane
Protein Research and Molecular Chirality Research Centers, Chiba University, Inage-ku, Chiba, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Structure
Biology Research Center, Institute of Materials
Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, 1-1 Oho, Ibaraki 305-0801, Japan
| | - Abhishek Singharoy
- School
of Molecular Sciences, Arizona State University, 797 East Tyler Street, Tempe, Arizona 85281, United States
| |
Collapse
|
30
|
Hawrysh PJ, Myrka AM, Buck LT. Review: A history and perspective of mitochondria in the context of anoxia tolerance. Comp Biochem Physiol B Biochem Mol Biol 2022; 260:110733. [PMID: 35288242 DOI: 10.1016/j.cbpb.2022.110733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023]
Abstract
Symbiosis is found throughout nature, but perhaps nowhere is it more fundamental than mitochondria in all eukaryotes. Since mitochondria were discovered and mechanisms of oxygen reduction characterized, an understanding gradually emerged that these organelles were involved not just in the combustion of oxygen, but also in the sensing of oxygen. While multiple hypotheses exist to explain the mitochondrial involvement in oxygen sensing, key elements are developing that include potassium channels and reactive oxygen species. To understand how mitochondria contribute to oxygen sensing, it is informative to study a model system which is naturally adapted to survive extended periods without oxygen. Amongst air-breathing vertebrates, the most highly adapted are western painted turtles (Chrysemys picta bellii), which overwinter in ice-covered and anoxic water bodies. Through research of this animal, it was postulated that metabolic rate depression is key to anoxic survival and that mitochondrial regulation is a key aspect. When faced with anoxia, excitatory neurotransmitter receptors in turtle brain are inhibited through mitochondrial calcium release, termed "channel arrest". Simultaneously, inhibitory GABAergic signalling contributes to the "synaptic arrest" of excitatory action potential firing through a pathway dependent on mitochondrial depression of ROS generation. While many pathways are implicated in mitochondrial oxygen sensing in turtles, such as those of adenosine, ATP turnover, and gaseous transmitters, an apparent point of intersection is the mitochondria. In this review we will explore how an organelle that was critical for organismal complexity in an oxygenated world has also become a potentially important oxygen sensor.
Collapse
Affiliation(s)
- Peter John Hawrysh
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Alexander Morley Myrka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Leslie Thomas Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
31
|
Computational Design of Inhibitors Targeting the Catalytic β Subunit of Escherichia coli FOF1-ATP Synthase. Antibiotics (Basel) 2022; 11:antibiotics11050557. [PMID: 35625201 PMCID: PMC9138118 DOI: 10.3390/antibiotics11050557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
With the uncontrolled growth of multidrug-resistant bacteria, there is an urgent need to search for new therapeutic targets, to develop drugs with novel modes of bactericidal action. FoF1-ATP synthase plays a crucial role in bacterial bioenergetic processes, and it has emerged as an attractive antimicrobial target, validated by the pharmaceutical approval of an inhibitor to treat multidrug-resistant tuberculosis. In this work, we aimed to design, through two types of in silico strategies, new allosteric inhibitors of the ATP synthase, by targeting the catalytic β subunit, a centerpiece in communication between rotor subunits and catalytic sites, to drive the rotary mechanism. As a model system, we used the F1 sector of Escherichia coli, a bacterium included in the priority list of multidrug-resistant pathogens. Drug-like molecules and an IF1-derived peptide, designed through molecular dynamics simulations and sequence mining approaches, respectively, exhibited in vitro micromolar inhibitor potency against F1. An analysis of bacterial and Mammalia sequences of the key structural helix-turn-turn motif of the C-terminal domain of the β subunit revealed highly and moderately conserved positions that could be exploited for the development of new species-specific allosteric inhibitors. To our knowledge, these inhibitors are the first binders computationally designed against the catalytic subunit of FOF1-ATP synthase.
Collapse
|
32
|
Volkán-Kacsó S, Marcus RA. F 1-ATPase Rotary Mechanism: Interpreting Results of Diverse Experimental Modes With an Elastic Coupling Theory. Front Microbiol 2022; 13:861855. [PMID: 35531282 PMCID: PMC9072658 DOI: 10.3389/fmicb.2022.861855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
In this chapter, we review single-molecule observations of rotary motors, focusing on the general theme that their mechanical motion proceeds in substeps with each substep described by an angle-dependent rate constant. In the molecular machine F1-ATPase, the stepping rotation is described for individual steps by forward and back reaction rate constants, some of which depend strongly on the rotation angle. The rotation of a central shaft is typically monitored by an optical probe. We review our recent work on the theory for the angle-dependent rate constants built to treat a variety of single-molecule and ensemble experiments on the F1-ATPase, and relating the free energy of activation of a step to the standard free energy of reaction for that step. This theory, an elastic molecular transfer theory, provides a framework for a multistate model and includes the probe used in single-molecule imaging and magnetic manipulation experiments. Several examples of its application are the following: (a) treatment of the angle-dependent rate constants in stalling experiments, (b) use of the model to enhance the time resolution of the single-molecule imaging apparatus and to detect short-lived states with a microsecond lifetime, states hidden by the fluctuations of the imaging probe, (c) treatment of out-of-equilibrium "controlled rotation" experiments, (d) use of the model to predict, without adjustable parameters, the angle-dependent rate constants of nucleotide binding and release, using data from other experiments, and (e) insights obtained from correlation of kinetic and cryo-EM structural data. It is also noted that in the case where the release of ADP would be a bottleneck process, the binding of ATP to another site acts to accelerate the release by 5-6 orders of magnitude. The relation of the present set of studies to previous and current theoretical work in the field is described. An overall goal is to gain mechanistic insight into the biological function in relation to structure.
Collapse
Affiliation(s)
- Sándor Volkán-Kacsó
- Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, United States
- Segerstrom Science Center, Azusa Pacific University, Azusa, CA, United States
| | - Rudolph A. Marcus
- Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
33
|
Wünsch D, Scheve S, Weiten A, Kalvelage K, Rabus R. Luciferase-Based Determination of ATP/NAD(H) Pools in a Marine (Environmental) Bacterium. Microb Physiol 2022; 32:122-134. [PMID: 35340012 DOI: 10.1159/000522414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022]
Abstract
In all living organisms, adenosine triphosphate (ATP) and NAD(H) represent universal molecular currencies for energy and redox state, respectively, and are thus widely applicable molecular proxies for an organism's viability and activity. To this end, corresponding luciferase-based assays in combination with a microplate reader were established with the marine model bacterium Phaeobacter inhibens DSM 17395 (Escherichia coli K12 served as reference). Grey multiwell plates best balanced sensitivity and crosstalk, and optimal incubation times were 5 min and 30 min for the ATP and NAD(H) assay, respectively, together allowing limits of detection of 0.042, 0.470 and 0.710 nM for ATP, NAD+, and NADH, respectively. Quenching of bacterial cell samples involved Tris-EDTA-DTAB and bicarbonate base-DTAB for ATP and NAD(H) assays, respectively. The ATP and NAD(H) yields determined for P. inhibens DSM 17395 at ¼ ODmax were found to reside well within the range previously reported for E. coli and other bacteria, e.g., 3.28 µmol ATP (g cellsdry)-1. Thus, the here described methods for luciferase-based determination of ATP/NAD(H) pools open a promising approach to investigate energy and redox states in marine (environmental) bacteria.
Collapse
Affiliation(s)
- Daniel Wünsch
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Arne Weiten
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Kristin Kalvelage
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
34
|
Sattari Vayghan H, Nawrocki WJ, Schiphorst C, Tolleter D, Hu C, Douet V, Glauser G, Finazzi G, Croce R, Wientjes E, Longoni F. Photosynthetic Light Harvesting and Thylakoid Organization in a CRISPR/Cas9 Arabidopsis Thaliana LHCB1 Knockout Mutant. FRONTIERS IN PLANT SCIENCE 2022; 13:833032. [PMID: 35330875 PMCID: PMC8940271 DOI: 10.3389/fpls.2022.833032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Light absorbed by chlorophylls of Photosystems II and I drives oxygenic photosynthesis. Light-harvesting complexes increase the absorption cross-section of these photosystems. Furthermore, these complexes play a central role in photoprotection by dissipating the excess of absorbed light energy in an inducible and regulated fashion. In higher plants, the main light-harvesting complex is trimeric LHCII. In this work, we used CRISPR/Cas9 to knockout the five genes encoding LHCB1, which is the major component of LHCII. In absence of LHCB1, the accumulation of the other LHCII isoforms was only slightly increased, thereby resulting in chlorophyll loss, leading to a pale green phenotype and growth delay. The Photosystem II absorption cross-section was smaller, while the Photosystem I absorption cross-section was unaffected. This altered the chlorophyll repartition between the two photosystems, favoring Photosystem I excitation. The equilibrium of the photosynthetic electron transport was partially maintained by lower Photosystem I over Photosystem II reaction center ratio and by the dephosphorylation of LHCII and Photosystem II. Loss of LHCB1 altered the thylakoid structure, with less membrane layers per grana stack and reduced grana width. Stable LHCB1 knockout lines allow characterizing the role of this protein in light harvesting and acclimation and pave the way for future in vivo mutational analyses of LHCII.
Collapse
Affiliation(s)
- Hamed Sattari Vayghan
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Wojciech J. Nawrocki
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christo Schiphorst
- Laboratory of Biophysics, Wageningen University, Wageningen, Netherlands
| | - Dimitri Tolleter
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Chen Hu
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Véronique Douet
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Giovanni Finazzi
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Wageningen, Netherlands
| | - Fiamma Longoni
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
35
|
Boyenle ID, Oyedele AK, Ogunlana AT, Adeyemo AF, Oyelere FS, Akinola OB, Adelusi TI, Ehigie LO, Ehigie AF. Targeting the mitochondrial permeability transition pore for drug discovery: Challenges and opportunities. Mitochondrion 2022; 63:57-71. [PMID: 35077882 DOI: 10.1016/j.mito.2022.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
Several drug targets have been amenable to drug discovery pursuit not until the characterization of the mitochondrial permeability transition pore (MPTP), a pore with an undefined molecular identity that forms on the inner mitochondrial membrane upon mitochondrial permeability transition (MPT) under the influence of calcium overload and oxidative stress. The opening of the pore which is presumed to cause cell death in certain human diseases also has implications under physiological parlance. Different models for this pore have been postulated following its first identification in the last six decades. The mitochondrial community has witnessed many protein candidates such as; voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), Mitochondrial phosphate carrier (PiC), Spastic Paralegin (SPG7), disordered proteins, and F1Fo ATPase. However, genetic studies have cast out most of these candidates with only F1Fo ATPase currently under intense argument. Cyclophilin D (CyPD) remains the widely accepted positive regulator of the MPTP known to date, but no drug candidate has emerged as its inhibitor, raising concern issues for therapeutics. Thus, in this review, we discuss various models of MPTP reported with the hope of stimulating further research in this field. We went beyond the classical description of the MPTP to ascribe a 'two-edged sword property' to the pore for therapeutic function in human disease because its inhibition and activation have pharmacological relevance. We suggested putative proteins upstream to CyPD that can regulate its activity and prevent cell deaths in neurodegenerative disease and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ibrahim Damilare Boyenle
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abdulquddus Kehinde Oyedele
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abdeen Tunde Ogunlana
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Aishat Folashade Adeyemo
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Olateju Balikis Akinola
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Leonard Ona Ehigie
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Adeola Folasade Ehigie
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| |
Collapse
|
36
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
37
|
Anashkin VA, Malinen AM, Bogachev AV, Baykov AA. Catalytic Asymmetry in Homodimeric H +-Pumping Membrane Pyrophosphatase Demonstrated by Non-Hydrolyzable Pyrophosphate Analogs. Int J Mol Sci 2021; 22:ijms22189820. [PMID: 34575984 PMCID: PMC8469034 DOI: 10.3390/ijms22189820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Membrane-bound inorganic pyrophosphatase (mPPase) resembles the F-ATPase in catalyzing polyphosphate-energized H+ and Na+ transport across lipid membranes, but differs structurally and mechanistically. Homodimeric mPPase likely uses a “direct coupling” mechanism, in which the proton generated from the water nucleophile at the entrance to the ion conductance channel is transported across the membrane or triggers Na+ transport. The structural aspects of this mechanism, including subunit cooperation, are still poorly understood. Using a refined enzyme assay, we examined the inhibition of K+-dependent H+-transporting mPPase from Desulfitobacterium hafniensee by three non-hydrolyzable PPi analogs (imidodiphosphate and C-substituted bisphosphonates). The kinetic data demonstrated negative cooperativity in inhibitor binding to two active sites, and reduced active site performance when the inhibitor or substrate occupied the other active site. The nonequivalence of active sites in PPi hydrolysis in terms of the Michaelis constant vanished at a low (0.1 mM) concentration of Mg2+ (essential cofactor). The replacement of K+, the second metal cofactor, by Na+ increased the substrate and inhibitor binding cooperativity. The detergent-solubilized form of mPPase exhibited similar active site nonequivalence in PPi hydrolysis. Our findings support the notion that the mPPase mechanism combines Mitchell’s direct coupling with conformational coupling to catalyze cation transport across the membrane.
Collapse
Affiliation(s)
- Viktor A. Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia; (V.A.A.); (A.V.B.)
| | - Anssi M. Malinen
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland;
| | - Alexander V. Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia; (V.A.A.); (A.V.B.)
| | - Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia; (V.A.A.); (A.V.B.)
- Correspondence:
| |
Collapse
|
38
|
Nirody JA, Budin I, Rangamani P. ATP synthase: Evolution, energetics, and membrane interactions. J Gen Physiol 2021; 152:152111. [PMID: 32966553 PMCID: PMC7594442 DOI: 10.1085/jgp.201912475] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
The synthesis of ATP, life’s “universal energy currency,” is the most prevalent chemical reaction in biological systems and is responsible for fueling nearly all cellular processes, from nerve impulse propagation to DNA synthesis. ATP synthases, the family of enzymes that carry out this endless task, are nearly as ubiquitous as the energy-laden molecule they are responsible for making. The F-type ATP synthase (F-ATPase) is found in every domain of life and has facilitated the survival of organisms in a wide range of habitats, ranging from the deep-sea thermal vents to the human intestine. Accordingly, there has been a large amount of work dedicated toward understanding the structural and functional details of ATP synthases in a wide range of species. Less attention, however, has been paid toward integrating these advances in ATP synthase molecular biology within the context of its evolutionary history. In this review, we present an overview of several structural and functional features of the F-type ATPases that vary across taxa and are purported to be adaptive or otherwise evolutionarily significant: ion channel selectivity, rotor ring size and stoichiometry, ATPase dimeric structure and localization in the mitochondrial inner membrane, and interactions with membrane lipids. We emphasize the importance of studying these features within the context of the enzyme’s particular lipid environment. Just as the interactions between an organism and its physical environment shape its evolutionary trajectory, ATPases are impacted by the membranes within which they reside. We argue that a comprehensive understanding of the structure, function, and evolution of membrane proteins—including ATP synthase—requires such an integrative approach.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY.,All Souls College, University of Oxford, Oxford, UK
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| |
Collapse
|
39
|
Liang C, Guo P. Identification of Arginine Finger as the Starter of the Biomimetic Motor in Driving Double-Stranded DNA. ACS NANO 2021; 15:13260-13266. [PMID: 34323470 PMCID: PMC8388119 DOI: 10.1021/acsnano.1c02973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanomotors in nanotechnology may be as important as cars in daily life. Biomotors are nanoscale machines ubiquitous in living systems to carry out ATP-driven activities such as walking, breathing, blinking, mitosis, replication, transcription, and trafficking. The sequential action in an asymmetrical hexamer by a revolving mechanism has been confirmed in dsDNA packaging motors of phi29, herpesviruses, bacterial dsDNA translocase FtsK, and Streptomyces TraB for conjugative dsDNA transfer. These elaborate, delicate, and exquisite ring structures have inspired scientists to design biomimetics in nanotechnology. Many multisubunit ATPase rings generate force via sequential action of multiple modules, such as the Walker A, Walker B, P-loop, arginine finger, sensors, and lid. The chemical to mechanical energy conversion usually takes place in sequential order. It is commonly believed that ATP binding triggers such conversion, but how the multimodule motor starts the sequential process has not been explicitly investigated. Identification of the starter is of great significance for biomimetic motor fabrication. Here, we report that the arginine finger is the starter of the motor. Only one amino acid residue change in the arginine finger led to the impediment and elimination of all following steps. Without the arginine finger, the motor failed to assemble, bind ATP, recruit DNA, or hydrolyze ATP and was eventually unable to package DNA. However, the loss of ATPase activity due to an inactive arginine finger can be rescued by an arginine finger from the adjacent subunit of Walker A mutant through trans-complementation. Taken together, we demonstrate that the formation of dimers triggered by the arginine finger initiates the motor action rather than the general belief of initiation by ATP binding.
Collapse
Affiliation(s)
- Chenxi Liang
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and
College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
- Dorothy
M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
- Biomedical
Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and
College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
- Dorothy
M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
- Biomedical
Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
40
|
The six steps of the complete F 1-ATPase rotary catalytic cycle. Nat Commun 2021; 12:4690. [PMID: 34344897 DOI: 10.1038/s41467-021-25029-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
F1Fo ATP synthase interchanges phosphate transfer energy and proton motive force via a rotary catalysis mechanism. Isolated F1-ATPase catalytic cores can hydrolyze ATP, passing through six intermediate conformational states to generate rotation of their central γ-subunit. Although previous structural studies have contributed greatly to understanding rotary catalysis in the F1-ATPase, the structure of an important conformational state (the binding-dwell) has remained elusive. Here, we exploit temperature and time-resolved cryo-electron microscopy to determine the structure of the binding- and catalytic-dwell states of Bacillus PS3 F1-ATPase. Each state shows three catalytic β-subunits in different conformations, establishing the complete set of six states taken up during the catalytic cycle and providing molecular details for both the ATP binding and hydrolysis strokes. We also identify a potential phosphate-release tunnel that indicates how ADP and phosphate binding are coordinated during synthesis. Overall these findings provide a structural basis for the entire F1-ATPase catalytic cycle.
Collapse
|
41
|
Balaji S. The transferred translocases: An old wine in a new bottle. Biotechnol Appl Biochem 2021; 69:1587-1610. [PMID: 34324237 DOI: 10.1002/bab.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
The role of translocases was underappreciated and was not included as a separate class in the enzyme commission until August 2018. The recent research interests in proteomics of orphan enzymes, ionomics, and metallomics along with high-throughput sequencing technologies generated overwhelming data and revamped this enzyme into a separate class. This offers a great opportunity to understand the role of new or orphan enzymes in general and specifically translocases. The enzymes belonging to translocases regulate/permeate the transfer of ions or molecules across the membranes. These enzyme entries were previously associated with other enzyme classes, which are now transferred to a new enzyme class 7 (EC 7). The entries that are reclassified are important to extend the enzyme list, and it is the need of the hour. Accordingly, there is an upgradation of entries of this class of enzymes in several databases. This review is a concise compilation of translocases with reference to the number of entries currently available in the databases. This review also focuses on function as well as dysfunction of translocases during normal and disordered states, respectively.
Collapse
Affiliation(s)
- S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
42
|
Cruz JA, Avenson TJ. Photosynthesis: a multiscopic view. JOURNAL OF PLANT RESEARCH 2021; 134:665-682. [PMID: 34170422 DOI: 10.1007/s10265-021-01321-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
A recurring analogy for photosynthesis research is the fable of the blind men and the elephant. Photosynthesis has many complex working parts, which has driven the need to study each of them individually, with an inherent understanding that a more complete picture will require systematic integration of these views. However, unlike the blind men, who are limited to using their hands, researchers have developed over the past decades a repertoire of methods for studying these components, many of which capitalize on unique features intrinsic to each. More recent concerns about food security and clean, renewable energy have increased support for applied photosynthesis research, with the idea of either improving photosynthetic performance as a desired trait in select species or using photosynthetic measurements as a phenotyping tool in breeding efforts or for high precision crop management. In this review, we spotlight the migration of approaches for studying photosynthesis from the laboratory into field environments, highlight some recent advances and speculate on areas where further development would be fruitful, with an eye towards how applied photosynthesis research can have impacts at local and global scales.
Collapse
Affiliation(s)
- Jeffrey A Cruz
- Plant Research Laboratories, Michigan State University, 612 Wilson Road, MI, S-206, Lansing, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, Lansing, MI, USA.
| | - Thomas J Avenson
- Department of Plant Sciences, University of Cambridge, CB2 9EW, Cambridge, UK
| |
Collapse
|
43
|
Nakayama Y, Toyabe S. Optimal Rectification without Forward-Current Suppression by Biological Molecular Motor. PHYSICAL REVIEW LETTERS 2021; 126:208101. [PMID: 34110213 DOI: 10.1103/physrevlett.126.208101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
We experimentally show that biological molecular motor F_{1}-ATPase (F_{1}) implements an optimal rectification mechanism. The rectification mechanism hardly suppresses the synthesis of adenosine triphosphate by F_{1}, which is F_{1}'s physiological role, while inhibiting the unfavorable hydrolysis of adenosine triphosphate. This optimal rectification contrasts highly with that of a simple ratchet model, where the inhibition of the backward current is inevitably accompanied by the suppression of the forward current. Our detailed analysis of single-molecule trajectories demonstrates a novel but simple rectification mechanism of F_{1} with parallel landscapes and asymmetric transition rates.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Aoba 6-6-05, Sendai 980-8579, Japan
| | - Shoichi Toyabe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Aoba 6-6-05, Sendai 980-8579, Japan
| |
Collapse
|
44
|
Feng Y, Ovalle M, Seale JSW, Lee CK, Kim DJ, Astumian RD, Stoddart JF. Molecular Pumps and Motors. J Am Chem Soc 2021; 143:5569-5591. [PMID: 33830744 DOI: 10.1021/jacs.0c13388] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pumps and motors are essential components of the world as we know it. From the complex proteins that sustain our cells, to the mechanical marvels that power industries, much we take for granted is only possible because of pumps and motors. Although molecular pumps and motors have supported life for eons, it is only recently that chemists have made progress toward designing and building artificial forms of the microscopic machinery present in nature. The advent of artificial molecular machines has granted scientists an unprecedented level of control over the relative motion of components of molecules through the development of kinetically controlled, away-from-thermodynamic equilibrium chemistry. We outline the history of pumps and motors, focusing specifically on the innovations that enable the design and synthesis of the artificial molecular machines central to this Perspective. A key insight connecting biomolecular and artificial molecular machines is that the physical motions by which these machines carry out their function are unambiguously in mechanical equilibrium at every instant. The operation of molecular motors and pumps can be described by trajectory thermodynamics, a theory based on the work of Onsager, which is grounded on the firm foundation of the principle of microscopic reversibility. Free energy derived from thermodynamically non-equilibrium reactions kinetically favors some reaction pathways over others. By designing molecules with kinetic asymmetry, one can engineer potential landscapes to harness external energy to drive the formation and maintenance of geometries of component parts of molecules away-from-equilibrium, that would be impossible to achieve by standard synthetic approaches.
Collapse
Affiliation(s)
- Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Ovalle
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - James S W Seale
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher K Lee
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dong Jun Kim
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - R Dean Astumian
- Department of Physics, University of Maine, Orono, Maine 04469, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
45
|
Carter CW, Wills PR. Reciprocally-Coupled Gating: Strange Loops in Bioenergetics, Genetics, and Catalysis. Biomolecules 2021; 11:265. [PMID: 33670192 PMCID: PMC7916928 DOI: 10.3390/biom11020265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bioenergetics, genetic coding, and catalysis are all difficult to imagine emerging without pre-existing historical context. That context is often posed as a "Chicken and Egg" problem; its resolution is concisely described by de Grasse Tyson: "The egg was laid by a bird that was not a chicken". The concision and generality of that answer furnish no details-only an appropriate framework from which to examine detailed paradigms that might illuminate paradoxes underlying these three life-defining biomolecular processes. We examine experimental aspects here of five examples that all conform to the same paradigm. In each example, a paradox is resolved by coupling "if, and only if" conditions for reciprocal transitions between levels, such that the consequent of the first test is the antecedent for the second. Each condition thus restricts fluxes through, or "gates" the other. Reciprocally-coupled gating, in which two gated processes constrain one another, is self-referential, hence maps onto the formal structure of "strange loops". That mapping uncovers two different kinds of forces that may help unite the axioms underlying three phenomena that distinguish biology from chemistry. As a physical analog for Gödel's logic, biomolecular strange-loops provide a natural metaphor around which to organize a large body of experimental data, linking biology to information, free energy, and the second law of thermodynamics.
Collapse
Affiliation(s)
- Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| | - Peter R. Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, PB 92019, Auckland 1142, New Zealand;
| |
Collapse
|
46
|
Woo J, Cho H, Seol Y, Kim SH, Park C, Yousefian-Jazi A, Hyeon SJ, Lee J, Ryu H. Power Failure of Mitochondria and Oxidative Stress in Neurodegeneration and Its Computational Models. Antioxidants (Basel) 2021; 10:229. [PMID: 33546471 PMCID: PMC7913624 DOI: 10.3390/antiox10020229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5'-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.
Collapse
Affiliation(s)
- JunHyuk Woo
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 08826, Korea
| | - Hyesun Cho
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - YunHee Seol
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Soon Ho Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Chanhyeok Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA 02118, USA;
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
- Department of Neurology, Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
47
|
Mühleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, Amunts A. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nat Commun 2021; 12:120. [PMID: 33402698 PMCID: PMC7785744 DOI: 10.1038/s41467-020-20381-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial ATP synthase plays a key role in inducing membrane curvature to establish cristae. In Apicomplexa causing diseases such as malaria and toxoplasmosis, an unusual cristae morphology has been observed, but its structural basis is unknown. Here, we report that the apicomplexan ATP synthase assembles into cyclic hexamers, essential to shape their distinct cristae. Cryo-EM was used to determine the structure of the hexamer, which is held together by interactions between parasite-specific subunits in the lumenal region. Overall, we identified 17 apicomplexan-specific subunits, and a minimal and nuclear-encoded subunit-a. The hexamer consists of three dimers with an extensive dimer interface that includes bound cardiolipins and the inhibitor IF1. Cryo-ET and subtomogram averaging revealed that hexamers arrange into ~20-megadalton pentagonal pyramids in the curved apical membrane regions. Knockout of the linker protein ATPTG11 resulted in the loss of pentagonal pyramids with concomitant aberrantly shaped cristae. Together, this demonstrates that the unique macromolecular arrangement is critical for the maintenance of cristae morphology in Apicomplexa.
Collapse
Affiliation(s)
- Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Rasmus Kock Flygaard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Alice Lacombe
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Paula Fernandes
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden.
| |
Collapse
|
48
|
Nesterov SV, Chesnokov YM, Kamyshinsky RA, Yaguzhinsky LS, Vasilov RG. Determining the Structure and Location of the ATP Synthase in the Membranes of Rat’s Heart Mitochondria Using Cryoelectron Tomography. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s1995078020010139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Yuan H, Liu X, Wang L, Ma X. Fundamentals and applications of enzyme powered micro/nano-motors. Bioact Mater 2020; 6:1727-1749. [PMID: 33313451 PMCID: PMC7711193 DOI: 10.1016/j.bioactmat.2020.11.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
Micro/nanomotors (MNMs) are miniaturized machines that can convert many kinds of energy into mechanical motion. Over the past decades, a variety of driving mechanisms have been developed, which have greatly extended the application scenarios of MNMs. Enzymes exist in natural organisms which can convert chemical energy into mechanical force. It is an innovative attempt to utilize enzymes as biocatalyst providing driving force for MNMs. The fuels for enzymatic reactions are biofriendly as compared to traditional counterparts, which makes enzyme-powered micro/nanomotors (EMNMs) of great value in biomedical field for their nature of biocompatibility. Until now, EMNMs with various shapes can be propelled by catalase, urease and many others. Also, they can be endowed with multiple functionalities to accomplish on-demand tasks. Herein, combined with the development process of EMNMs, we are committed to present a comprehensive understanding of EMNMs, including their types, propelling principles, and potential applications. In this review, we will introduce single enzyme that can be used as motor, enzyme powered molecule motors and other micro/nano-architectures. The fundamental mechanism of energy conversion process of EMNMs and crucial factors that affect their movement behavior will be discussed. The current progress of proof-of-concept applications of EMNMs will also be elaborated in detail. At last, we will summarize and prospect the opportunities and challenges that EMNMs will face in their future development. Clear classification and description of different enzyme-powered micro/nanomotors (EMNMs). Discussion of the fundamental mechanism of energy conversion process of EMNMs and their movement influence factors. Introduction of the current progress of proof-of-concept applications of EMNMs.
Collapse
Affiliation(s)
- Hao Yuan
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiaoxia Liu
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Liying Wang
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xing Ma
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China.,Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| |
Collapse
|
50
|
Flygaard RK, Mühleip A, Tobiasson V, Amunts A. Type III ATP synthase is a symmetry-deviated dimer that induces membrane curvature through tetramerization. Nat Commun 2020; 11:5342. [PMID: 33093501 PMCID: PMC7583250 DOI: 10.1038/s41467-020-18993-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial ATP synthases form functional homodimers to induce cristae curvature that is a universal property of mitochondria. To expand on the understanding of this fundamental phenomenon, we characterized the unique type III mitochondrial ATP synthase in its dimeric and tetrameric form. The cryo-EM structure of a ciliate ATP synthase dimer reveals an unusual U-shaped assembly of 81 proteins, including a substoichiometrically bound ATPTT2, 40 lipids, and co-factors NAD and CoQ. A single copy of subunit ATPTT2 functions as a membrane anchor for the dimeric inhibitor IF1. Type III specific linker proteins stably tie the ATP synthase monomers in parallel to each other. The intricate dimer architecture is scaffolded by an extended subunit-a that provides a template for both intra- and inter-dimer interactions. The latter results in the formation of tetramer assemblies, the membrane part of which we determined to 3.1 Å resolution. The structure of the type III ATP synthase tetramer and its associated lipids suggests that it is the intact unit propagating the membrane curvature.
Collapse
Affiliation(s)
- Rasmus Kock Flygaard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Victor Tobiasson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden.
| |
Collapse
|