1
|
Mostafa HIA. Boolean Logic Gate Operation in Bacteriorhodopsin of Purple Membrane Based on a Molten Globule-like State. Chemphyschem 2024; 25:e202400672. [PMID: 39267598 DOI: 10.1002/cphc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Bacteriorhodopsin (bR) of purple membrane (PM) has increasing technical interests, particularly in photonic devices and bioelectronics. The present work has concerned with monitoring the temperature dependence of passive electric responses in-plane and out-of-plane of the membranes. Based on thermal properties observed orthogonally here for PM, a high-temperature intermediate of bR has been suggested to populate at around 60 °C, which may be ascribed to a molten globule-like state. This intermediate has been found to be enclosed between two reversible thermal transitions for PM. Large-scale turnover in the energy of activation, for these two thermal transitions, occurs steeply at such state at 60 °C, above which does bR reverse the sign of dielectric anisotropy (i. e. crossover) provided the operating frequency should be above the crossover frequency, at which the reversal occurs. No such crossover was found to occur below the crossover frequency, even above the crossover temperature (i. e. 60 °C). Likewise, no such crossover was found to occur below the crossover temperature, even above the crossover frequency. Relying on this reasoning, a logic gate operation may be declared implicating bR for bioelectronics and sense technological relevance. In addition, the results specify "dual frequency" as well as "dual temperature" characteristics to bacteriorhodopsin.
Collapse
Affiliation(s)
- Hamdy I A Mostafa
- Department of Biophysics, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
2
|
Mostafa HIA. Uniaxial Symmetry Breaking in Bacteriorhodopsin at the Thermal Phase Transition of Lipids of Purple Membranes. J Phys Chem B 2024; 128:5397-5406. [PMID: 38776161 DOI: 10.1021/acs.jpcb.4c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The article correlates between symmetry breaking and phase transition. An analogy, extending from physics to biology, is known to exist between these two topics. Bacteriorhodopsin (bR) as a paradigm of membrane proteins has been used as a case study in the present work. The bR, as the sole protein embedded in what is called a purple membrane (PM), has attracted widespread interest in bionanotechnological applications. The lipids of PM have a crucial role in maintaining the crystal lattice of bR inside PM. For this reason, the present work has been concerned with elucidating the thermal phase transition properties of the PM lipids in orthogonal directions. The results indicated that the axial symmetry of bR exhibits considerable changes occurring at the thermal phase transition of lipids. These changes are brought by an anomaly observed in the time course of orthogonal electric responses during the application of thermal fields on PM. The observed anomaly may bear on symmetry breaking in bR occurring at the phase transition of lipids based on such analogy found between symmetry breaking and phase transition. Lipid-protein interactions may underlie the broken axial symmetry of bR at such lipid thermal transition of PM. Accordingly, thermally perturbed axial symmetry of bR may be of biological relevance relying on the essence of the crystal lattice of bR. Most importantly, a question has to be raised in the present study: Can bR, as a helical protein with broken axial symmetry, affect the symmetry breaking of helical light? This may be of potential technical applications based on a recent discovery that bR breaks the symmetry of helical light.
Collapse
Affiliation(s)
- Hamdy I A Mostafa
- Department of Biophysics, Faculty of Science, Cairo University, 12613 Giza, Egypt
| |
Collapse
|
3
|
Yao J, Hong H. Steric trapping strategy for studying the folding of helical membrane proteins. Methods 2024; 225:1-12. [PMID: 38428472 PMCID: PMC11107808 DOI: 10.1016/j.ymeth.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
Elucidating the folding energy landscape of membrane proteins is essential to the understanding of the proteins' stabilizing forces, folding mechanisms, biogenesis, and quality control. This is not a trivial task because the reversible control of folding is inherently difficult in a lipid bilayer environment. Recently, novel methods have been developed, each of which has a unique strength in investigating specific aspects of membrane protein folding. Among such methods, steric trapping is a versatile strategy allowing a reversible control of membrane protein folding with minimal perturbation of native protein-water and protein-lipid interactions. In a nutshell, steric trapping exploits the coupling of spontaneous denaturation of a doubly biotinylated protein to the simultaneous binding of bulky monovalent streptavidin molecules. This strategy has been evolved to investigate key elements of membrane protein folding such as thermodynamic stability, spontaneous denaturation rates, conformational features of the denatured states, and cooperativity of stabilizing interactions. In this review, we describe the critical methodological advancement, limitation, and outlook of the steric trapping strategy.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
4
|
Mostafa HIA. Detection of bacteriorhodopsin trimeric rotation at thermal phase transitions of purple membrane in suspension. Biophys Chem 2023; 300:107074. [PMID: 37421867 DOI: 10.1016/j.bpc.2023.107074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Bacteriorhodopsin (bR) of purple membrane (PM) is a retinal protein that forms aggregates in the form of trimers constituting, together with archaeal lipids, the crystalline structure of PM. The rotary motion of bR inside PM may be pertinent in understanding the essence of the crystalline lattice. An attempt has been made to determine the rotation of bR trimers which has been found to be detected solely at thermal phase transitions of PM, namely lipid, crystalline lattice and protein melting phase transitions. The temperature dependences of dielectric versus electronic absorption spectra of bR have been determined. The results suggest that the rotation of bR trimers, together with concomitant bending of PM, are most likely brought by structural changes in bR which might be driven by retinal isomerization and mediated by lipid. The rupturing of the lipid-protein contact might consequently lead to rotation of trimers associated with bending, curling or vesicle formation of PM. So the retinal reorientation may underlie the concomitant rotation of trimers. Most importantly, rotation of trimers might play a role, in terms of the essence of the crystalline lattice, in the functional activity of bR and may serve physiological relevance.
Collapse
Affiliation(s)
- Hamdy I A Mostafa
- Department of Biophysics, Faculty of Science, Cairo University, 11757 Giza, Egypt.
| |
Collapse
|
5
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Corin K, Bowie JU. How physical forces drive the process of helical membrane protein folding. EMBO Rep 2022; 23:e53025. [PMID: 35133709 PMCID: PMC8892262 DOI: 10.15252/embr.202153025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/17/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Protein folding is a fundamental process of life with important implications throughout biology. Indeed, tens of thousands of mutations have been associated with diseases, and most of these mutations are believed to affect protein folding rather than function. Correct folding is also a key element of design. These factors have motivated decades of research on protein folding. Unfortunately, knowledge of membrane protein folding lags that of soluble proteins. This gap is partly caused by the greater technical challenges associated with membrane protein studies, but also because of additional complexities. While soluble proteins fold in a homogenous water environment, membrane proteins fold in a setting that ranges from bulk water to highly charged to apolar. Thus, the forces that drive folding vary in different regions of the protein, and this complexity needs to be incorporated into our understanding of the folding process. Here, we review our understanding of membrane protein folding biophysics. Despite the greater challenge, better model systems and new experimental techniques are starting to unravel the forces and pathways in membrane protein folding.
Collapse
Affiliation(s)
- Karolina Corin
- Department of Chemistry and BiochemistryMolecular Biology InstituteUCLA‐DOE InstituteUniversity of CaliforniaLos AngelesCAUSA
| | - James U Bowie
- Department of Chemistry and BiochemistryMolecular Biology InstituteUCLA‐DOE InstituteUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
7
|
Non-specific porins of Gram-negative bacteria as proteins containing intrinsically disordered regions with amyloidogenic potential. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021. [PMID: 34656335 DOI: 10.1016/bs.pmbts.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Features of the structure and functional activity of bacterial outer membrane porins, coupled with their dynamic "behavior," suggests that intrinsically disordered regions (IDPRs) are contained in their structure. Using bioinformatic analysis, the quantitative content of amyloidogenic regions in the amino acid sequence of non-specific porins inhabiting various natural niches was determined: from terrestrial bacteria of the genus Yersinia (OmpF and OmpC proteins of Y. pseudotuberculosis and Y. ruckeri) and from the marine bacterium Marinomonas primoryensis (MpOmp). It was found that OmpF and OmpC porins can be classified as moderately disordered proteins, while MpOmp can be classified as highly disordered protein. Mapping of IDPRs, performed using 3D structures of monomers of the proteins, showed that the regions of increased conformational plasticity fall on the regions, the functional importance of which has been reliably confirmed as a result of numerous experimental studies. The revealed correlation made it possible to explain the differences in the physicochemical characteristics and properties of not only porins from terrestrial and marine bacteria, but also non-specific porins of different types, OmpF and OmpC proteins. First of all, this concerns the flexible outer loops that form the pore vestibule, as well as regions of the barrel with an increased "ability" for aggregation, the so-called "hot spots" of aggregation. The abnormally high content of IDPRs in the MpOmp structure made it possible to suggest that the high adaptive potential of bacteria may correlate with an increase in the number of IDPRs and/or regions with increased conformational variability.
Collapse
|
8
|
Cell surface thermal proteome profiling tracks perturbations and drug targets on the plasma membrane. Nat Methods 2021; 18:84-91. [PMID: 33398190 DOI: 10.1038/s41592-020-01022-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023]
Abstract
Numerous drugs and endogenous ligands bind to cell surface receptors leading to modulation of downstream signaling cascades and frequently to adaptation of the plasma membrane proteome. In-depth analysis of dynamic processes at the cell surface is challenging due to biochemical properties and low abundances of plasma membrane proteins. Here we introduce cell surface thermal proteome profiling for the comprehensive characterization of ligand-induced changes in protein abundances and thermal stabilities at the plasma membrane. We demonstrate drug binding to extracellular receptors and transporters, discover stimulation-dependent remodeling of T cell receptor complexes and describe a competition-based approach to measure target engagement of G-protein-coupled receptor antagonists. Remodeling of the plasma membrane proteome in response to treatment with the TGFB receptor inhibitor SB431542 leads to partial internalization of the monocarboxylate transporters MCT1/3 explaining the antimetastatic effects of the drug.
Collapse
|
9
|
Tu YM, Song W, Ren T, Shen YX, Chowdhury R, Rajapaksha P, Culp TE, Samineni L, Lang C, Thokkadam A, Carson D, Dai Y, Mukthar A, Zhang M, Parshin A, Sloand JN, Medina SH, Grzelakowski M, Bhattacharya D, Phillip WA, Gomez ED, Hickey RJ, Wei Y, Kumar M. Rapid fabrication of precise high-throughput filters from membrane protein nanosheets. NATURE MATERIALS 2020; 19:347-354. [PMID: 31988513 DOI: 10.1038/s41563-019-0577-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/02/2019] [Indexed: 05/22/2023]
Abstract
Biological membranes are ideal for separations as they provide high permeability while maintaining high solute selectivity due to the presence of specialized membrane protein (MP) channels. However, successful integration of MPs into manufactured membranes has remained a significant challenge. Here, we demonstrate a two-hour organic solvent method to develop 2D crystals and nanosheets of highly packed pore-forming MPs in block copolymers (BCPs). We then integrate these hybrid materials into scalable MP-BCP biomimetic membranes. These MP-BCP nanosheet membranes maintain the molecular selectivity of the three types of β-barrel MP channels used, with pore sizes of 0.8 nm, 1.3 nm, and 1.5 nm. These biomimetic membranes demonstrate water permeability that is 20-1,000 times greater than that of commercial membranes and 1.5-45 times greater than that of the latest research membranes with comparable molecular exclusion ratings. This approach could provide high performance alternatives in the challenging sub-nanometre to few-nanometre size range.
Collapse
Affiliation(s)
- Yu-Ming Tu
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Woochul Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Tingwei Ren
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Yue-Xiao Shen
- Department of Civil, Environmental, & Construction Engineering, Texas Tech University, Lubbock, TX, USA
| | - Ratul Chowdhury
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | | | - Tyler E Culp
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Laxmicharan Samineni
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chao Lang
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Alina Thokkadam
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Drew Carson
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Yuxuan Dai
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Arwa Mukthar
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Miaoci Zhang
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | | | - Janna N Sloand
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Scott H Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | | | - Dibakar Bhattacharya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - William A Phillip
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Enrique D Gomez
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Robert J Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Yinai Wei
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Manish Kumar
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA.
- Materials Research Institute, Pennsylvania State University, University Park, PA, USA.
- Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA, USA.
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Wei CC, Fabry E, Hay E, Lloyd L, Kaufman N, Yang YP, Stuehr DJ. Metal binding and conformational studies of the calcium binding domain of NADPH oxidase 5 reveal its similarity and difference to calmodulin. J Biomol Struct Dyn 2019; 38:2352-2368. [DOI: 10.1080/07391102.2019.1633409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chin-Chuan Wei
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Emily Fabry
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Evan Hay
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Laura Lloyd
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Nichole Kaufman
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Ya-Ping Yang
- Department of Pathobiology, the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Dennis J. Stuehr
- Department of Pathobiology, the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
11
|
|
12
|
Thangappan J, Madan B, Wu S, Lee SG. Measuring the Conformational Distance of GPCR-related Proteins Using a Joint-based Descriptor. Sci Rep 2017; 7:15205. [PMID: 29123217 PMCID: PMC5680341 DOI: 10.1038/s41598-017-15513-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/27/2017] [Indexed: 01/19/2023] Open
Abstract
Joint-based descriptor is a new level of macroscopic descriptor for protein structure using joints of secondary structures as a basic element. Here, we propose how the joint-based descriptor can be applied to examine the conformational distances or differences of transmembrane (TM) proteins. Specifically, we performed three independent studies that measured the global and conformational distances between GPCR A family and its related structures. First, the conformational distances of GPCR A family and other 7TM proteins were evaluated. This provided the information on the distant and close families or superfamilies to GPCR A family and permitted the identification of conserved local conformations. Second, computational models of GPCR A family proteins were validated, which enabled us to estimate how much they reproduce the native conformation of GPCR A proteins at global and local conformational level. Finally, the conformational distances between active and inactive states of GPCR proteins were estimated, which identified the difference of local conformation. The proposed macroscopic joint-based approach is expected to allow us to investigate structural features, evolutionary relationships, computational models and conformational changes of TM proteins in a more simplistic manner.
Collapse
Affiliation(s)
- Jayaraman Thangappan
- Department of Chemical Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| | - Bharat Madan
- Department of Chemical Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| | - Sangwook Wu
- Department of Physics, Pukyong National University, Busan, 608-737, Republic of Korea.
| | - Sun-Gu Lee
- Department of Chemical Engineering, Pusan National University, Busan, 609-735, Republic of Korea.
| |
Collapse
|
13
|
Sosa-Pagán JO, Iversen ES, Grandl J. TRPV1 temperature activation is specifically sensitive to strong decreases in amino acid hydrophobicity. Sci Rep 2017; 7:549. [PMID: 28373693 PMCID: PMC5428820 DOI: 10.1038/s41598-017-00636-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 03/07/2017] [Indexed: 12/15/2022] Open
Abstract
Several transient receptor potential (TRP) ion channels can be directly activated by hot or cold temperature with high sensitivity. However, the structures and molecular mechanism giving rise to their high temperature sensitivity are not fully understood. One hypothesized mechanism assumes that temperature activation is driven by the exposure of hydrophobic residues to solvent. This mechanism further predicts that residues are exposed to solvent in a coordinated fashion, but without necessarily being located in close proximity to each other. However, there is little experimental evidence supporting this mechanism in TRP channels. Here, we combined high-throughput mutagenesis, functional screening, and deep sequencing to identify mutations from a total of ~7,300 TRPV1 random mutant clones. We found that strong decreases in hydrophobicity of amino acids are better tolerated for activation by capsaicin than for activation by hot temperature, suggesting that strong hydrophobicity might be specifically required for temperature activation. Altogether, our work provides initial correlative support for a previously hypothesized temperature mechanism in TRP ion channels.
Collapse
Affiliation(s)
- Jason O Sosa-Pagán
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC 27710, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
14
|
Yang Z, Zhou Q, Mok L, Singh A, Swartz DJ, Urbatsch IL, Brouillette CG. Interactions and cooperativity between P-glycoprotein structural domains determined by thermal unfolding provides insights into its solution structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:48-60. [PMID: 27783926 DOI: 10.1016/j.bbamem.2016.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/19/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022]
Abstract
Structural changes in mouse P-glycoprotein (Pgp) induced by thermal unfolding were studied by differential scanning calorimetry (DSC), circular dichroism and fluorescence spectroscopy to gain insight into the solution conformation(s) of this ABC transporter that may not be apparent from current crystal structures. DSC of reconstituted Pgp showed two thermal unfolding transitions in the absence of MgATP, suggesting that each transition involved the cooperative unfolding of two or more interacting structural domains. A low calorimetric unfolding enthalpy and minimal structural changes were observed, which are hallmarks of the thermal unfolding of α-helical membrane proteins, because generally only the extramembranous regions undergo significant unfolding. Nucleotide binding increased the unfolding temperature of both transitions to the same extent, suggesting that one nucleotide binding domain (NBD) unfolds with each transition. Combined with the results from the two isolated NBDs, we propose that each DSC transition represents the cooperative unfolding of one NBD and the two contacting intracellular loops. Further, the presence of two transitions in both apo and MgATP bound wild-type Pgp suggests the NBD-dimeric conformation is transient, and that Pgp resides predominantly in the crystallographically observed inward-facing conformation with NBDs separated, even under conditions supporting continuous MgATP hydrolysis. In contrast, DSC of the vanadate-trapped MgADP·Pgp complex and the MgATP-bound catalytically inactive mutant, E552A/E1197A, show an additional transition at much higher temperature, corresponding to the unfolding of the nucleotide-trapped NBD-dimeric outward-facing conformation. The collective results indicate a strong preference for an NBD dissociated, inward-facing conformation of Pgp.
Collapse
Affiliation(s)
- Zhengrong Yang
- Center for Structural Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qingxian Zhou
- Center for Structural Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leo Mok
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Anukriti Singh
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Douglas J Swartz
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Christie G Brouillette
- Center for Structural Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
15
|
Wang Y, Wang R, Jin F, Liu Y, Yu J, Fu X, Chang Z. A Supercomplex Spanning the Inner and Outer Membranes Mediates the Biogenesis of β-Barrel Outer Membrane Proteins in Bacteria. J Biol Chem 2016; 291:16720-9. [PMID: 27298319 DOI: 10.1074/jbc.m115.710715] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 11/06/2022] Open
Abstract
β-barrel outer membrane proteins (OMPs) are ubiquitously present in Gram-negative bacteria, mitochondria and chloroplasts, and function in a variety of biological processes. The mechanism by which the hydrophobic nascent β-barrel OMPs are transported through the hydrophilic periplasmic space in bacterial cells remains elusive. Here, mainly via unnatural amino acid-mediated in vivo photo-crosslinking studies, we revealed that the primary periplasmic chaperone SurA interacts with nascent β-barrel OMPs largely via its N-domain but with β-barrel assembly machine protein BamA mainly via its satellite P2 domain, and that the nascent β-barrel OMPs interact with SurA via their N- and C-terminal regions. Additionally, via dual in vivo photo-crosslinking, we demonstrated the formation of a ternary complex involving β-barrel OMP, SurA, and BamA in cells. More importantly, we found that a supercomplex spanning the inner and outer membranes and involving the BamA, BamB, SurA, PpiD, SecY, SecE, and SecA proteins appears to exist in living cells, as revealed by a combined analyses of sucrose-gradient ultra-centrifugation, Blue native PAGE and mass spectrometry. We propose that this supercomplex integrates the translocation, transportation, and membrane insertion events for β-barrel OMP biogenesis.
Collapse
Affiliation(s)
- Yan Wang
- From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences
| | - Rui Wang
- From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences
| | - Feng Jin
- From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yang Liu
- From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences
| | - Jiayu Yu
- From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences
| | - Xinmiao Fu
- From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, and
| | - Zengyi Chang
- From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, and
| |
Collapse
|
16
|
Musatov A, Varhač R, Hosler JP, Sedlák E. Delipidation of cytochrome c oxidase from Rhodobacter sphaeroides destabilizes its quaternary structure. Biochimie 2016; 125:23-31. [PMID: 26923069 DOI: 10.1016/j.biochi.2016.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/23/2016] [Indexed: 11/28/2022]
Abstract
Delipidation of detergent-solubilized cytochrome c oxidase isolated from Rhodobacter sphaeroides (Rbs-CcO) has no apparent structural and/or functional effect on the protein, however affects its resistance against thermal or chemical denaturation. Phospholipase A2 (PLA2) hydrolysis of phospholipids that are co-purified with the enzyme removes all but two tightly bound phosphatidylethanolamines. Replacement of the removed phospholipids with nonionic detergent decreases both thermal stability of the enzyme and its resilience against the effect of chemical denaturants such as urea. In contrast to nondelipidated Rbs-CcO, the enzymatic activity of PLA2-treated Rbs-CcO is substantially diminished after exposure to high (>4 M) urea concentration at room temperature without an alteration of its secondary structure. Absorbance spectroscopy and sedimentation velocity experiments revealed a strong correlation between intact tertiary structure of heme regions and quaternary structure, respectively, and the enzymatic activity of the protein. We concluded that phospholipid environment of Rbs-CcO has the protective role for stability of its tertiary and quaternary structures.
Collapse
Affiliation(s)
- Andrej Musatov
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia.
| | - Rastislav Varhač
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Department of Biochemistry, P.J. Šafárik University, Moyzesova 11, 04001 Košice, Slovakia.
| | - Jonathan P Hosler
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Erik Sedlák
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Department of Biochemistry, P.J. Šafárik University, Moyzesova 11, 04001 Košice, Slovakia; Centre for Interdisciplinary Biosciences, P.J. Šafárik University, Jesenná 5, 04001 Košice, Slovakia.
| |
Collapse
|
17
|
Hong H. Role of Lipids in Folding, Misfolding and Function of Integral Membrane Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:1-31. [DOI: 10.1007/978-3-319-17344-3_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
McMorran LM, Brockwell DJ, Radford SE. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch Biochem Biophys 2014; 564:265-80. [PMID: 24613287 PMCID: PMC4262575 DOI: 10.1016/j.abb.2014.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 11/17/2022]
Abstract
Research into the mechanisms by which proteins fold into their native structures has been on-going since the work of Anfinsen in the 1960s. Since that time, the folding mechanisms of small, water-soluble proteins have been well characterised. By contrast, progress in understanding the biogenesis and folding mechanisms of integral membrane proteins has lagged significantly because of the need to create a membrane mimetic environment for folding studies in vitro and the difficulties in finding suitable conditions in which reversible folding can be achieved. Improved knowledge of the factors that promote membrane protein folding and disfavour aggregation now allows studies of folding into lipid bilayers in vitro to be performed. Consequently, mechanistic details and structural information about membrane protein folding are now emerging at an ever increasing pace. Using the panoply of methods developed for studies of the folding of water-soluble proteins. This review summarises current knowledge of the mechanisms of outer membrane protein biogenesis and folding into lipid bilayers in vivo and in vitro and discusses the experimental techniques utilised to gain this information. The emerging knowledge is beginning to allow comparisons to be made between the folding of membrane proteins with current understanding of the mechanisms of folding of water-soluble proteins.
Collapse
Affiliation(s)
- Lindsay M McMorran
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
19
|
Toward understanding driving forces in membrane protein folding. Arch Biochem Biophys 2014; 564:297-313. [DOI: 10.1016/j.abb.2014.07.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
|
20
|
Differential contribution of tryptophans to the folding and stability of the attachment invasion locus transmembrane β-barrel from Yersinia pestis. Sci Rep 2014; 4:6508. [PMID: 25266561 PMCID: PMC4179465 DOI: 10.1038/srep06508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/15/2014] [Indexed: 11/08/2022] Open
Abstract
Attachment invasion locus (Ail) protein of Yersinia pestis is a crucial outer membrane protein for host invasion and determines bacterial survival within the host. Despite its importance in pathogenicity, surprisingly little is known on Ail biophysical properties. We investigate the contribution of micelle concentrations and interface tryptophans on the Ail β-barrel refolding and unfolding processes. Our results reveal that barrel folding is surprisingly independent of micelle amounts, but proceeds through an on-pathway intermediate that requires the interface W42 for cooperative barrel refolding. On the contrary, the unfolding event is strongly controlled by absolute micelle concentrations. We find that upon Trp → Phe substitution, protein stabilities follow the order W149F>WT>W42F for the refolding, and W42F>WT>W149F for unfolding. W42 confers cooperativity in barrel folding, and W149 clamps the post-folded barrel structure to its micelle environment. Our analyses reveal, for the first time, that interface tryptophan mutation can indeed render greater β-barrel stability. Furthermore, hysteresis in Ail stems from differential barrel-detergent interaction strengths in a micelle concentration-dependent manner, largely mediated by W149. The kinetically stabilized Ail β-barrel has strategically positioned tryptophans to balance efficient refolding and subsequent β-barrel stability, and may be evolutionarily chosen for optimal functioning of Ail during Yersinia pathogenesis.
Collapse
|
21
|
Ye C, Wang Z, Lu W, Wei Y. Unfolding study of a trimeric membrane protein AcrB. Protein Sci 2014; 23:897-905. [PMID: 24715637 DOI: 10.1002/pro.2471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 01/18/2023]
Abstract
The folding of a multi-domain trimeric α-helical membrane protein, Escherichia coli inner membrane protein AcrB, was investigated. AcrB contains both a transmembrane domain and a large periplasmic domain. Protein unfolding in sodium dodecyl sulfate (SDS) and urea was monitored using the intrinsic fluorescence and circular dichroism spectroscopy. The SDS denaturation curve displayed a sigmoidal profile, which could be fitted with a two-state unfolding model. To investigate the unfolding of separate domains, a triple mutant was created, in which all three Trp residues in the transmembrane domain were replaced with Phe. The SDS unfolding profile of the mutant was comparable to that of the wild type AcrB, suggesting that the observed signal change was largely originated from the unfolding of the soluble domain. Strengthening of trimer association through the introduction of an inter-subunit disulfide bond had little effect on the unfolding profile, suggesting that trimer dissociation was not the rate-limiting step in unfolding monitored by fluorescence emission. Under our experimental condition, AcrB unfolding was not reversible. Furthermore, we experimented with the refolding of a monomeric mutant, AcrBΔloop , from the SDS unfolded state. The CD spectrum of the refolded AcrBΔloop superimposed well onto the spectra of the original folded protein, while the fluorescence spectrum was not fully recovered. In summary, our results suggested that the unfolding of the trimeric AcrB started with a local structural rearrangement. While the refolding of secondary structure in individual monomers could be achieved, the re-association of the trimer might be the limiting factor to obtain folded wild-type AcrB.
Collapse
Affiliation(s)
- Cui Ye
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, 40506
| | | | | | | |
Collapse
|
22
|
Roman EA, González Flecha FL. Kinetics and thermodynamics of membrane protein folding. Biomolecules 2014; 4:354-73. [PMID: 24970219 PMCID: PMC4030980 DOI: 10.3390/biom4010354] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/19/2014] [Accepted: 02/23/2014] [Indexed: 02/06/2023] Open
Abstract
Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.
Collapse
Affiliation(s)
- Ernesto A Roman
- Laboratory of Molecular Biophysics, Institute of Biochemistry and Biophysical Chemistry, University of Buenos Aires-CONICET, Buenos Aires 1113, Argentina.
| | - F Luis González Flecha
- Laboratory of Molecular Biophysics, Institute of Biochemistry and Biophysical Chemistry, University of Buenos Aires-CONICET, Buenos Aires 1113, Argentina.
| |
Collapse
|
23
|
Maurya SR, Mahalakshmi R. Influence of protein-micelle ratios and cysteine residues on the kinetic stability and unfolding rates of human mitochondrial VDAC-2. PLoS One 2014; 9:e87701. [PMID: 24494036 PMCID: PMC3907894 DOI: 10.1371/journal.pone.0087701] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/01/2014] [Indexed: 12/14/2022] Open
Abstract
Delineating the kinetic and thermodynamic factors which contribute to the stability of transmembrane β-barrels is critical to gain an in-depth understanding of membrane protein behavior. Human mitochondrial voltage-dependent anion channel isoform 2 (hVDAC-2), one of the key anti-apoptotic eukaryotic β-barrel proteins, is of paramount importance, owing to its indispensable role in cell survival. We demonstrate here that the stability of hVDAC-2 bears a strong kinetic contribution that is dependent on the absolute micellar concentration used for barrel folding. The refolding efficiency and ensuing stability is sensitive to the lipid-to-protein (LPR) ratio, and displays a non-linear relationship, with both low and high micellar amounts being detrimental to hVDAC-2 structure. Unfolding and aggregation process are sequential events and show strong temperature dependence. We demonstrate that an optimal lipid-to-protein ratio of 2600∶1 – 13000∶1 offers the highest protection against thermal denaturation. Activation energies derived only for lower LPRs are ∼17 kcal mol−1 for full-length hVDAC-2 and ∼23 kcal mol−1 for the Cys-less mutant, suggesting that the nine cysteine residues of hVDAC-2 impart additional malleability to the barrel scaffold. Our studies reveal that cysteine residues play a key role in the kinetic stability of the protein, determine barrel rigidity and thereby give rise to strong micellar association of hVDAC-2. Non-linearity of the Arrhenius plot at high LPRs coupled with observation of protein aggregation upon thermal denaturation indicates that contributions from both kinetic and thermodynamic components stabilize the 19-stranded β-barrel. Lipid-protein interaction and the linked kinetic contribution to free energy of the folded protein are together expected to play a key role in hVDAC-2 recycling and the functional switch at the onset of apoptosis.
Collapse
Affiliation(s)
- Svetlana Rajkumar Maurya
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
- * E-mail:
| |
Collapse
|
24
|
Methionine mutations of outer membrane protein X influence structural stability and beta-barrel unfolding. PLoS One 2013; 8:e79351. [PMID: 24265768 PMCID: PMC3827151 DOI: 10.1371/journal.pone.0079351] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/26/2013] [Indexed: 12/24/2022] Open
Abstract
We report the biochemical and biophysical characterization of outer membrane protein X (OmpX), an eight-stranded transmembrane β-barrel from E. coli, and compare the barrel behavior with a mutant devoid of methionine residues. Transmembrane outer membrane proteins of bacterial origin are known to display high tolerance to sequence rearrangements and mutations. Our studies with the triple mutant of OmpX that is devoid of all internal methionine residues (M18L; M21L; M118L) indicate that Met replacement has no influence on the refolding efficiency and structural characteristics of the protein. Surprisingly, the conserved substitution of Met→Leu leads to barrel destabilization and causes a lowering of the unfolding free energy by a factor of ∼8.5 kJ/mol, despite the mutations occurring at the loop regions. We report that the barrel destabilization is accompanied by a loss in cooperativity of unfolding in the presence of chemical denaturants. Furthermore, we are able to detect an unfolding intermediate in the Met-less barrel, whereas the parent protein exhibits a classic two-state unfolding. Thermal denaturation measurements also suggest a greater susceptibility of the OmpX barrel to heat, in the Met-less construct. Our studies reveal that even subtle variations in the extra-membrane region of rigid barrel structures such as OmpX, may bear severe implications on barrel stability. We propose that methionines contribute to efficient barrel structuring and protein-lipid interactions, and are therefore important elements of OmpX stability.
Collapse
|
25
|
Tol MB, Deluz C, Hassaine G, Graff A, Stahlberg H, Vogel H. Thermal unfolding of a mammalian pentameric ligand-gated ion channel proceeds at consecutive, distinct steps. J Biol Chem 2012; 288:5756-69. [PMID: 23275379 DOI: 10.1074/jbc.m112.422287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pentameric ligand-gated ion channels (LGICs) play an important role in fast synaptic signal transduction. Binding of agonists to the β-sheet-structured extracellular domain opens an ion channel in the transmembrane α-helical region of the LGIC. How the structurally distinct and distant domains are functionally coupled for such central transmembrane signaling processes remains an open question. To obtain detailed information about the stability of and the coupling between these different functional domains, we analyzed the thermal unfolding of a homopentameric LGIC, the 5-hydroxytryptamine receptor (ligand binding, secondary structure, accessibility of Trp and Cys residues, and aggregation), in plasma membranes as well as during detergent extraction, purification, and reconstitution into artificial lipid bilayers. We found a large loss in thermostability correlating with the loss of the lipid bilayer during membrane solubilization and purification. Thermal unfolding of the 5-hydroxytryptamine receptor occurred in consecutive steps at distinct protein locations. A loss of ligand binding was detected first, followed by formation of different transient low oligomeric states of receptor pentamers, followed by partial unfolding of helical parts of the protein, which finally lead to the formation receptor aggregates. Structural destabilization of the receptor in detergents could be partially reversed by reconstituting the receptor into lipid bilayers. Our results are important because they quantify the stability of LGICs during detergent extraction and purification and can be used to create stabilized receptor proteins for structural and functional studies.
Collapse
Affiliation(s)
- Menno B Tol
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Membrane proteins (MPs) mediate important physiological processes for the cell via extracellular and intracellular interactions. To better understand the biochemical and structural bases of these interactions, well-characterized preparations of purified MPs are required. This introduction reviews common problems encountered in MP preparation.
Collapse
Affiliation(s)
- Mark L Chiu
- Biologics Research, Biotechnology Center of Excellence, Janssen Research & Development, Radnor, Pennsylvania, USA
| |
Collapse
|
27
|
Naveed H, Jimenez-Morales D, Tian J, Pasupuleti V, Kenney LJ, Liang J. Engineered oligomerization state of OmpF protein through computational design decouples oligomer dissociation from unfolding. J Mol Biol 2012; 419:89-101. [PMID: 22391420 DOI: 10.1016/j.jmb.2012.02.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 12/14/2022]
Abstract
Biogenesis of β-barrel membrane proteins is a complex, multistep, and as yet incompletely characterized process. The bacterial porin family is perhaps the best-studied protein family among β-barrel membrane proteins that allows diffusion of small solutes across the bacterial outer membrane. In this study, we have identified residues that contribute significantly to the protein-protein interaction (PPI) interface between the chains of outer membrane protein F (OmpF), a trimeric porin, using an empirical energy function in conjunction with an evolutionary analysis. By replacing these residues through site-directed mutagenesis either with energetically favorable residues or substitutions that do not occur in natural bacterial outer membrane proteins, we succeeded in engineering OmpF mutants with dimeric and monomeric oligomerization states instead of a trimeric oligomerization state. Moreover, our results suggest that the oligomerization of OmpF proceeds through a series of interactions involving two distinct regions of the extensive PPI interface: two monomers interact to form a dimer through the PPI interface near G19. This dimer then interacts with another monomer through the PPI interface near G135 to form a trimer. We have found that perturbing the PPI interface near G19 results in the formation of the monomeric OmpF only. Thermal denaturation of the designed dimeric OmpF mutant suggests that oligomer dissociation can be separated from the process of protein unfolding. Furthermore, the conserved site near G57 and G59 is important for the PPI interface and might provide the essential scaffold for PPIs.
Collapse
Affiliation(s)
- Hammad Naveed
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | |
Collapse
|
28
|
Lu W, Zhong M, Wei Y. Folding of AcrB Subunit Precedes Trimerization. J Mol Biol 2011; 411:264-74. [DOI: 10.1016/j.jmb.2011.05.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
|
29
|
Gessmann D, Mager F, Naveed H, Arnold T, Weirich S, Linke D, Liang J, Nussberger S. Improving the resistance of a eukaryotic β-barrel protein to thermal and chemical perturbations. J Mol Biol 2011; 413:150-61. [PMID: 21835183 DOI: 10.1016/j.jmb.2011.07.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 10/17/2022]
Abstract
β-Barrel membrane proteins have regular structures with extensive hydrogen-bond networks between their transmembrane (TM) β-strands, which stabilize their protein fold. Nevertheless, weakly stable TM regions, which are important for the protein function and interaction with other proteins, exist. Here, we report on the apparent stability of human Tom40A, a member of the "mitochondrial porin family" and main constituent of the mitochondrial protein-conducting channel TOM (translocase of the outer membrane). Using a physical interaction model, TmSIP, for β-barrel membrane proteins, we have identified three unfavorable β-strands in the TM domain of the protein. Substitution of key residues inside these strands with hydrophobic amino acids results in a decreased sensitivity of the protein to chemical and/or thermal denaturation. The apparent melting temperature observed when denatured at a rate of 1 °C per minute is shifted from 73 to 84 °C. Moreover, the sensitivity of the protein to denaturant agents is significantly lowered. Further, we find a reduced tendency for the mutated protein to form dimers. We propose that the identified weakly stable β-strands 1, 2 and 9 of human Tom40A play an important role in quaternary protein-protein interactions within the mammalian TOM machinery. Our results show that the use of empirical energy functions to model the apparent stability of β-barrel membrane proteins may be a useful tool in the field of nanopore bioengineering.
Collapse
Affiliation(s)
- Dennis Gessmann
- Biophysics Department, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Chiu MH, Prenner EJ. Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci 2011; 3:39-59. [PMID: 21430954 PMCID: PMC3053520 DOI: 10.4103/0975-7406.76463] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/05/2010] [Accepted: 10/19/2010] [Indexed: 11/04/2022] Open
Abstract
Differential Scanning Calorimetry (DSC) is a highly sensitive technique to study the thermotropic properties of many different biological macromolecules and extracts. Since its early development, DSC has been applied to the pharmaceutical field with excipient studies and DNA drugs. In recent times, more attention has been applied to lipid-based drug delivery systems and drug interactions with biomimetic membranes. Highly reproducible phase transitions have been used to determine values, such as, the type of binding interaction, purity, stability, and release from a drug delivery mechanism. This review focuses on the use of DSC for biochemical and pharmaceutical applications.
Collapse
Affiliation(s)
- Michael H Chiu
- Department of Biological Sciences, University of Calgary, T2N 1N4 Calgary, AB, Canada
| | | |
Collapse
|
31
|
Odahara T, Ishii N, Ooishi A, Honda S, Uedaira H, Hara M, Miyake J. Thermostability of Rhodopseudomonas viridis and Rhodospirillum rubrum chromatophores reflecting physiological conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1645-53. [DOI: 10.1016/j.bbamem.2011.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/24/2011] [Accepted: 02/15/2011] [Indexed: 11/29/2022]
|
32
|
Opposing structural changes in two symmetrical polypeptides bring about opposing changes to the thermal stability of a complex integral membrane protein. Arch Biochem Biophys 2011; 505:160-70. [DOI: 10.1016/j.abb.2010.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 11/23/2022]
|
33
|
O'Malley MA, Naranjo AN, Lazarova T, Robinson AS. Analysis of adenosine A₂a receptor stability: effects of ligands and disulfide bonds. Biochemistry 2010; 49:9181-9. [PMID: 20853839 DOI: 10.1021/bi101155r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of integral membrane proteins present in all eukaryotic cells, yet relatively little information about their structure, folding, and stability has been published. In this work, we describe several approaches to characterizing the conformational stability of the human adenosine A(2)a receptor (hA(2)aR). Thermal denaturation and chemical denaturation were not reversible, yet clear differences in the unfolding behavior were observed upon ligand binding via circular dichroism and fluorescence spectrometry. We found that the stability of hA(2)aR was increased upon incubation with the agonist N(6)-cyclohexyladenosine or the antagonist theophylline. When extracellular disulfide bonds were reduced with a chemical reducing agent, the ligand binding activity decreased by ~40%, but reduction of these bonds did not compromise the unfolding transition observed via urea denaturation. Overall, these approaches offer a general strategy for characterizing the effect of surfactant and ligand effects on the stability of GPCRs.
Collapse
Affiliation(s)
- Michelle A O'Malley
- Department of Chemical Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
34
|
Korkmaz-Ozkan F, Köster S, Kühlbrandt W, Mäntele W, Yildiz O. Correlation between the OmpG secondary structure and its pH-dependent alterations monitored by FTIR. J Mol Biol 2010; 401:56-67. [PMID: 20561532 DOI: 10.1016/j.jmb.2010.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/01/2010] [Accepted: 06/08/2010] [Indexed: 11/16/2022]
Abstract
The channel activity of the outer-membrane protein G (OmpG) from Escherichia coli is pH-dependent. To investigate the role of the histidine pair His231/His261 in triggering channel opening and closing, we mutated both histidines to alanines and cysteines. Fourier transform infrared spectra revealed that the OmpG mutants stay-independent of pH-in an open conformation. Temperature ramp experiments indicate that the mutants are as stable as the open state of wild-type OmpG. The X-ray structure of the alanine-substituted OmpG mutant obtained at pH 6.5 confirms the constitutively open conformation. Compared to previous structures of the wild-type protein in the open and closed conformation, the mutant structure shows a difference in the extracellular loop L6 connecting beta-strands S12 and S13. A deletion of amino acids 220-228, which are thought to block the channel at low pH in wild-type OmpG, indicates conformational changes, which might be triggered by His231/His261.
Collapse
Affiliation(s)
- Filiz Korkmaz-Ozkan
- Institute of Biophysics, Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
35
|
Sammet SG, Bastolla U, Porto M. Comparison of translation loads for standard and alternative genetic codes. BMC Evol Biol 2010; 10:178. [PMID: 20546599 PMCID: PMC2909233 DOI: 10.1186/1471-2148-10-178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 06/14/2010] [Indexed: 11/25/2022] Open
Abstract
Background The (almost) universality of the genetic code is one of the most intriguing properties of cellular life. Nevertheless, several variants of the standard genetic code have been observed, which differ in one or several of 64 codon assignments and occur mainly in mitochondrial genomes and in nuclear genomes of some bacterial and eukaryotic parasites. These variants are usually considered to be the result of non-adaptive evolution. It has been shown that the standard genetic code is preferential to randomly assembled codes for its ability to reduce the effects of errors in protein translation. Results Using a genotype-to-phenotype mapping based on a quantitative model of protein folding, we compare the standard genetic code to seven of its naturally occurring variants with respect to the fitness loss associated to mistranslation and mutation. These fitness losses are computed through computer simulations of protein evolution with mutations that are either neutral or lethal, and different mutation biases, which influence the balance between unfolding and misfolding stability. We show that the alternative codes may produce significantly different mutation and translation loads, particularly for genomes evolving with a rather large mutation bias. Most of the alternative genetic codes are found to be disadvantageous to the standard code, in agreement with the view that the change of genetic code is a mutationally driven event. Nevertheless, one of the studied alternative genetic codes is predicted to be preferable to the standard code for a broad range of mutation biases. Conclusions Our results show that, with one exception, the standard genetic code is generally better able to reduce the translation load than the naturally occurring variants studied here. Besides this exception, some of the other alternative genetic codes are predicted to be better adapted for extreme mutation biases. Hence, the fixation of alternative genetic codes might be a neutral or nearly-neutral event in the majority of the cases, but adaptation cannot be excluded for some of the studied cases.
Collapse
Affiliation(s)
- Stefanie Gabriele Sammet
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstr, 8, 64289 Darmstadt, Germany
| | | | | |
Collapse
|
36
|
Sedlák E, Robinson NC. Sequential dissociation of subunits from bovine heart cytochrome C oxidase by urea. Biochemistry 2009; 48:8143-50. [PMID: 19663452 PMCID: PMC2745730 DOI: 10.1021/bi900773r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The quaternary stability of purified, detergent-solubilized, cytochrome c oxidase (CcO) was probed using two chemical denaturants, urea and guanidinium chloride (GdmCl). Each chaotrope induces dissociation of five subunits in a concentration-dependent manner. These five subunits are not scattered over the surface of CcO but are clustered together in close contact at the dimer interface. Increasing the concentration of urea selectively dissociates subunits from CcO in the following order: VIa and VIb, followed by III and VIIa, and finally Vb. After incubation in urea for 10 min at room temperature, the sigmoidal dissociation transitions were centered at 3.7, 4.6, and 7.0 M urea, respectively. The secondary structure of CcO was only minimally perturbed, indicating that urea causes disruption of subunit interactions without urea-induced conformational changes. Incubation of CcO in urea for 120 min produced similar results but shifted the sigmoidal dissociation curves to lower urea concentrations. Incubation of CcO with increasing concentrations of GdmCl produces an analogous effect; however, the GdmCl-induced dissociation of subunits occurs at lower concentrations and with a narrower concentration range. Thermodynamic parameters for each subunit dissociation were evaluated from the sigmoidal dissociation data by assuming a single transition from bound to dissociated subunit. The free energy change accompanying urea-induced dissociation of each subunit ranged from 18.0 to 29.7 kJ/mol, which corresponds to 0.32-0.59 kJ/mol per 100 A(2) of newly exposed solvent-accessible surface area. These values are 30-50-fold smaller than previously reported for the unfolding of soluble or membrane proteins.
Collapse
Affiliation(s)
- Erik Sedlák
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
37
|
Predicting weakly stable regions, oligomerization state, and protein-protein interfaces in transmembrane domains of outer membrane proteins. Proc Natl Acad Sci U S A 2009; 106:12735-40. [PMID: 19622743 DOI: 10.1073/pnas.0902169106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although the structures of many beta-barrel membrane proteins are available, our knowledge of the principles that govern their energetics and oligomerization states is incomplete. Here we describe a computational method to study the transmembrane (TM) domains of beta-barrel membrane proteins. Our method is based on a physical interaction model, a simplified conformational space for efficient enumeration, and an empirical potential function from a detailed combinatorial analysis. Using this method, we can identify weakly stable regions in the TM domain, which are found to be important structural determinants for beta-barrel membrane proteins. By calculating the melting temperatures of the TM strands, our method can also assess the stability of beta-barrel membrane proteins. Predictions on membrane enzyme PagP are consistent with recent experimental NMR and mutant studies. We have also discovered that out-clamps, in-plugs, and oligomerization are 3 general mechanisms for stabilizing weakly stable TM regions. In addition, we have found that extended and contiguous weakly stable regions often signal the existence of an oligomer and that strands located in the interfaces of protein-protein interactions are considerably less stable. Based on these observations, we can predict oligomerization states and can identify the interfaces of protein-protein interactions for beta-barrel membrane proteins by using either structure or sequence information. In a set of 25 nonhomologous proteins with known structures, our method successfully predicted whether a protein forms a monomer or an oligomer with 91% accuracy; in addition, our method identified with 82% accuracy the protein-protein interaction interfaces by using sequence information only when correct strands are given.
Collapse
|
38
|
Gervais C, Wüst T, Landau DP, Xu Y. Application of the Wang-Landau algorithm to the dimerization of glycophorin A. J Chem Phys 2009; 130:215106. [PMID: 19508105 PMCID: PMC2719476 DOI: 10.1063/1.3148186] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 05/13/2009] [Indexed: 11/15/2022] Open
Abstract
A two-step Monte Carlo procedure is developed to investigate the dimerization process of the homodimer glycophorin A. In the first step, the energy density of states of the system is estimated by the Wang-Landau algorithm. In the second step, a production run is performed during which various energetical and structural observables are sampled to provide insight into the thermodynamics of the system. All seven residues LIxxGVxxGVxxT constituting the contact interface play a dominating role in the dimerization, however at different stages of the process. The leucine motif and to some extent the GxxxG motif are involved at the very beginning of the dimerization when the two helices come into contact, ensuring an interface already similar to the native one. At a lower temperature, the threonine motif stabilizes by hydrogen bonding the dimer, which finally converges toward its native state at around 300 K. The power and flexibility of the procedure employed here makes it an interesting alternative to other Monte Carlo methods for the study of similar protein systems.
Collapse
Affiliation(s)
- Claire Gervais
- Department of Biochemistry and Molecular Biology, Computational Systems Biology Laboratory and Institute of Bioinformatics, The University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | |
Collapse
|
39
|
Schlüter O, Foerster J, Geyer M, Knorr D, Herppich WB. Characterization of High-Hydrostatic-Pressure Effects on Fresh Produce Using Chlorophyll Fluorescence Image Analysis. FOOD BIOPROCESS TECH 2008. [DOI: 10.1007/s11947-008-0143-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Affiliation(s)
- Daniel J. Muller
- Biotechnology Center, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
41
|
Jin Y, Girshevitz O, Friedman N, Ron I, Cahen D, Sheves M. Covalent attachment of bacteriorhodopsin monolayer to bromo-terminated solid supports: preparation, characterization, and protein stability. Chem Asian J 2008; 3:1146-55. [PMID: 18484563 DOI: 10.1002/asia.200700403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interfacing of functional proteins with solid supports and the study of related protein-adsorption behavior are promising and important for potential device applications. In this study, we describe the preparation of bacteriorhodopsin (bR) monolayers on Br-terminated solid supports through covalent attachment. The bonding, by chemical reaction of the exposed free amine groups of bR with the pendant Br group of the chemically modified solid surface, was confirmed both by negative AFM results obtained when acetylated bR (instead of native bR) was used as a control and by weak bands observed at around 1610 cm(-1) in the FTIR spectrum. The coverage of the resultant bR monolayer was significantly increased by changing the pH of the purple-membrane suspension from 9.2 to 6.8. Although bR, which is an exceptionally stable protein, showed a pronounced loss of its photoactivity in these bR monolayers, it retained full photoactivity after covalent binding to Br-terminated alkyls in solution. Several characterization methods, including atomic force microscopy (AFM), contact potential difference (CPD) measurements, and UV/Vis and Fourier transform infrared (FTIR) spectroscopy, verified that these bR monolayers behaved significantly different from native bR. Current-voltage (I-V) measurements (and optical absorption spectroscopy) suggest that the retinal chromophore is probably still present in the protein, whereas the UV/Vis spectrum suggests that it lacks the characteristic covalent protonated Schiff base linkage. This finding sheds light on the unique interactions of biomolecules with solid surfaces and may be significant for the design of protein-containing device structures.
Collapse
Affiliation(s)
- Yongdong Jin
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | |
Collapse
|
42
|
Façanha AR, Okorokova-Façanha AL. ATP synthesis catalyzed by a V-ATPase: an alternative pathway for energy conservation operating in plant vacuoles? PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:195-203. [PMID: 23572887 PMCID: PMC3550615 DOI: 10.1007/s12298-008-0019-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The electrochemical H(+) gradient generated in tonoplast vesicles isolated from maize seeds was found to be able to drive the reversal of the catalytic cycle of both vacuolar H(+)-pumps (Façanha and de Meis, 1998). Here we describe the reversibility of the vacuolar V-type H(+)-ATPase (V-ATPase) even in the absence of the H(+) gradient in a water-Me2SO co-solvent mixture, resulting in net synthesis of [γ-(32)P]ATP from [(32)P]Pi and ADP. The water-Me2SO (5 to 20 %) media promoted inhibition of both PPi hydrolysis and synthesis reactions whereas it slightly affected the ATP hydrolysis and clearly stimulated the ATP synthesis, which was unaffected by uncoupling agents (FCCP, Triton X-100 or NH4 (+)). This effect of Me2SO on the ATP⇔(32)P exchange reaction seems to be related to a decrease of the apparent K m of the V-ATPase for Pi. The results are in accordance to the concept that the energetics of ATP synthesis catalysis depends on the solvation energies interacting in the enzyme microenvironment. A possible physiological significance of this phenomenon for the metabolism of desiccation-tolerant plant cells is discussed.
Collapse
Affiliation(s)
- Arnoldo Rocha Façanha
- />Laboratório de Biologia Celular & Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. California, Campos dos Goytacazes, RJ 28013-602 Brazil
| | - Anna Lvovna Okorokova-Façanha
- />Laboratório de Fisiologia & Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. California, Campos dos Goytacazes, RJ 28013-602 Brazil
- />Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. California, Campos dos Goytacazes, RJ 28013-602 Brazil
| |
Collapse
|
43
|
Reyes‐Alcaraz A, Tzanov T, Garriga P. Stabilization of Membrane Proteins: the Case of G‐Protein‐Coupled Receptors. Eng Life Sci 2008. [DOI: 10.1002/elsc.200700059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
44
|
Stabilization of Na,K–ATPase by ionic interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:835-43. [DOI: 10.1016/j.bbamem.2007.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 09/26/2007] [Accepted: 12/10/2007] [Indexed: 11/21/2022]
|
45
|
Daily AE, Greathouse DV, van der Wel PCA, Koeppe RE. Helical distortion in tryptophan- and lysine-anchored membrane-spanning alpha-helices as a function of hydrophobic mismatch: a solid-state deuterium NMR investigation using the geometric analysis of labeled alanines method. Biophys J 2008; 94:480-91. [PMID: 17827234 PMCID: PMC2157221 DOI: 10.1529/biophysj.106.097543] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 08/09/2007] [Indexed: 11/18/2022] Open
Abstract
We used solid-state deuterium NMR spectroscopy and geometric analysis of labeled alanines to investigate the structure and orientation of a designed synthetic hydrophobic, membrane-spanning alpha-helical peptide that is anchored within phosphatidylcholine (PC) bilayers using both Trp and Lys side chains near the membrane/water interface. The 23-amino-acid peptide consists of an alternating Leu/Ala core sequence that is expected to be alpha-helical, flanked by aromatic and then cationic anchors at both ends of the peptide: acetyl-GKALW(LA)(6)LWLAKA-amide (KWALP23). The geometric analysis of labeled alanines method was elaborated to permit the incorporation and assignment of multiple alanine labels within a single synthetic peptide. Peptides were incorporated into oriented bilayers of dilauroyl- (di-C12:0-), dimyristoyl- (di-C14:0-), or dioleoyl- (di-C18:1c-) PC. In the C12:0 and C14:0 lipids, the (2)H-NMR quadrupolar splittings for the set of six core alanines could not be fit to a canonical undistorted alpha-helix. Rather, we found that a model containing a helical distortion, such as a localized discontinuity or "kink" near the peptide and bilayer center, could fit the data for KWALP23 in these shorter lipids. The suggestion of helix distortion was confirmed by (2)H-NMR spectra for KWALP23 in which Leu(8) was changed to deuterated Ala(8). Further analysis involving reexamination of earlier data led to a similar conclusion that acetyl-GWW(LA)(8)LWWA-amide (WALP23) is distorted in dilauroyl-PC, allowing significant improvement in the fitting of the (2)H-NMR results. In contrast, WALP23 and KWALP23 are well represented as undistorted alpha-helices in dioleoyl-PC, suggesting that the distortion could be a response to hydrophobic mismatch between peptide and lipids.
Collapse
Affiliation(s)
- Anna E Daily
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | |
Collapse
|
46
|
Predicting the complex structure and functional motions of the outer membrane transporter and signal transducer FecA. Biophys J 2008; 94:2482-91. [PMID: 18178655 DOI: 10.1529/biophysj.107.116046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli requires an efficient transport and signaling system to successfully sequester iron from its environment. FecA, a TonB-dependent protein, serves a critical role in this process: first, it binds and transports iron in the form of ferric citrate, and second, it initiates a signaling cascade that results in the transcription of several iron transporter genes in interaction with inner membrane proteins. The structure of the plug and barrel domains and the periplasmic N-terminal domain (NTD) are separately available. However, the linker connecting the plug and barrel and the NTD domains is highly mobile, which may prevent the determination of the FecA structure as a whole assembly. Here, we reduce the conformation space of this linker into most probable structural models using the modeling tool CABS, then apply normal-mode analysis to investigate the motions of the whole structure of FecA by using elastic network models. We relate the FecA domain motions to the outer-inner membrane communication, which initiates transcription. We observe that the global motions of FecA assign flexibility to the TonB box and the NTD, and control the exposure of the TonB box for binding to the TonB inner membrane protein, suggesting how these motions relate to FecA function. Our simulations suggest the presence of a communication between the loops on both ends of the protein, a signaling mechanism by which a signal could be transmitted by conformational transitions in response to the binding of ferric citrate.
Collapse
|
47
|
Mutagenic Analysis of Membrane Protein Functional Mechanisms: Bacteriorhodopsin as a Model Example. Methods Cell Biol 2008. [DOI: 10.1016/s0091-679x(07)84016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Kedrov A, Janovjak H, Sapra KT, Müller DJ. Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. ACTA ACUST UNITED AC 2007; 36:233-60. [PMID: 17311527 DOI: 10.1146/annurev.biophys.36.040306.132640] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular interactions are the basic language of biological processes. They establish the forces interacting between the building blocks of proteins and other macromolecules, thus determining their functional roles. Because molecular interactions trigger virtually every biological process, approaches to decipher their language are needed. Single-molecule force spectroscopy (SMFS) has been used to detect and characterize different types of molecular interactions that occur between and within native membrane proteins. The first experiments detected and localized molecular interactions that stabilized membrane proteins, including how these interactions were established during folding of alpha-helical secondary structure elements into the native protein and how they changed with oligomerization, temperature, and mutations. SMFS also enables investigators to detect and locate molecular interactions established during ligand and inhibitor binding. These exciting applications provide opportunities for studying the molecular forces of life. Further developments will elucidate the origins of molecular interactions encoded in their lifetimes, interaction ranges, interplay, and dynamics characteristic of biological systems.
Collapse
Affiliation(s)
- Alexej Kedrov
- Department of Cellular Machines, Center of Biotechnology, Technische Universität Dresden, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
49
|
Efremov RG, Nolde DE, Volynsky PE, Arseniev AS. Modeling of Peptides in Implicit Membrane-Mimetic Media. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020008022376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Sehgal P, Otzen DE. Thermodynamics of unfolding of an integral membrane protein in mixed micelles. Protein Sci 2006; 15:890-9. [PMID: 16600971 PMCID: PMC2242483 DOI: 10.1110/ps.052031306] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Quantitative studies of membrane protein folding and unfolding can be difficult because of difficulties with efficient refolding as well as a pronounced propensity to aggregate. However, mixed micelles, consisting of the anionic detergent sodium dodecyl sulfate and the nonionic detergent dodecyl maltoside facilitate reversible and quantitative unfolding and refolding. The 4-transmembrane helix protein DsbB from the inner membrane of Escherichia coli unfolds in mixed micelles according to a three-state mechanism involving an unfolding intermediate I. The temperature dependence of the kinetics of this reaction between 15 degrees and 45 degrees C supports that unfolding from I to the denatured state D is accompanied by a significant decrease in heat capacity. For water-soluble proteins, the heat capacity increases upon unfolding, and this is generally interpreted as the increased binding of water to the protein as it unfolds, exposing more surface area. The decrease in DsbB's heat capacity upon unfolding is confirmed by independent thermal scans. The decrease in heat capacity is not an artifact of the use of mixed micelles, since the water soluble protein S6 shows conventional heat-capacity changes in detergent. We speculate that it reflects the binding of SDS to parts of DsbB that are solvent-exposed in the native DM-bound state. This implies that the periplasmic loops of DsbB are relatively unstructured. This anomalous thermodynamic behavior has not been observed for beta-barrel membrane proteins, probably because they do not bind SDS so extensively. Thus the thermodynamic behavior of membrane proteins appears to be intimately connected to their detergent-binding properties.
Collapse
Affiliation(s)
- Pankaj Sehgal
- Department of Life Sciences, Aalborg University, DK-9000 Aalborg, Denmark
| | | |
Collapse
|