1
|
Liu JD, Gong R, Zhang SY, Zhou ZP, Wu YQ. Beneficial effects of high-density lipoprotein (HDL) on stent biocompatibility and the potential value of HDL infusion therapy following percutaneous coronary intervention. Medicine (Baltimore) 2022; 101:e31724. [PMID: 36397406 PMCID: PMC9666103 DOI: 10.1097/md.0000000000031724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several epidemiological studies have shown a clear inverse relationship between serum levels of high-density lipoprotein cholesterol (HDL-C) and the risk of atherosclerotic cardiovascular disease (ASCVD), even at low-density lipoprotein cholesterol levels below 70 mg/dL. There is much evidence from basic and clinical studies that higher HDL-C levels are beneficial, whereas lower HDL-C levels are detrimental. Thus, HDL is widely recognized as an essential anti-atherogenic factor that plays a protective role against the development of ASCVD. Percutaneous coronary intervention is an increasingly common treatment choice to improve myocardial perfusion in patients with ASCVD. Although drug-eluting stents have substantially overcome the limitations of conventional bare-metal stents, there are still problems with stent biocompatibility, including delayed re-endothelialization and neoatherosclerosis, which cause stent thrombosis and in-stent restenosis. According to numerous studies, HDL not only protects against the development of atherosclerosis, but also has many anti-inflammatory and vasoprotective properties. Therefore, the use of HDL as a therapeutic target has been met with great interest. Although oral medications have not shown promise, the developed HDL infusions have been tested in clinical trials and have demonstrated viability and reproducibility in increasing the cholesterol efflux capacity and decreasing plasma markers of inflammation. The aim of the present study was to review the effect of HDL on stent biocompatibility in ASCVD patients following implantation and discuss a novel therapeutic direction of HDL infusion therapy that may be a promising candidate as an adjunctive therapy to improve stent biocompatibility following percutaneous coronary intervention.
Collapse
Affiliation(s)
- Jian-Di Liu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ren Gong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shi-Yuan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi-Peng Zhou
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yan-Qing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- * Correspondence: Yan-Qing Wu, Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, Jiangxi 330006, China (e-mail: )
| |
Collapse
|
2
|
Haapasalo K, van Kessel K, Nissilä E, Metso J, Johansson T, Miettinen S, Varjosalo M, Kirveskari J, Kuusela P, Chroni A, Jauhiainen M, van Strijp J, Jokiranta TS. Complement Factor H Binds to Human Serum Apolipoprotein E and Mediates Complement Regulation on High Density Lipoprotein Particles. J Biol Chem 2015; 290:28977-87. [PMID: 26468283 DOI: 10.1074/jbc.m115.669226] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 11/06/2022] Open
Abstract
The alternative pathway of complement is an important part of the innate immunity response against foreign particles invading the human body. To avoid damage to host cells, it needs to be efficiently down-regulated by plasma factor H (FH) as exemplified by various diseases caused by mutations in its domains 19-20 (FH19-20) and 5-7 (FH5-7). These regions are also the main interaction sites for microbial pathogens that bind host FH to evade complement attack. We previously showed that inhibition of FH binding by a recombinant FH5-7 construct impairs survival of FH binding pathogens in human blood. In this study we found that upon exposure to full blood, the addition of FH5-7 reduces survival of, surprisingly, also those microbes that are not able to bind FH. This effect was mediated by inhibition of complement regulation and subsequently enhanced neutrophil phagocytosis by FH5-7. We found that although FH5-7 does not reduce complement regulation in the actual fluid phase of plasma, it reduces regulation on HDL particles in plasma. Using affinity chromatography and mass spectrometry we revealed that FH interacts with serum apolipoprotein E (apoE) via FH5-7 domains. Furthermore, binding of FH5-7 to HDL was dependent on the concentration of apoE on the HDL particles. These findings explain why the addition of FH5-7 to plasma leads to excessive complement activation and phagocytosis of microbes in full anticoagulated blood. In conclusion, our data show how FH interacts with apoE molecules via domains 5-7 and regulates alternative pathway activation on plasma HDL particles.
Collapse
Affiliation(s)
- Karita Haapasalo
- From the Department of Bacteriology and Immunology, Haartman Institute, and Research Programs Unit, Immunobiology, University of Helsinki, FIN-00014 Helsinki, Finland, Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands,
| | - Kok van Kessel
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Eija Nissilä
- From the Department of Bacteriology and Immunology, Haartman Institute, and Research Programs Unit, Immunobiology, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Jari Metso
- Department of Molecular Medicine, National Institute for Health and Welfare, Biomedicum, FI-00290 Helsinki, Finland
| | - Tiira Johansson
- From the Department of Bacteriology and Immunology, Haartman Institute, and Research Programs Unit, Immunobiology, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Sini Miettinen
- University of Helsinki, Institute of Biotechnology, 00014 Helsinki, Finland
| | - Markku Varjosalo
- University of Helsinki, Institute of Biotechnology, 00014 Helsinki, Finland
| | - Juha Kirveskari
- HUSLAB, Helsinki University Central Hospital Laboratory, 00290 Helsinki, Finland, and
| | - Pentti Kuusela
- HUSLAB, Helsinki University Central Hospital Laboratory, 00290 Helsinki, Finland, and
| | - Angelika Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," 15310 Athens, Greece
| | - Matti Jauhiainen
- Department of Molecular Medicine, National Institute for Health and Welfare, Biomedicum, FI-00290 Helsinki, Finland
| | - Jos van Strijp
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - T Sakari Jokiranta
- From the Department of Bacteriology and Immunology, Haartman Institute, and Research Programs Unit, Immunobiology, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
3
|
Biedzka-Sarek M, Metso J, Kateifides A, Meri T, Jokiranta TS, Muszyński A, Radziejewska-Lebrecht J, Zannis V, Skurnik M, Jauhiainen M. Apolipoprotein A-I exerts bactericidal activity against Yersinia enterocolitica serotype O:3. J Biol Chem 2011; 286:38211-38219. [PMID: 21896489 DOI: 10.1074/jbc.m111.249482] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein A-I (apoA-I), the main protein component of high density lipoprotein (HDL), is well recognized for its antiatherogenic, antioxidant, and antiinflammatory properties. Here, we report a novel role for apoA-I as a host defense molecule that contributes to the complement-mediated killing of an important gastrointestinal pathogen, Gram-negative bacterium Yersinia enterocolitica. We specifically show that the C-terminal domain of apoA-I is the effector site providing the bactericidal activity. Although the presence of the lipopolysaccharide O-antigen on the bacterial surface is absolutely required for apoA-I to kill the bacteria, apoA-I does not interact with the bacteria directly. To the contrary, exposure of the bacteria by serum proteins triggers apoA-I deposition on the bacterial surface. As our data show that both purified lipid-free and HDL-associated apoA-I displays anti-bacterial potential, apoA-I mimetic peptides may be a promising therapeutic agent for the treatment of certain Gram-negative infections.
Collapse
Affiliation(s)
- Marta Biedzka-Sarek
- Department of Chronic Disease Prevention, Public Health Genomics Research Unit, National Institute for Health and Welfare, and Institute for Molecular Medicine Finland (FIMM), 00290 Helsinki, Finland.
| | - Jari Metso
- Department of Chronic Disease Prevention, Public Health Genomics Research Unit, National Institute for Health and Welfare, and Institute for Molecular Medicine Finland (FIMM), 00290 Helsinki, Finland
| | - Andreas Kateifides
- Department of Molecular Genetics, Boston University Medical Center, Boston, Massachusetts 02118
| | - Taru Meri
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland; Department of Laboratory Diagnostics, Helsinki University Central Hospital, 00290 Helsinki, Finland
| | - T Sakari Jokiranta
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | | | - Vassilis Zannis
- Department of Molecular Genetics, Boston University Medical Center, Boston, Massachusetts 02118
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland; Department of Laboratory Diagnostics, Helsinki University Central Hospital, 00290 Helsinki, Finland
| | - Matti Jauhiainen
- Department of Chronic Disease Prevention, Public Health Genomics Research Unit, National Institute for Health and Welfare, and Institute for Molecular Medicine Finland (FIMM), 00290 Helsinki, Finland
| |
Collapse
|
4
|
Lange S, Dodds AW, Gudmundsdóttir S, Bambir SH, Magnadóttir B. The ontogenic transcription of complement component C3 and Apolipoprotein A-I tRNA in Atlantic cod (Gadus morhua L.)--a role in development and homeostasis? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:1065-77. [PMID: 15936076 DOI: 10.1016/j.dci.2005.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 03/15/2005] [Accepted: 03/21/2005] [Indexed: 05/02/2023]
Abstract
The complement system is important both in the innate and adaptive immune response, with C3 as the central protein of all three activation pathways. Apolipoprotein A-I (ApoLP A-I), a high-density lipoprotein (HDL), has been shown to have a regulatory role in the complement system by inhibiting the formation of the membrane attack complex (MAC). Complement has been associated with apoptotic functions, which are important in the immune response and are involved in organ formation and homeostasis. mRNA probes for cod C3 and ApoLP A-I were synthesized and in situ hybridisation used to monitor the ontogenic development of cod from fertilised eggs until 57 days after hatching. Both C3 and ApoLP A-I transcription was detected in the central nervous system (CNS), eye, kidney, liver, muscle, intestines, skin and chondrocytes at different stages of development. Using TUNEL staining, apoptotic cells were identified within the same areas from 4 to 57 days posthatching. The present findings may suggest a role for C3 and ApoLP A-I during larval development and a possible role in the homeostasis of various organs in cod.
Collapse
Affiliation(s)
- Sigrun Lange
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, Reykjavik IS-112, Iceland.
| | | | | | | | | |
Collapse
|
5
|
Hersberger M, von Eckardstein A. Low high-density lipoprotein cholesterol: physiological background, clinical importance and drug treatment. Drugs 2004; 63:1907-45. [PMID: 12930163 DOI: 10.2165/00003495-200363180-00003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Low high-density lipoprotein (HDL) cholesterol is an important risk factor for coronary heart disease (CHD). In vitro, HDL exerts several potentially anti-atherogenic activities. HDLs mediate the reverse cholesterol transport (RCT) from peripheral cells to the liver, inhibit oxidation of low-density lipoprotein (LDL), adhesion of monocytes to the endothelium, apoptosis of vascular endothelial and smooth muscle cells and platelet activation, and stimulate the endothelial secretion of vasoactive substances as well as smooth muscle cell proliferation. Hence, raising HDL-cholesterol levels has become an interesting target for anti-atherosclerotic drug therapy. Levels of HDL cholesterol and the composition of HDL subclasses in plasma are regulated by apolipoproteins, lipolytic enzymes, lipid transfer proteins, receptors and cellular transporters. The interplay of these factors leads to RCT and determines the composition and, thereby, the anti-atherogenic properties of HDL. Several inborn errors of metabolism, as well as genetic animal models, are characterised by both elevated HDL cholesterol and increased rather than decreased cardiovascular risk. These findings suggest that the mechanism of HDL modification rather than simply increasing HDL cholesterol determine the efficacy of anti-atherosclerotic drug therapy. In several controlled and prospective intervention studies, patients with low HDL cholesterol and additional risk factors benefited from treatment with fibric acid derivatives (fibrates) or HMG-CoA reductase inhibitors (statins). However, only in some trials was prevention of coronary events in patients with low HDL cholesterol and hypertriglyceridaemia related to an increase in HDL cholesterol. We discuss the clinical and metabolic effects of fibrates, statins, nicotinic acid and sex steroids, and present novel therapeutic strategies that show promise in modifying HDL metabolism. In conclusion, HDL-cholesterol levels increase only moderately after treatment with currently available drugs and do not necessarily correlate with the functionality of HDL. Therefore, the anti-atherosclerotic therapy of high-risk cardiovascular patients should currently be focused on the correction of other risk factors present besides low HDL cholesterol. However, modification of HDL metabolism and improvement of RCT remain an attractive target for the development of new regimens of anti-atherogenic drug therapy.
Collapse
Affiliation(s)
- Martin Hersberger
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
6
|
Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 2002; 161:1-16. [PMID: 11882312 DOI: 10.1016/s0021-9150(01)00651-7] [Citation(s) in RCA: 399] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inverse correlation between serum levels of high density lipoprotein (HDL) cholesterol and the risk of coronary heart disease, the protection of susceptible animals from atherosclerosis by transgenic manipulation of HDL metabolism, and several potentially anti-atherogenic in vitro-properties have made HDL metabolism an interesting target for pharmacological intervention in atheroslcerosis. We have previously reviewed the concept of reverse cholesterol transport, which describes both the metabolism and the classic anti-atherogenic function of HDL (Arterioscler. Thromb. Vasc. Biol. 20 2001 13). We here summarize the current understanding of additional biological, potentially anti-atherogenic properties of HDL. HDL inhibits the chemotaxis of monocytes, the adhesion of leukocytes to the endothelium, endothelial dysfunction and apoptosis, LDL oxidation, complement activation, platelet activation and factor X activation but also stimulates the proliferation of endothelial cells and smooth muscle cells, the synthesis of prostacyclin and natriuretic peptide C in endothelial cells, and the activation of proteins C and S. These anti-inflammatory, anti-oxidative, anti-aggregatory, anti-coagulant, and pro-fibrinolytic activities are exerted by different components of HDL, namley apolipoproteins, enzymes, and even specific phospholipids. This complexity further emphasizes that changes in the functionality of HDL rather than changes of plasma HDL-cholesterol levels determine the anti-atherogenicity of therapeutic alterations of HDL metabolism.
Collapse
Affiliation(s)
- Jerzy-Roch Nofer
- Institut für Klinische Chemie und Laboratoriumsmedizin, Westfälische Wilhelms-Universität, Albert Schweitzer Str. 33, 48129 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
García de Lorenzo Mateos A, Zarazaga Monzón A, Culebras Fernández J, Rodríguez-Montes J, García-Sancho Martín L. Soporte nutrometabólico en el paciente quirúrgico crítico. Cir Esp 2001. [DOI: 10.1016/s0009-739x(01)71747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Cockerill GW, Reed S. High-density lipoprotein: multipotent effects on cells of the vasculature. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 188:257-97. [PMID: 10208014 DOI: 10.1016/s0074-7696(08)61569-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The epidemiological evidence showing a strong inverse correlation between the level of plasma high-density lipoprotein (HDL) and the incidence of heart disease suggests that HDL has a protective effect against cardiovascular disease. The mechanism of this protective effect has been the raison d'etre for much research. The ability of HDL to mediate cholesterol efflux from peripheral tissues has been used to explain the cardioprotective effect of HDL. However, there is little direct evidence to suggest that in subjects with low plasma levels of HDL the rate of cholesterol efflux from peripheral tissues is significantly reduced. This observation suggested that HDL may be mediating its protective effect through other mechanisms. This review provides an account of the burgeoning evidence that HDL has many effects on cellular processes, in addition to the effects on cholesterol efflux, and will illustrate the multipotency of this lipoprotein.
Collapse
Affiliation(s)
- G W Cockerill
- Department of Cardiovascular Medicine, National Heart and Lung Institute, Imperial College School of Medicine, London, United Kingdom
| | | |
Collapse
|
9
|
Interaction between apolipoproteins A-I and A-II and the membrane attack complex of complement. Affinity of the apoproteins for polymeric C9. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53740-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
|
11
|
Hamilton KK, Sims PJ. The terminal complement proteins C5b-9 augment binding of high density lipoprotein and its apolipoproteins A-I and A-II to human endothelial cells. J Clin Invest 1991; 88:1833-40. [PMID: 1752944 PMCID: PMC295750 DOI: 10.1172/jci115504] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Terminal complement protein complexes C5b-9 have been found in human atherosclerotic lesions. Insertion of C5b-9 in the endothelial cell membrane alters permeability, induces membrane vesiculation, and activates secretion. We hypothesized that complement might also alter interactions of the endothelial surface with lipoproteins, particularly high density lipoprotein (HDL), which is reported to inhibit C5b-9-induced hemolysis. We now demonstrate that exposure to C5b-9 increases (by 2- to 50-fold) specific binding of HDL and its apolipoproteins (apo) A-I and A-II to endothelial cells. Binding to cells exposed to antibody, C5b67, and C5b-8 was virtually unchanged. Enhanced binding was also dependent on the number of C5b-9 complexes deposited on the cells. Other agonists that activate endothelial secretion did not augment binding. Calcium was required for full exposure of new binding sites by C5b-9. The C5b-9-induced increase in binding was independent of the increase observed after cholesterol loading. In addition, apo A-I and A-II appear to compete for the same binding sites on untreated and C5b-9-treated cells. In contrast to the data reported for red cells, we were unable to detect significant inhibition of C5b-9-mediated endothelial membrane permeabilization by HDL (up to 1 mg/ml) or by apo A-I (up to 100 micrograms/ml). These data demonstrate that the C5b-9 proteins enhance endothelial binding of HDL and its apoproteins, suggesting that intravascular complement activation may alter cholesterol homeostasis in the vessel wall.
Collapse
Affiliation(s)
- K K Hamilton
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | |
Collapse
|
12
|
Affiliation(s)
- T E Mollnes
- Institute of Immunology and Rheumatology, Rikshospitalet, Oslo, Norway
| | | |
Collapse
|
13
|
Dalmasso AP. Complement in the pathophysiology and diagnosis of human diseases. Crit Rev Clin Lab Sci 1986; 24:123-83. [PMID: 2971510 DOI: 10.3109/10408368609110272] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Complement is a humoral effector system composed of 21 plasma proteins that was identified initially because of its cytolytic effects. In addition to cytolysis, complement has a number of different functions related to inflammatory and other host defense processes. The description of the reaction mechanism includes: (1) activation of the classical pathway through recognition of IgG and IgM antibodies by C1q, (2) activation of the alternative pathway which is usually achieved without participation of immunoglobulins, (3) generation of proteolytic enzymes composed of heteropolymers that cleave certain precursor proteins, (4) formation of the membrane attack complex (MAC), and (5) participation of control mechanisms. Methodologies for studying protein concentration and functional activities of complement components include not only the classical hemolytic techniques but also the extremely sensitive new radioimmunoassays and enzyme immunoassays for measuring the products of complement activation that are generated in vivo. Examples of genetically controlled complement deficiencies have been published for most complement components. The symptomatology of some of these patients serves to emphasize the protective role of complement. Acquired deficiencies are significant not only as laboratory aids in diagnosis and to evaluate the course of certain diseases, but also to indicate possible pathogenic disease mechanisms. Recently, it has been recognized that the complement proteins with genes located in the HLA region are polymorphic. Certain variants of proteins C2, C4, and factor B occur with higher frequencies in certain diseases than in the general population, which appears to be of great practical importance in laboratory medicine.
Collapse
Affiliation(s)
- A P Dalmasso
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| |
Collapse
|