1
|
Morciano G, Rimessi A, Patergnani S, Vitto VAM, Danese A, Kahsay A, Palumbo L, Bonora M, Wieckowski MR, Giorgi C, Pinton P. Calcium dysregulation in heart diseases: Targeting calcium channels to achieve a correct calcium homeostasis. Pharmacol Res 2022; 177:106119. [PMID: 35131483 DOI: 10.1016/j.phrs.2022.106119] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022]
Abstract
Intracellular calcium signaling is a universal language source shared by the most part of biological entities inside cells that, all together, give rise to physiological and functional anatomical units, the organ. Although preferentially recognized as signaling between cell life and death processes, in the heart it assumes additional relevance considered the importance of calcium cycling coupled to ATP consumption in excitation-contraction coupling. The concerted action of a plethora of exchangers, channels and pumps inward and outward calcium fluxes where needed, to convert energy and electric impulses in muscle contraction. All this without realizing it, thousands of times, every day. An improper function of those proteins (i.e., variation in expression, mutations onset, dysregulated channeling, differential protein-protein interactions) being part of this signaling network triggers a short circuit with severe acute and chronic pathological consequences reported as arrhythmias, cardiac remodeling, heart failure, reperfusion injury and cardiomyopathies. By acting with chemical, peptide-based and pharmacological modulators of these players, a correction of calcium homeostasis can be achieved accompanied by an amelioration of clinical symptoms. This review will focus on all those defects in calcium homeostasis which occur in the most common cardiac diseases, including myocardial infarction, arrhythmia, hypertrophy, heart failure and cardiomyopathies. This part will be introduced by the state of the art on the proteins involved in calcium homeostasis in cardiomyocytes and followed by the therapeutic treatments that to date, are able to target them and to revert the pathological phenotype.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| | - Alessandro Rimessi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica A M Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Alberto Danese
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Asrat Kahsay
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Laura Palumbo
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Bonora
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism. Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| |
Collapse
|
2
|
Magi S, Piccirillo S, Preziuso A, Amoroso S, Lariccia V. Mitochondrial localization of NCXs: Balancing calcium and energy homeostasis. Cell Calcium 2020; 86:102162. [DOI: 10.1016/j.ceca.2020.102162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/04/2023]
|
3
|
Aggeli IK, Zacharias T, Papapavlou G, Gaitanaki C, Beis I. Calcium paradox induces apoptosis in the isolated perfused Rana ridibunda heart: involvement of p38-MAPK and calpain. Can J Physiol Pharmacol 2013; 91:1095-106. [DOI: 10.1139/cjpp-2013-0081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
“Calcium paradox” as a term describes the deleterious effects conferred to a heart perfused with a calcium-free solution followed by repletion, including loss of mechanical activity and sarcomere disruption. Given that the signaling mechanisms triggered by calcium paradox remain elusive, in the present study, we tried to investigate them in the isolated perfused heart from Rana ridibunda. Calcium paradox was found to markedly activate members of the MAPKs (p43-ERK, JNKs, p38-MAPK). In addition to lactate dehydrogenase (LDH) release in the perfusate (indicative of necrosis), we also confirmed the occurrence of apoptosis by using the TUNEL assay and identifying poly(ADP-ribose) polymerase (PARP) fragmentation and upregulated Bax expression. Furthermore, using MDL28170 (a selective calpain inhibitor), a role for this protease was revealed. In addition, various divalent cations were shown to exert a protective effect against the calcium paradox. Interestingly, SB203580, a p38-MAPK inhibitor, alleviated calcium-paradox-conferred apoptosis. This result indicates that p38-MAPK plays a pro-apoptotic role, contributing to the resulting myocardial dysfunction and cell death. To our knowledge, this is the first time that the calcium paradox has been shown to induce apoptosis in amphibians, with p38-MAPK and calpain playing significant roles.
Collapse
Affiliation(s)
- Ioanna-Katerina Aggeli
- Department of Animal and Human Physiology, School of Biology, University of Athens, University campus, Athens, 157 84, Greece
| | - Triantafyllos Zacharias
- Department of Animal and Human Physiology, School of Biology, University of Athens, University campus, Athens, 157 84, Greece
| | - Georgia Papapavlou
- Department of Animal and Human Physiology, School of Biology, University of Athens, University campus, Athens, 157 84, Greece
| | - Catherine Gaitanaki
- Department of Animal and Human Physiology, School of Biology, University of Athens, University campus, Athens, 157 84, Greece
| | - Isidoros Beis
- Department of Animal and Human Physiology, School of Biology, University of Athens, University campus, Athens, 157 84, Greece
| |
Collapse
|
4
|
Palty R, Hershfinkel M, Sekler I. Molecular identity and functional properties of the mitochondrial Na+/Ca2+ exchanger. J Biol Chem 2012; 287:31650-7. [PMID: 22822063 DOI: 10.1074/jbc.r112.355867] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial membrane potential that powers the generation of ATP also facilitates mitochondrial Ca(2+) shuttling. This process is fundamental to a wide range of cellular activities, as it regulates ATP production, shapes cytosolic and endoplasmic recticulum Ca(2+) signaling, and determines cell fate. Mitochondrial Ca(2+) transport is mediated primarily by two major transporters: a Ca(2+) uniporter that mediates Ca(2+) uptake and a Na(+)/Ca(2+) exchanger that subsequently extrudes mitochondrial Ca(2+). In this minireview, we focus on the specific role of the mitochondrial Na(+)/Ca(2+) exchanger and describe its ion exchange mechanism, regulation by ions, and putative partner proteins. We discuss the recent molecular identification of the mitochondrial exchanger and how its activity is linked to physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Raz Palty
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. palty35@berkeley
| | | | | |
Collapse
|
5
|
Palty R, Sekler I. The mitochondrial Na(+)/Ca(2+) exchanger. Cell Calcium 2012; 52:9-15. [PMID: 22430014 DOI: 10.1016/j.ceca.2012.02.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 01/20/2023]
Abstract
Powered by the steep mitochondrial membrane potential Ca(2+) permeates into the mitochondria via the Ca(2+) uniporter and is then extruded by a mitochondrial Na(+)/Ca(2+) exchanger. This mitochondrial Ca(2+) shuttling regulates the rate of ATP production and participates in cellular Ca(2+) signaling. Despite the fact that the exchanger was functionally identified 40 years ago its molecular identity remained a mystery. Early studies on isolated mitochondria and intact cells characterized the functional properties of a mitochondrial Na(+)/Ca(2+) exchanger, and showed that it possess unique functional fingerprints such as Li(+)/Ca(2+) exchange and that it is displaying selective sensitivity to inhibitors. Purification of mitochondria proteins combined with functional reconstitution led to the isolation of a polypeptide candidate of the exchanger but failed to molecularly identify it. A turning point in the search for the exchanger molecule came with the recent cloning of the last member of the Na(+)/Ca(2+) exchanger superfamily termed NCLX (Na(+)/Ca(2+)/Li(+) exchanger). NCLX is localized in the inner mitochondria membrane and its expression is linked to mitochondria Na(+)/Ca(2+) exchange matching the functional fingerprints of the putative mitochondrial Na(+)/Ca(2+) exchanger. Thus NCLX emerges as the long sought mitochondria Na(+)/Ca(2+) exchanger and provide a critical molecular handle to study mitochondrial Ca(2+) signaling and transport. Here we summarize some of the main topics related to the molecular properties of the Na(+)/Ca(2+) exchanger, beginning with the early days of its functional identification, its kinetic properties and regulation, and culminating in its molecular identification.
Collapse
Affiliation(s)
- Raz Palty
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
6
|
Castaldo P, Cataldi M, Magi S, Lariccia V, Arcangeli S, Amoroso S. Role of the mitochondrial sodium/calcium exchanger in neuronal physiology and in the pathogenesis of neurological diseases. Prog Neurobiol 2008; 87:58-79. [PMID: 18952141 DOI: 10.1016/j.pneurobio.2008.09.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/23/2008] [Accepted: 09/29/2008] [Indexed: 11/26/2022]
Abstract
In neurons, as in other excitable cells, mitochondria extrude Ca(2+) ions from their matrix in exchange with cytosolic Na(+) ions. This exchange is mediated by a specific transporter located in the inner mitochondrial membrane, the mitochondrial Na(+)/Ca(2+) exchanger (NCX(mito)). The stoichiometry of NCX(mito)-operated Na(+)/Ca(2+) exchange has been the subject of a long controversy, but evidence of an electrogenic 3 Na(+)/1 Ca(2+) exchange is increasing. Although the molecular identity of NCX(mito) is still undetermined, data obtained in our laboratory suggest that besides the long-sought and as yet unfound mitochondrial-specific NCX, the three isoforms of plasmamembrane NCX can contribute to NCX(mito) in neurons and astrocytes. NCX(mito) has a role in controlling neuronal Ca(2+) homeostasis and neuronal bioenergetics. Indeed, by cycling the Ca(2+) ions captured by mitochondria back to the cytosol, NCX(mito) determines a shoulder in neuronal [Ca(2+)](c) responses to neurotransmitters and depolarizing stimuli which may then outlast stimulus duration. This persistent NCX(mito)-dependent Ca(2+) release has a role in post-tetanic potentiation, a form of short-term synaptic plasticity. By controlling [Ca(2+)](m) NCX(mito) regulates the activity of the Ca(2+)-sensitive enzymes pyruvate-, alpha-ketoglutarate- and isocitrate-dehydrogenases and affects the activity of the respiratory chain. Convincing experimental evidence suggests that supraphysiological activation of NCX(mito) contributes to neuronal cell death in the ischemic brain and, in epileptic neurons coping with seizure-induced ion overload, reduces the ability to reestablish normal ionic homeostasis. These data suggest that NCX(mito) could represent an important target for the development of new neurological drugs.
Collapse
Affiliation(s)
- P Castaldo
- Department of Neuroscience, Section of Pharmacology, Università Politecnica delle Marche, Via Tronto 10/A, 60020 Torrette di Ancona, Ancona, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Ivanics T, Miklós Z, Dézsi L, Ikrényi K, Tóth A, Roemen TH, Van der Vusse GJ, Ligeti L. Concomitant accumulation of intracellular free calcium and arachidonic acid in the ischemic-reperfused rat heart. Mol Cell Biochem 2001; 226:119-28. [PMID: 11768232 DOI: 10.1023/a:1012739722150] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study was designed to elucidate the relationship between enhanced cytoplasmic calcium levels (Ca2+i) and membrane phospholipid degradation, a key step in the loss of cellular integrity during cardiac ischemia/reperfusion-induced damage. Isolated rat hearts were subjected to 15 min ischemia followed by 30 min reperfusion. Ca2+i was estimated by the Indo-1 fluorescence ratio technique. Degradation of membrane phospholipids as indicated by the increase of tissue arachidonic acid content was assessed in tissue samples taken from the myocardium at various points of the ischemia/reperfusion period. The hemodynamic parameters showed almost complete recovery during reperfusion. Fluorescence ratio increased significantly during ischemia, but showed a considerable heart-to-heart variation during reperfusion. Based upon the type of change of fluorescence ratio during reperfusion, the hearts were allotted to two separate subgroups. Normalization of fluorescence ratio was associated with low post-ischemic arachidonic acid levels. In contrast, elevated fluorescence ratio coincided with enhanced arachidonic acid levels. This observation is suggestive for a relationship between the Ca2+-related fluorescence ratio and arachidonic acid accumulation probably due to a calcium-mediated stimulation of phospholipase A2.
Collapse
Affiliation(s)
- T Ivanics
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
This review provides a selective history of how studies of mitochondrial cation transport (K+, Na+, Ca2+) developed in relation to the major themes of research in bioenergetics. It then covers in some detail specific transport pathways for these cations, and it introduces and discusses open problems about their nature and physiological function, particularly in relation to volume regulation and Ca2+ homeostasis. The review should provide the basic elements needed to understand both earlier mitochondrial literature and current problems associated with mitochondrial transport of cations and hopefully will foster new interest in the molecular definition of mitochondrial cation channels and exchangers as well as their roles in cell physiology.
Collapse
Affiliation(s)
- P Bernardi
- Department of Biomedical Sciences, University of Padova, and Consiglio Nazionale delle Ricerche Center for the Study of Biomembranes, Padova, Italy.
| |
Collapse
|
9
|
Brierley GP, Baysal K, Jung DW. Cation transport systems in mitochondria: Na+ and K+ uniports and exchangers. J Bioenerg Biomembr 1994; 26:519-26. [PMID: 7896767 DOI: 10.1007/bf00762736] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is now well established that mitochondria contain three antiporters that transport monovalent cations. A latent, allosterically regulated K+/H+ antiport appears to serve as a cation-extruding device that helps maintain mitochondrial volume homeostasis. An apparently unregulated Na+/H+ antiport keeps matrix [Na+] low and the Na(+)-gradient equal to the H(+)-gradient. A Na+/Ca2+ antiport provides a Ca(2+)-extruding mechanism that permits the mitochondrion to regulate matrix [Ca2+] by balancing Ca2+ efflux against influx on the Ca(2+)-uniport. All three antiports have well-defined physiological roles and their molecular properties and regulatory features are now being determined. Mitochondria also contain monovalent cation uniports, such as the recently described ATP- and glibenclamide-sensitive K+ channel and ruthenium red-sensitive uniports for Na+ and K+. A physiological role of such uniports has not been established and their properties are just beginning to be defined.
Collapse
Affiliation(s)
- G P Brierley
- Department of Medical Biochemistry, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
10
|
Abstract
The identification of intramitochondrial free calcium ([Ca2+]m) as a primary metabolic mediator [see Hansford (this volume) and Gunter, T. E., Gunter, K. K., Sheu, S.-S., and Gavin, C. E. (1994) Am. J. Physiol. 267, C313-C339, for reviews] has emphasized the importance of understanding the characteristics of those mechanisms that control [Ca2+]m. In this review, we attempt to update the descriptions of the mechanisms that mediate the transport of Ca2+ across the mitochondrial inner membrane, emphasizing the energetics of each mechanism. New concepts within this field are reviewed and some older concepts are discussed more completely than in earlier reviews. The mathematical forms of the membrane potential dependence and concentration dependence of the uniporter are interpolated in such a way as to display the convenience of considering Vmax to be an explicit function of the membrane potential. Recent evidence for a transient rapid conductance state of the uniporter is discussed. New evidence concerning the energetics and stoichiometries of both Na(+)-dependent and Na(+)-independent efflux mechanisms is reviewed. Explicit mathematical expressions are used to describe the energetics of the system and the kinetics of transport via each Ca2+ transport mechanism.
Collapse
Affiliation(s)
- K K Gunter
- Department of Biophysics, University of Rochester Medical School, New York 14642
| | | |
Collapse
|
11
|
Baysal K, Brierley GP, Novgorodov S, Jung DW. Regulation of the mitochondrial Na+/Ca2+ antiport by matrix pH. Arch Biochem Biophys 1991; 291:383-9. [PMID: 1952951 DOI: 10.1016/0003-9861(91)90150-h] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of matrix pH (pHi) on the activity of the mitochondrial Na+/Ca2+ antiport has been studied using the fluorescence of SNARF-1 to monitor pHi and Na(+)-dependent efflux of accumulated Ca2+ to follow antiport activity. Heart mitochondria respiring in a KCl medium maintain a large delta pH (interior alkaline) and show optimal Na+/Ca2+ antiport only when the pH of the medium (pH0) is acid. Addition of nigericin to these mitochondria decreases delta pH and increases the membrane potential (delta psi). Nigericin strongly activates Na+/Ca2+ antiport at values of pH0 near 7.4 but inhibits antiport activity at acid pH0. When pHi is evaluated in these protocols, a sharp optimum in Na+/Ca2+ antiport activity is seen near pHi 7.6 in the presence or absence of nigericin. Activity falls off rapidly at more alkaline values of pHi. The effects of nigericin on Na+/Ca2+ antiport are duplicated by 20 mM acetate and by 3 mM phosphate. In each case the optimum rate of Na+/Ca2+ antiport is obtained at pHi 7.5 to 7.6 and changes in antiport activity do not correlate with changes in components of the driving force of the reaction (i.e., delta psi, delta pH, or the steady-state Na+ gradient). It is concluded that the Na+/Ca2+ antiport of heart mitochondria is very sensitive to matrix [H+] and that changes in pHi may contribute to the regulation of matrix Ca2+ levels.
Collapse
Affiliation(s)
- K Baysal
- Department of Medical Biochemistry, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
12
|
Touraki M, Beis I. Protective effects of manganese, cobalt, nickel, and barium against a calcium paradox in the isolated frog heart. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1991; 259:287-93. [PMID: 1919461 DOI: 10.1002/jez.1402590303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of inorganic slow channel blockers on the calcium paradox in the frog heart was examined. Addition of the divalent cations of manganese, cobalt, nickel, or barium during calcium depletion protected the frog heart against a calcium paradox. This protective effect was indicated by reduced protein release, maintenance of electrical activity, and recovery of mechanical activity during reperfusion. Tissue calcium determination results showed that in the control paradox in the absence of divalent cations, there is an efflux of calcium from myocardial cells during calcium depletion and a massive influx of calcium during the following reperfusion, leading to a calcium overload. Divalent cations protected frog myocardial cells, when present in the calcium-free perfusion medium, by reducing both calcium efflux during calcium depletion and the massive calcium influx during reperfusion. The effectiveness of the added divalent cations showed a strong dependence upon their ionic radius. The most potent inhibitors of the calcium paradox in the frog heart were the divalent cations having an ionic radius closer to the ionic radius of calcium. These results are discussed in terms of the possible mechanism involved in the protective effect of manganese, cobalt, nickel, and barium.
Collapse
Affiliation(s)
- M Touraki
- Laboratory of Animal Physiology, School of Sciences, University of Thessaloniki, Greece
| | | |
Collapse
|
13
|
Baydoun AR, Markham A, Morgan RM, Sweetman AJ. Bay K 8644, modifier of calcium transport and energy metabolism in rat heart mitochondria: a new intracellular site of action. Br J Pharmacol 1990; 101:15-20. [PMID: 1704271 PMCID: PMC1917640 DOI: 10.1111/j.1476-5381.1990.tb12081.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. The dihydropyridine Ca2+ channel agonist Bay K 8644 (10-200 microM) produced a concentration-dependent increase in State 4 respiration in the rat heart mitochondria with the highest concentration (200 microM) increasing the rate from 33.1 +/- 0.7 to 187.0 +/- 13.3 ng atoms O2 consumed min-1 mg-1 protein. 2. Bay K 8644 (200 microM) reduced State 3 respiration from 247.2 +/- 11.7 to 174.4 +/- 0.06 ng atoms O2 min-1 mg-1 protein, reduced the respiratory control index (RCI) from 5.3 +/- 0.45 to 1.1 +/- 0.03 and reduced the ADP:O ratio from 2.75 +/- 0.03 to 1.3 +/- 0.15. 3. A similar, but smaller, stimulation of State 4 respiration was seen with nitrendipine (25-200 microM), the rate increasing from 22.6 +/- 1.0 to 33.1 +/- 1.8 ng atoms O2 consumed min-1 mg-1 protein in the presence of 200 microM nitrendipine. 4. Bay K 8644 (10-60 microM) increased the total Ca2+ uptake into rat heart mitochondria, the total increasing from 248.8 +/- 8.4 to 406.9 +/- 17.6 ng Ca2+ mg-1 protein at 60 microM Bay K 8644 (EC50 = 18.9 +/- 1.4 microM). 5. Bay K 8644 (10-60 microM) produced a concentration-dependent reduction in the Ca2+ influx rate (IC50 = 52.5 +/- 2.8 microM). Similar effects were seen with (+)-Bay K 8644 and (-)-Bay K 8644. 6. Nitrendipine (40-120 microM) stimulated Ca2+ efflux from mitochondria preloaded with the ion; the efflux rate increasing from 2.9 +/- 0.05 to 114.2 +/- 6.2 nmol Ca2+ min-1 mg-1 protein (EC50 = 57.3 +/- 1.3 microM). 7. These data indicate dihydropyridine-induced changes in the activity of the mitochondrial Na+/Ca2 . antiporter pathway; nitrendipine causing stimulation and Bay K 8644 causing inhibition.
Collapse
Affiliation(s)
- A R Baydoun
- School of Pharmacology, Faculty of Science, Sunderland Polytechnic
| | | | | | | |
Collapse
|
14
|
McCormack JG, Osbaldeston NJ. The use of the Ca2(+)-sensitive intramitochondrial dehydrogenases and entrapped fura-2 to study Sr2+ and Ba2+ transport across the inner membrane of mammalian mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:239-44. [PMID: 2401295 DOI: 10.1111/j.1432-1033.1990.tb19221.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In extracts of rat heart mitochondria, Sr2+ mimicked the activatory effects of Ca2+ on the Ca2(+)-sensitive intramitochondrial enzymes, pyruvate dehydrogenase phosphate phosphatase, isocitrate dehydrogenase (NAD+), and 2-oxoglutarate dehydrogenase, but at about tenfold higher concentrations (effective range approximately 1-100 muM) in each case. Ba2+ had no effect on extracted phosphatase, but did mimic the effect of Ca2+ on the other two enzymes with effective concentration ranges similar to those of Sr2+; as with Ca2+ and Sr2+, effective Ba2+ ranges were slightly (2-3-fold) raised by increases in ATP/ADP. In intact uncoupled rat heart mitochondria, the effects of Sr2+ and Ba2+ on the pyruvate and 2-oxoglutarate dehydrogenases were essentially similar to their effects in extracts. In fully coupled rat heart or liver mitochondria, the effective concentration ranges of extramitochondrial Sr2+, leading to activation of the matrix enzymes, were always approximately tenfold higher than those for Ca2+ under all conditions. Ba2+ did not affect pyruvate dehydrogenase in coupled mitochondria, but was shown to activate 2-oxoglutarate dehydrogenase in heart or liver mitochondria, and also isocitrate dehydrogenase (NAD+) in the latter; effective concentration ranges for extramitochondrial Ba2+ were approximately 100-fold greater than those for Ca2+, and like those for Ca2+ and Sr2+, were affected markedly by Mg2+ and spermine (which inhibit and promote mitochondrial Ca2+ uptake, respectively) but, in contrast to Ca2+ and Sr2+, they were hardly affected at all by Na+ (which promotes mitochondrial Ca2+ egress). Ba2+ effects were also blocked by ruthenium red (an inhibitor of mitochondrial Ca2+ uptake), but not so effectively as its blockage of the effects of Sr2+ and Ca2+. Ba2+ and Sr2+ both mimicked the inhibitory effects of extramitochondrial Ca2+ on the Na+/Ca2+ exchanger, but only Sr2+ could mimic Ca2+ in exchanging for internal Ca2+ by this mechanism. Both Sr2+ and Ba2+ changed the fluorescent properties of fura-2 or indo-1 in a similar manner to Ca2+, but with higher kd values. In fura-2-loaded rat heart mitochondria, increases in matrix Sr2+ and Ba2+ and the effects of the transport effectors could be readily demonstrated.
Collapse
Affiliation(s)
- J G McCormack
- Department of Biochemistry, University of Leeds, England
| | | |
Collapse
|
15
|
Abstract
The recently developed method of loading isolated heart mitochondria with the fluorescent pH indicator, BCECF, was applied to monitor the Na+o/H+i exchange process from the matrix side of the membrane. The Na+-induced changes in the pH of the matrix (pHm) showed that: (i) the Na+o/H+i exchange followed Michaelis-Menten kinetics with respect to external Na+ with a Km of approx. 20 mM; (ii) in contrast to this, the dependence of the exchange rate on the matrix [H+] did not obey the Michaelian model. No Na+-induced alkalinization occurred above a pHm of 7.45 +/- 0.09 (n = 4). Below this value the reciprocal of the transport rate and that of the matrix [H+] deviated upwardly from the straight line. The results suggest that internal H+ might exert allosteric control on the mitochondrial Na+/H+ exchange process.
Collapse
Affiliation(s)
- A Kapus
- Department of Physiology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | |
Collapse
|
16
|
Kapus A, Lukács GL, Cragoe EJ, Ligeti E, Fonyó A. Characterization of the mitochondrial Na+-H+ exchange. The effect of amiloride analogues. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 944:383-90. [PMID: 2846061 DOI: 10.1016/0005-2736(88)90509-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The kinetic properties and inhibitor sensitivity of the Na+-H+ exchange activity present in the inner membrane of rat heart and liver mitochondria were studied. (1) Na+-induced H+ efflux from mitochondria followed Michaelis-Menten kinetics. In heart mitochondria, the Km for Na+ was 24 +/- 4 mM and the Vmax was 4.5 +/- 1.4 nmol H+/mg protein per s (n = 6). Basically similar values were obtained in liver mitochondria (Km = 31 +/- 2 mM, Vmax = 5.3 +/- 0.2 nmol H+/mg protein per s, n = 4). (2) Li+ proved to be a substrate (Km = 5.9 mM, Vmax = 2.3 nmol H+/mg protein per s) and a potent competitive inhibitor with respect to Na+ (Ki approximately 0.7 mM). (3) External H+ inhibited the mitochondrial Na+-H+ exchange competitively. (4) Two benzamil derivatives of amiloride, 5-(N-4-chlorobenzyl)-N-(2',4'-dimethyl)benzamil and 3',5'-bis(trifluoromethyl)benzamil were effective inhibitors of the mitochondrial Na+-H+ exchange (50% inhibition was attained by approx. 60 microM in the presence of 15 mM Na+). (5) Three 5-amino analogues of amiloride, which are very strong Na+-H+ exchange blockers on the plasma membrane, exerted only weak inhibitory activity on the mitochondrial Na+-H+ exchange. (6) The results indicate that the mitochondrial and the plasma membrane antiporters represent distinct molecular entities.
Collapse
Affiliation(s)
- A Kapus
- Department of Physiology, Semmelweis Medical University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
17
|
Baydoun AR, Markham A, Morgan RM, Sweetman AJ. Palmitoyl carnitine: an endogenous promotor of calcium efflux from rat heart mitochondria. Biochem Pharmacol 1988; 37:3103-7. [PMID: 2900007 DOI: 10.1016/0006-2952(88)90307-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of the fatty acid ester palmitoyl carnitine (PC) on mitochondrial Ca2+ handling and ATP synthesis are described. At low concentrations (5-40 microM) PC was found to produce changes in mitochondrial Ca2+ handling, the most significant effect (P less than 0.05) being the promotion of Ca2+ efflux (EC25 = 1.19 +/- 0.11 microM). Studies on mitochondrial substrate oxidation in the presence of either glutamate plus malate, or succinate, confirmed the ability of PC (10-100 microM) to cause loss of respiratory control as shown by reductions in the Respiratory Control Index for each substrate. It was concluded that the effect of PC on Ca2+ transport was due to a direct action on the Na+-Ca2+ antiporter system, whilst the effect on respiration was due to an uncoupling action.
Collapse
Affiliation(s)
- A R Baydoun
- Department of Pharmacology, Sunderland Polytechnic, U.K
| | | | | | | |
Collapse
|
18
|
Diwan JJ, Haley T, Moore C. Sensitivity of mitochondrial Mg++ flux to reagents which affect K+ flux. J Bioenerg Biomembr 1988; 20:261-71. [PMID: 3372496 DOI: 10.1007/bf00768398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Effects on Mg++ transport in rat liver mitochondria of three reagents earlier shown to affect mitochondrial K+ transport have been examined. The sulfhydryl reactive reagent phenylarsine oxide, which activates K+ flux into respiring mitochondria, also stimulates Mg++ influx. The K+ analog Ba++, when taken up into the mitochondrial matrix, inhibits influx of both K+ and Mg++. The effect on Mg++ influx is seen only if Mg++, which blocks Ba++ accumulation, is added after a preincubation with Ba++. Thus the inhibition of Mg++ influx appears to require interaction of Ba++ at the matrix side of the inner mitochondrial membrane. Added Ba++ also diminishes observed rates of Mg++ efflux but not K+ efflux. This difference may relate to a higher concentration of Ba++ remaining in the medium in the presence of Mg++ under the conditions of our experiments. Pretreatment of mitochondria with dicyclohexyl-carbodiimide (DCCD), under conditions which result in an increase in the apparent Km for K+ of the K+ influx mechanism, results in inhibition of Mg++ influx from media containing approximately 0.2 mM Mg++. The inhibitory effect of DCCD on Mg++ influx is not seen at higher external Mg++ (0.8 mM). This dependence on cation concentration is similar to the dependence on K+ concentration of the inhibitory effect of DCCD on K+ influx. Although mitochondrial Mg++ and K+ transport mechanisms exhibit similar reagent sensitivities, whether Mg++ and K+ share common transport catalysis remains to be established.
Collapse
Affiliation(s)
- J J Diwan
- Biology Department, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
| | | | | |
Collapse
|
19
|
Lukács GL, Kapus A, Fonyó A. Parallel measurement of oxoglutarate dehydrogenase activity and matrix free Ca2+ in fura-2-loaded heart mitochondria. FEBS Lett 1988; 229:219-23. [PMID: 2450043 DOI: 10.1016/0014-5793(88)80831-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The entrapment of the Ca2+-sensitive fluorescence indicators fura-2 or quin2 in the matrix space of isolated heart mitochondria renders possible the direct monitoring of the matrix free Ca2+ [( Ca2+]m) [(1987) Biochem J. 248, 609-613]. In this paper the correlation between the [Ca2+]m and the in situ activity of oxoglutarate dehydrogenase (OGDH) in fura-2-loaded mitochondria is shown. At the initial value of [Ca2+]m, 64 nM, which corresponded to 0.36 nmol/mg mitochondrial Ca content, the OGDH activity was 12% of the maximal. Half-maximal and maximal activation were attained at 0.8 and 1.6 microM [Ca2+]m, respectively. The results indicate that an increase of the mitochondrial Ca content in the physiological range enhances the OGDH activity by means of elevation of [Ca2+]m.
Collapse
Affiliation(s)
- G L Lukács
- Department of Physiology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | |
Collapse
|
20
|
Brierley GP, Jung DW. Monovalent cation antiport reactions in isolated mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 232:47-57. [PMID: 2850732 DOI: 10.1007/978-1-4757-0007-7_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- G P Brierley
- Department of Physiological Chemistry, Ohio State University Medical Center, Columbus 43210
| | | |
Collapse
|
21
|
Låg M, Helgeland K. Ion transport and cadmium-induced inhibition of ciliary activity and induction of swelling of epithelial cells in mouse trachea organ culture. Toxicology 1987; 47:247-58. [PMID: 3424382 DOI: 10.1016/0300-483x(87)90055-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Swelling of epithelial cells and reduction of ciliary activity in mouse trachea organ culture occurred after incubation for 4 h with a rather low concentration of cadmium acetate (10 microM). Specific inhibitors of ion transport (Na+, K+, Cl-) such as furosemide, amiloride and ouabain did not mimic, abolish or increase the toxic effects induced by cadmium acetate. Exposure to cadmium acetate had no significant effect on electrolyte uptake (22Na+ and 86Rb+). These results suggest that the swelling of epithelial cells induced by cadmium acetate is not due to an osmotic swelling from an accumulation of electrolytes. Ba2+, known to have several biological properties in common with Ca2+, and to influence basolateral K+ flux, counteracted the toxic effects of cadmium acetate, whereas a more rapid and extensive swelling occurred with cadmium acetate in a medium without Ca2+. No effect on the uptake of 109Cd2+ was found with barium chloride, whereas in a medium without Ca2+ the Cd2+ uptake increased by 47%. Trifluoperazine (100 microM), a drug which in vitro binds tightly to calmodulin, imitated the toxic effects of 10 microM cadmium acetate. The combination of 10 microM cadmium acetate and 100 microM trifluoperazine resulted in an additive toxic effect. A possible mechanism for the cadmium acetate-induced swelling and inhibition of ciliary activity could, thus, be a disturbance of the regulatory activity of calmodulin.
Collapse
Affiliation(s)
- M Låg
- Department of Microbiology, Dental Faculty, University of Oslo, Blindern, Norway
| | | |
Collapse
|
22
|
Lukács GL, Kapus A. Measurement of the matrix free Ca2+ concentration in heart mitochondria by entrapped fura-2 and quin2. Biochem J 1987; 248:609-13. [PMID: 3435469 PMCID: PMC1148585 DOI: 10.1042/bj2480609] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A method was developed to monitor continuously the matrix free Ca2+ concentration ([Ca2+]m) of heart mitochondria by use of the fluorescent Ca2+ indicators, fura-2 and quin2. The acetoxymethyl esters of fura-2 and quin2 were accumulated in and hydrolysed by isolated mitochondria. An increase of the mitochondrial Ca content from 0.3 nmol/mg of protein to 6 nmol/mg corresponded to a rise of [Ca2+]m from 30 to 1000 nM. The results indicate that physiological fluctuations of the mitochondrial Ca content elicit changes of [Ca2+]m in that range which regulates the matrix dehydrogenases.
Collapse
Affiliation(s)
- G L Lukács
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
| | | |
Collapse
|
23
|
Lukács GL, Hajnóczky G, Hunyady L, Spät A. The effect of inositol 1,4,5-trisphosphate and GTP on calcium release from rat liver microsomes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 931:251-4. [PMID: 3499178 DOI: 10.1016/0167-4889(87)90213-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and GTP mobilized 8% and 90% of the ionophore-releaseable Ca2+ pool from rat liver microsomes, respectively. In contrast to GTP, which acted after a lag-time, the Ins(1,4,5)P3-induced Ca2+ release was immediate. Poly(ethylene glycol) inhibited the effect of Ins(1,4,5)P3 and enhanced that of GTP. Ins(1,4,5)P3 accelerated and enhanced the GTP-induced Ca2+ release. Guanylyl imidodiphosphate inhibited competitively the GTP stimulated Ca2+ release, but not the GTP-dependent phosphorylation of the Mr 17,000 and 38,000 protein bands.
Collapse
Affiliation(s)
- G L Lukács
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | |
Collapse
|
24
|
Rizzuto R, Bernardi P, Favaron M, Azzone GF. Pathways for Ca2+ efflux in heart and liver mitochondria. Biochem J 1987; 246:271-7. [PMID: 3689311 PMCID: PMC1148273 DOI: 10.1042/bj2460271] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. Two processes of Ruthenium Red-insensitive Ca2+ efflux exist in liver and in heart mitochondria: one Na+-independent, and another Na+-dependent. The processes attain maximal rates of 1.4 and 3.0 nmol of Ca2+.min-1.mg-1 for the Na+-dependent and 1.2 and 2.0 nmol of Ca2+.min-1.mg-1 for the Na+-independent, in liver and heart mitochondria, respectively. 2. The Na+-dependent pathway is inhibited, both in heart and in liver mitochondria, by the Ca2+ antagonist diltiazem with a Ki of 4 microM. The Na+-independent pathway is inhibited by diltiazem with a Ki of 250 microM in liver mitochondria, while it behaves as almost insensitive to diltiazem in heart mitochondria. 3. Stretching of the mitochondrial inner membrane in hypo-osmotic media results in activation of the Na+-independent pathway both in liver and in heart mitochondria. 4. Both in heart and liver mitochondria the Na+-independent pathway is insensitive to variations of medium pH around physiological values, while the Na+-dependent pathway is markedly stimulated parallel with acidification of the medium. The pH-activated, Na+-dependent pathway maintains the diltiazem sensitivity. 5. In heart mitochondria, the Na+-dependent pathway is non-competitively inhibited by Mg2+ with a Ki of 0.27 mM, while the Na+-independent pathway is less affected; similarly, in liver mitochondria Mg2+ inhibits the Na+-dependent pathway more than it does the Na+-independent pathway. In the presence of physiological concentrations of Na+, Ca2+ and Mg2+, the Na+-independent and the Na+-dependent pathways operate at rates, respectively, of 0.5 and 1.0 nmol of Ca2+.min-1.mg-1 in heart mitochondria and 0.9 and 0.2 nmol of Ca2+.min-1.mg-1 in liver mitochondria. It is concluded that both heart and liver mitochondria possess two independent pathways for Ca2+ efflux operating at comparable rates.
Collapse
Affiliation(s)
- R Rizzuto
- C.N.R. Unit for the Study of Physiology of Mitochondria, University of Padova, Italy
| | | | | | | |
Collapse
|
25
|
Hayat LH, Crompton M. The effects of Mg2+ and adenine nucleotides on the sensitivity of the heart mitochondrial Na+-Ca2+ carrier to extramitochondrial Ca2+. A study using arsenazo III-loaded mitochondria. Biochem J 1987; 244:533-8. [PMID: 3446174 PMCID: PMC1148028 DOI: 10.1042/bj2440533] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The technique of reversible Ca2+-induced permeabilization [Al Nasser & Crompton (1986) Biochem. J. 239, 19-29, 31-40] has been applied to the preparation of heart mitochondria loaded with the Ca2+ indicator arsenazo III (2 nmol of arsenazo III/mg of mitochondrial protein). The loaded mitochondria ('mitosomes') were used to study the control of the Na+-Ca2+ carrier by extramitochondrial Ca2+ mediated by putative regulatory sites. The Vmax. of the Na+-Ca2+ carrier and the degree of regulatory-site-mediated inhibition were similar to normal heart mitochondria. Ca2+ occupation of the sites in mitosomes yields partial inhibition, which is half-maximal with 0.8 microM external free Ca2+. The inhibition consists of a small decrease in Vmax. and a relatively large increase in apparent Km for internal Ca2+. Mg2+ also appears to interact with the sites, but this is largely abolished by ATP and ADP (but not AMP) under conditions in which the free [Mg2+] is maintained constant. The results indicate that the regulatory sites are effective in controlling the Na+-Ca2+ carrier at physiological concentrations of adenine nucleotides, Mg2+, intra- and extra-mitochondrial free Ca2+.
Collapse
Affiliation(s)
- L H Hayat
- Department of Biochemistry, University College London, U.K
| | | |
Collapse
|
26
|
Kiesel L, Lukács GL, Eberhardt I, Runnebaum B, Spät A. Effect of inositol 1,4,5-trisphosphate and GTP on calcium release from pituitary microsomes. FEBS Lett 1987; 217:85-8. [PMID: 3496242 DOI: 10.1016/0014-5793(87)81248-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microsomal vesicles from bovine anterior pituitary accumulate Ca2+ and maintain a steady-state ambient Ca2+ level of 200 nM. IP3 and GTP both induce calcium release from the microsomal vesicles. The effect of IP3 is inhibited by polyethylene glycol (PEG), and the effect of GTP is absolutely dependent on PEG. Half-maximal effect of IP3 (without PEG) is 0.26 micron, the maximal calcium release attaining 7% of the A23187-releasable pool. The same values for GTP (in the presence of PEG) are 80 microM and 10%, respectively. GTP potentiates the effect of IP3. This potentiation is not mediated by protein phosphorylation.
Collapse
|
27
|
Spät A, Lukács GL, Eberhardt I, Kiesel L, Runnebaum B. Binding of inositol phosphates and induction of Ca2+ release from pituitary microsomal fractions. Biochem J 1987; 244:493-6. [PMID: 3663137 PMCID: PMC1148018 DOI: 10.1042/bj2440493] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bovine anterior-pituitary microsomal fractions exhibit high-affinity, saturable and reversible binding of inositol 1,4,5-[32P]trisphosphate; 50% of the labelled ligand is displaced by 3.5 nM-inositol 1,4,5-trisphosphate. 0.5 microM-inositol 1,4-bisphosphate and 10 microM-ATP. Inositol 1,4,5-trisphosphate induces the release of Ca2+ from the microsomal vesicles (half-maximal effect at 290 nM), and its action is potentiated by inositol tetrakisphosphate (half-maximal effect at 4 microM).
Collapse
Affiliation(s)
- A Spät
- Department of Physilogy, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | | | |
Collapse
|