1
|
Abstract
Cell penetrating peptides (CPPs) are generally defined as short positively charged peptides, containing 5-30 amino acids. Based on their physicochemical properties, they are classified as three main groups, namely hydrophobic, amphipathic, and hydrophilic. They are capable of interacting with the cell membrane without inducing serious toxicity, and they can carry cargo molecules across the membrane. Cargo molecules could be different therapeutics which makes CPPs valuable in the field of drug delivery into living cells. Nowadays, CPPs are considered as potential parts of therapeutics against several diseases.Despite similarities in their primary structure, the interactions of CPPs with a cell membrane may vary a lot. This is even more complicated when the CPP is bound to the cargo molecule. The mechanism(s) of their cellular uptake and endosomal escape have not been completely resolved. Understanding the mechanism of membrane interaction will help us designing a CPP with enhanced, selective cargo delivery, hopefully resulting in better disease treatments. So far energy independent direct membrane penetration and energy-dependent endocytosis have been suggested as two main mechanisms of cellular entry for CPPs, and both may be applicable for the same CPP-complex, depending on the conditions.In order to understand which mechanism is associated with a particular CPP 's cellular uptake in a particular cell (sometimes including endosomal escape), different biological and biophysical methods and strategies have been applied. In this chapter, we will address several biophysical methods, such as fluorescence spectroscopy, circular dichroism (CD) spectroscopy, dynamic light scattering, and NMR .We also review different membrane model systems which are suitable for the biophysical studies. These include large unilamellar phospholipid vesicles (LUVs ), which are the most commonly used in the lipid-peptide interaction studies. Detergent micelles and mixed micelles (bicelles) are also suitable membrane model systems, particularly in high-resolution NMR studies.
Collapse
Affiliation(s)
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Sathyanarayana P, Visweswariah SS, Ayappa KG. Mechanistic Insights into Pore Formation by an α-Pore Forming Toxin: Protein and Lipid Bilayer Interactions of Cytolysin A. Acc Chem Res 2021; 54:120-131. [PMID: 33291882 DOI: 10.1021/acs.accounts.0c00551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pore forming toxins (PFTs) are the largest class of bacterial toxins playing a central role in bacterial pathogenesis. They are proteins specifically designed to form nanochannels in the membranes of target cells, ultimately resulting in cell death and establishing infection. PFTs are broadly classified as α- and β-PFTs, depending on secondary structures that form the transmembrane channel. A unique feature about this class of proteins is the drastic conformational changes and complex oligomerization pathways that occur upon exposure to the plasma membrane. A molecular understanding of pore formation has implications in designing novel intervention strategies to combat rising antimicrobial resistance, targeted-cancer therapy, as well as designing nanopores for specialized technologies. Central to unraveling the pore formation pathway is the availability of high resolution crystal structures. In this regard, β-toxins are better understood, when compared with α-toxins whose pore forming mechanisms are complicated by an incomplete knowledge of the driving forces for amphiphatic membrane-inserted helices to organize into functional pores. With the publication of the first crystal structure for an α-toxin, cytolysin A (ClyA), in 2009 we embarked on an extensive multiscale study to unravel its pore forming mechanism. This Account represents the collective mechanistic knowledge gained in our laboratories using a variety of experimental and theoretical techniques which include large scale molecular dynamics (MD) simulations, kinetic modeling studies, single-molecule fluorescence imaging, and super-resolution spectroscopy. We reported MD simulations of the ClyA protomer, oligomeric intermediates, and full pore complex in a lipid bilayer and mapped the conformational transitions that accompany membrane binding. Using single-molecule fluorescence imaging, the conformational transition was experimentally verified by analysis of various diffusion states of membrane bound ClyA. Importantly, we have uncovered a hitherto unknown putative cholesterol binding motif in the membrane-inserted helix of ClyA. Distinct binding pockets for cholesterol formed by adjacent membrane-inserted helices are revealed in MD simulations. Cholesterol appears to play a dual role by stabilizing both the membrane-inserted protomer as well as oligomeric intermediates. Molecular dynamics simulations and kinetic modeling studies suggest that the membrane-inserted arcs oligomerize reversibly to form the predominant transmembrane oligomeric intermediates during pore formation. We posit that this mechanistic understanding of the complex action of α-PFTs has implications in unraveling pore assembly across the wider family of bacterial toxins. With emerging antimicrobial resistance, alternate therapies may rely on disrupting pore functionality or oligomerization of these pathogenic determinants utilized by bacteria, and our study includes assessing the potential for dendrimers as pore blockers.
Collapse
Affiliation(s)
- Pradeep Sathyanarayana
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
| | - Sandhya S. Visweswariah
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India 560012
| | - K. Ganapathy Ayappa
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
3
|
Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins. Proc Natl Acad Sci U S A 2019; 116:12839-12844. [PMID: 31189600 DOI: 10.1073/pnas.1821897116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pore-forming toxins (PFTs) are a class of proteins implicated in a wide range of virulent bacterial infections and diseases. These toxins bind to target membranes and subsequently oligomerize to form functional pores that eventually lead to cell lysis. While the protein undergoes large conformational changes on the bilayer, the connection between intermediate oligomeric states and lipid reorganization during pore formation is largely unexplored. Cholesterol-dependent cytolysins (CDCs) are a subclass of PFTs widely implicated in food poisoning and other related infections. Using a prototypical CDC, listeriolysin O (LLO), we provide a microscopic connection between pore formation, lipid dynamics, and leakage kinetics by using a combination of Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) measurements on single giant unilamellar vesicles (GUVs). Upon exposure to LLO, two distinct populations of GUVs with widely different leakage kinetics emerge. We attribute these differences to the existence of oligomeric intermediates, sampling various membrane-bound conformational states of the protein, and their intimate coupling to lipid rearrangement and dynamics. Molecular dynamics simulations capture the influence of various membrane-bound conformational states on the lipid and cholesterol dynamics, providing molecular interpretations to the FRET and FCS experiments. Our study establishes a microscopic connection between membrane binding and conformational changes and their influence on lipid reorganization during PFT-mediated cell lysis. Additionally, our study provides insights into membrane-mediated protein interactions widely implicated in cell signaling, fusion, folding, and other biomolecular processes.
Collapse
|
4
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
5
|
Matsuzaki K. Membrane Permeabilization Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:9-16. [PMID: 30980350 DOI: 10.1007/978-981-13-3588-4_2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Many antimicrobial peptides are considered to kill microbes by permeabilizing cell membranes. This chapter summarizes the driving force of peptide binding to membranes; various mechanisms of lipid bilayer permeabilization including the barrel-stave, toroidal pore, and carpet models; and modes of permeabilization of bacterial and mammalian membranes.
Collapse
Affiliation(s)
- Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
6
|
Amaro M, Šachl R, Jurkiewicz P, Coutinho A, Prieto M, Hof M. Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state. Biophys J 2016; 107:2751-2760. [PMID: 25517142 DOI: 10.1016/j.bpj.2014.10.058] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 01/23/2023] Open
Abstract
Fluorescence methods are versatile tools for obtaining dynamic and topological information about biomembranes because the molecular interactions taking place in lipid membranes frequently occur on the same timescale as fluorescence emission. The fluorescence intensity decay, in particular, is a powerful reporter of the molecular environment of a fluorophore. The fluorescence lifetime can be sensitive to the local polarity, hydration, viscosity, and/or presence of fluorescence quenchers/energy acceptors within several nanometers of the vicinity of a fluorophore. Illustrative examples of how time-resolved fluorescence measurements can provide more valuable and detailed information about a system than the time-integrated (steady-state) approach will be presented in this review: 1), determination of membrane polarity and mobility using time-dependent spectral shifts; 2), identification of submicroscopic domains by fluorescence lifetime imaging microscopy; 3), elucidation of membrane leakage mechanisms from dye self-quenching assays; and 4), evaluation of nanodomain sizes by time-resolved Förster resonance energy transfer measurements.
Collapse
Affiliation(s)
- Mariana Amaro
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Radek Šachl
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Piotr Jurkiewicz
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Ana Coutinho
- Centre for Molecular Chemistry and Physics and Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Departamento Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Manuel Prieto
- Centre for Molecular Chemistry and Physics and Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic.
| |
Collapse
|
7
|
Salinas DG. Flux theory for Poisson distributed pores with Gaussian permeability. Channels (Austin) 2015; 10:111-8. [PMID: 26488853 DOI: 10.1080/19336950.2015.1100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The mean of the solute flux through membrane pores depends on the random distribution and permeability of the pores. Mathematical models including such randomness factors make it possible to obtain statistical parameters for pore characterization. Here, assuming that pores follow a Poisson distribution in the lipid phase and that their permeabilities follow a Gaussian distribution, a mathematical model for solute dynamics is obtained by applying a general result from a previous work regarding any number of different kinds of randomly distributed pores. The new proposed theory is studied using experimental parameters obtained elsewhere, and a method for finding the mean single pore flux rate from liposome flux assays is suggested. This method is useful for pores without requiring studies by patch-clamp in single cells or single-channel recordings. However, it does not apply in the case of ion-selective channels, in which a more complex flux law combining the concentration and electrical gradient is required.
Collapse
Affiliation(s)
- Dino G Salinas
- a Centro de Investigación Biomédica, Facultad de Medicina , Universidad Diego Portales , Santiago , Chile
| |
Collapse
|
8
|
Kristensen K, Henriksen JR, Andresen TL. Quantification of leakage from large unilamellar lipid vesicles by fluorescence correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2994-3002. [DOI: 10.1016/j.bbamem.2014.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/02/2014] [Accepted: 08/07/2014] [Indexed: 11/26/2022]
|
9
|
Salinas DG. Fluxes theory in experiments with random distributed channels on vesicles. Channels (Austin) 2014; 8:258-63. [PMID: 24643013 DOI: 10.4161/chan.28011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
When channels are randomly distributed in a population of vesicles, disregarding the number of channels per vesicle, these channels follow a Poisson distribution. This has been verified in many cases, determining the average of channels per vesicle. However, to determine kinetic parameters in population studies, a mathematical expression for the mean flux of solute through channels per vesicle is necessary. Hence, here, this mean flux is calculated, assuming Poisson distributed channels in a population of vesicle. Moreover, this result has been generalized to any number of different kinds of channels (i.e., channels with different permeabilities). These results, useful for in vitro experiments with mixed both channels and vesicles, can be supplemented with those from other techniques, in order to understanding how the nature of the lipid membrane affects kinetic parameters of channel.
Collapse
|
10
|
Wheaten SA, Lakshmanan A, Almeida PF. Statistical analysis of peptide-induced graded and all-or-none fluxes in giant vesicles. Biophys J 2014; 105:432-43. [PMID: 23870264 DOI: 10.1016/j.bpj.2013.05.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022] Open
Abstract
Antimicrobial, cytolytic, and cell-penetrating peptides induce pores or perturbations in phospholipid membranes that result in fluxes of dyes into or out of lipid vesicles. Here we examine the fluxes induced by four of these membrane-active peptides in giant unilamellar vesicles. The type of flux is determined from the modality of the distributions of vesicles as a function of their dye content using the statistical Hartigan dip test. Graded and all-or-none fluxes correspond to unimodal and bimodal distributions, respectively. To understand how these distributions arise, we perform Monte Carlo simulations of peptide-induced dye flux into vesicles using a very simple model. The modality of the distributions depends on the rate constants of pore opening and closing, and dye flux. If the rate constants of pore opening and closing are both much smaller than that of dye flux through the pore, all-or-none influx occurs. However, if one of them, especially the rate constant for pore opening, increases significantly relative to the flux rate constant, the process becomes graded. In the experiments, we find that the flux type is the same in giant and large vesicles, for all peptides except one. But this one exception indicates that the flux type cannot be used to unambiguously predict the mechanism of membrane permeabilization by the peptides.
Collapse
Affiliation(s)
- Sterling A Wheaten
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | | | | |
Collapse
|
11
|
Muñoz F, Palomares-Jerez MF, Daleo G, Villalaín J, Guevara MG. Possible mechanism of structural transformations induced by StAsp-PSI in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:339-47. [DOI: 10.1016/j.bbamem.2013.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 01/19/2023]
|
12
|
Boll A, Jatho A, Czudnochowski N, Geyer M, Steinem C. Mechanistic insights into the translocation of full length HIV-1 Tat across lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2685-93. [PMID: 21819963 DOI: 10.1016/j.bbamem.2011.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/19/2011] [Accepted: 07/20/2011] [Indexed: 11/28/2022]
Abstract
The mechanism of how full length Tat (aa 1-86) crosses artificial lipid membranes was elucidated by means of fluorescence spectroscopy and fluorescence microscopy. It was shown that full length Tat (aa 1-86) neither forms pores in large unilamellar vesicles (LUVs) nor in giant unilamellar vesicles (GUVs) composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). In contrast, an N-terminally truncated Tat protein (aa 35-86) that lacks the structurally defined proline- and cysteine-rich region as well as the highly conserved tryptophan residue at position 11 generates pores in artificial POPC-membranes, through which a water-soluble dye up to a size of 10kDa can pass. By means of fluorescence microscopy, the transfer of fluorescently labeled full length Tat across POPC-bilayers was unambiguously visualized with a concomitant accumulation of the protein in the membrane interface. However, if the dye was attached to the protein, also pore formation was induced. The size of the pores was, however smaller than the protein size, i.e. the labeled protein with a mass of 11.6kDa passed the membrane, while a fluorescent dye with a mass of 10kDa was excluded from the vesicles' interior. The results demonstrate that pore formation is not the prime mechanism by which full length Tat crosses a membrane.
Collapse
Affiliation(s)
- Annegret Boll
- Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, Göttingen, Germany
| | | | | | | | | |
Collapse
|
13
|
Abstract
The chapter deals with some biophysical methods used for investigating CPP-induced changes in membrane properties by spectroscopy methods such as fluorescence or NMR and methods used for probing CPP-induced leakage in membranes. Some useful model systems for biomembranes are described. These include large unilamellar phospholipid vesicles (LUVs) of well-defined size (diameter typically 100 nm). A protocol for the preparation of such vesicles is included. The leakage studies make use of LUVs with entrapped dye molecules. The NMR studies make use of mixed micelles (bicelles) as a membrane mimetic system, which can be oriented in the magnetic field of the spectrometer.
Collapse
Affiliation(s)
- Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
14
|
Belosludtsev KN, Trudovishnikov AS, Belosludtseva NV, Agafonov AV, Mironova GD. Palmitic acid induces the opening of a Ca2+-dependent pore in the plasma membrane of red blood cells: the possible role of the pore in erythrocyte lysis. J Membr Biol 2010; 237:13-19. [PMID: 20835705 DOI: 10.1007/s00232-010-9302-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/17/2010] [Indexed: 12/27/2022]
Abstract
Earlier we found that in the presence of Ca(2+) palmitic acid (Pal) increases the nonspecific permeability of artificial (planar and liposomal) membranes and causes permeabilization of the inner mitochondrial membrane. An assumption was made that the mechanism of Pal/Ca(2+)-induced membrane permeabilization relates to the Ca(2+)-induced phase separation of Pal and can be considered as formation of fast-tightening lipid pores due to chemotropic phase transition in the lipid bilayer. In this article, we continue studying this pore. We have found that Pal plus Ca(2+) permeabilize the plasma membrane of red blood cells in a dose-dependent manner. The same picture has been revealed for stearic acid (20 μM) but not for myristic and linoleic acids. The Pal-induced permeabilization of erythrocytic membranes can also occur in the presence of Ba(2+) and Mn(2+) (200 μM), but other bivalent cations (200 μM Mg(2+), Sr(2+), Ni(2+), Co(2+)) are relatively ineffective. The formation of Pal/Ca(2+)-induced pores in the erythrocytic membranes has been found to result in the destruction of cells.
Collapse
Affiliation(s)
- Konstantin N Belosludtsev
- Institute of Theoretical and Experimental Biophysics RAS, Institutskaya, 3, Pushchino, 142290 Moscow Region, Russia.
| | | | | | | | | |
Collapse
|
15
|
Jönsson P, Jonsson MP, Höök F. Sealing of submicrometer wells by a shear-driven lipid bilayer. NANO LETTERS 2010; 10:1900-1906. [PMID: 20405904 DOI: 10.1021/nl100779k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A supported lipid bilayer (SLB) was formed in a microfluidic channel by vesicle fusion. The SLB, formed on a flat part of the surface, was driven by the shear forces of a bulk flow above the SLB to a part of the surface with embedded submicrometer wells. When using a bulk solution with a pH of 9.5 the advancing lipid bilayer sealed the wells, creating free-spanning membranes, whereas at a pH of 8.0 the SLB instead followed the contour of the wells.
Collapse
Affiliation(s)
- Peter Jönsson
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | | | | |
Collapse
|
16
|
Yandek LE, Pokorny A, Almeida PFF. Wasp mastoparans follow the same mechanism as the cell-penetrating peptide transportan 10. Biochemistry 2009; 48:7342-51. [PMID: 19594111 DOI: 10.1021/bi9008243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have been examining the mechanism and kinetics of the interactions of a selected set of peptides with phospholipid membranes in a quantitative manner. This set was chosen to cover a broad range of physical-chemical properties and cell specificities. Mastoparan (masL) and mastoparan X (masX) are two similar peptides from the venoms of the wasps Vespula lewisii and Vespa xanthoptera, respectively, and were chosen to complete the set. The rate constants for masX association with and dissociation from membranes are reported here for the first time. The kinetics of dye efflux induced by both mastoparans from phospholipid vesicles were also examined and quantitatively analyzed. We find that masL and masX follow the same graded kinetic model that we previously proposed for the cell-penetrating peptide transportan 10 (tp10), but with different parameters. This comparison is relevant because tp10 is derived from masL by addition of a mostly nonpolar segment of seven residues at the N-terminus. Tp10 is more active than the mastoparans toward phosphatidylcholine vesicles, but the mastoparans are more sensitive to the effect of anionic lipids. Furthermore, the Gibbs free energies of binding and insertion of the peptides calculated using the Wimley-White transfer scales are in good agreement with the values derived from our experimental data and are useful for understanding peptide behavior.
Collapse
Affiliation(s)
- Lindsay E Yandek
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, USA
| | | | | |
Collapse
|
17
|
Sivakamasundari C, Nagaraj R. Interaction of 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes. J Biosci 2009; 34:239-50. [PMID: 19550040 DOI: 10.1007/s12038-009-0028-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the interaction of six 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes. The net charge of the peptides at neutral pH varies from -1 to +6. Circular dichroism spectra indicate that peptides with a high net positive charge tend to fold into a helical conformation in the presence of negatively charged lipid vesicles. In helical conformation, their average hydrophobic moment and hydrophobicity would render them surface-active. The composition of amino acids on the polar face of the helix in the peptides is considerably different. The peptides show variations in their ability to permeabilise zwitterionic and anionic lipid vesicles. Whereas increased net positive charge favours greater permeabilisation, the distribution of charged residues in the polar face also plays a role in determining membrane activity. The distribution of amino acids in the polar face of the helix in the peptides that were investigated do not fall into the canonical classes described. Amphipathic helices, which are part of proteins, with a pattern of amino acid distribution different from those observed in class L, A and others, could help in providing newer insights into peptide-membrane interactions.
Collapse
Affiliation(s)
- Chandrasekaran Sivakamasundari
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
18
|
Almeida PF, Pokorny A. Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: from kinetics to thermodynamics. Biochemistry 2009; 48:8083-93. [PMID: 19655791 DOI: 10.1021/bi900914g] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mechanisms of six different antimicrobial, cytolytic, and cell-penetrating peptides, including some of their variants, are discussed and compared. The specificity of these polypeptides varies; however, they all form amphipathic alpha-helices when bound to membranes, and there are no striking differences in their sequences. We have examined the thermodynamics and kinetics of their interaction with phospholipid vesicles, namely, binding and peptide-induced dye efflux. The thermodynamics of binding calculated using the Wimley-White interfacial hydrophobicity scale are in good agreement with the values derived from experiment. The generally accepted view that binding affinity determines functional specificity is also supported by experiments in model membranes. We now propose the hypothesis that it is the thermodynamics of the insertion of the peptide into the membrane, from a surface-bound state, that determine the mechanism.
Collapse
Affiliation(s)
- Paulo F Almeida
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, North Carolina 28403, USA.
| | | |
Collapse
|
19
|
Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1523-33. [PMID: 19397893 DOI: 10.1016/j.bbamem.2009.04.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/03/2009] [Accepted: 04/13/2009] [Indexed: 01/16/2023]
Abstract
Several bioactive peptides exert their biological function by interacting with cellular membranes. Structural data on their location inside lipid bilayers are thus essential for a detailed understanding of their mechanism of action. We propose here a combined approach in which fluorescence spectroscopy and molecular dynamics (MD) simulations were applied to investigate the mechanism of membrane perturbation by the antimicrobial peptide PMAP-23. Fluorescence spectra, depth-dependent quenching experiments, and peptide-translocation assays were employed to determine the location of the peptide inside the membrane. MD simulations were performed starting from a random mixture of water, lipids and peptide, and following the spontaneous self-assembly of the bilayer. Both experimental and theoretical data indicated a peptide location just below the polar headgroups of the membrane, with an orientation essentially parallel to the bilayer plane. These findings, together with experimental results on peptide-induced leakage from large and giant vesicles, lipid flip-flop and peptide exchange between vesicles, support a mechanism of action consistent with the "carpet" model. Furthermore, the atomic detail provided by the simulations suggested the occurrence of an additional, more specific and novel mechanism of bilayer destabilization by PMAP-23, involving the unusual insertion of charged side chains into the hydrophobic core of the membrane.
Collapse
|
20
|
Zhang G, Zhai X, Liu M, Tang Y, Huang X, Wang Y. Spacer-modulated aggregation of the cyanine dye on the vesicles of gemini amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1366-1370. [PMID: 19117378 DOI: 10.1021/la803557e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A series of gemini amphiphiles (bis(2'-heptadecyl-3'-ethylimidazolium)-1,n-alkane dibromide, abbreviated as Gn, n = 2, 4, 6, 8, 10) was found to form vesicles under ultrasonication in aqueous solution at very low concentration (5 microM), which was confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The adsorption and interaction of a cyanine dye (3,3'-disulfopropyl-4,5,4',5'-dibenzo-9-methyl-thiacarbocyanine triethylammonium salt, abbreviated as MTC) on the vesicles was investigated. It was found that the cyanine dye could exhibit different colors when interacting with the vesicles. The UV-vis spectral measurements revealed the formation of the H or J aggregates of the cyanine dye on the vesicles, which is spacer length dependent: the short spacer length prefers the formation of the H-aggregate, whereas the longer spacer favors the J-aggregate formation. In addition, these aggregates showed different absorption positions from those on the planar films. Furthermore, by mixing the G2 and G10 vesicles in different ways, the selective aggregation of the cyanine dye on the vesicles was realized.
Collapse
Affiliation(s)
- Guocheng Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid and Interface Science, Institute of Chemistry, CAS, Beijing 100190 PR China
| | | | | | | | | | | |
Collapse
|
21
|
Ghatkesar MK, Lang HP, Gerber C, Hegner M, Braun T. Comprehensive characterization of molecular interactions based on nanomechanics. PLoS One 2008; 3:e3610. [PMID: 18978938 PMCID: PMC2572191 DOI: 10.1371/journal.pone.0003610] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/08/2008] [Indexed: 11/18/2022] Open
Abstract
Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (approximately 748*10(6) Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions.
Collapse
Affiliation(s)
- Murali Krishna Ghatkesar
- National Center of Competence for Research in Nanoscience, Institute of Physics, University of Basel, Basel, Switzerland
- California Institute of Technology, Pasadena, California, United States of America
| | - Hans-Peter Lang
- National Center of Competence for Research in Nanoscience, Institute of Physics, University of Basel, Basel, Switzerland
| | - Christoph Gerber
- National Center of Competence for Research in Nanoscience, Institute of Physics, University of Basel, Basel, Switzerland
| | - Martin Hegner
- CRANN, SFI Nanoscience Institute, Trinity College, University of Dublin, Dublin, Ireland
- * E-mail: (MH); (TB)
| | - Thomas Braun
- National Center of Competence for Research in Nanoscience, Institute of Physics, University of Basel, Basel, Switzerland
- CRANN, SFI Nanoscience Institute, Trinity College, University of Dublin, Dublin, Ireland
- * E-mail: (MH); (TB)
| |
Collapse
|
22
|
Agmo Hernández V, Scholz F. The lipid composition determines the kinetics of adhesion and spreading of liposomes on mercury electrodes. Bioelectrochemistry 2008; 74:149-56. [DOI: 10.1016/j.bioelechem.2008.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 06/17/2008] [Accepted: 06/17/2008] [Indexed: 12/13/2022]
|
23
|
Baumgärtner P, Geiger M, Zieseniss S, Malleier J, Huntington JA, Hochrainer K, Bielek E, Stoeckelhuber M, Lauber K, Scherfeld D, Schwille P, Wäldele K, Beyer K, Engelmann B. Phosphatidylethanolamine critically supports internalization of cell-penetrating protein C inhibitor. ACTA ACUST UNITED AC 2007; 179:793-804. [PMID: 18025309 PMCID: PMC2080921 DOI: 10.1083/jcb.200707165] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although their contribution remains unclear, lipids may facilitate noncanonical routes of protein internalization into cells such as those used by cell-penetrating proteins. We show that protein C inhibitor (PCI), a serine protease inhibitor (serpin), rapidly transverses the plasma membrane, which persists at low temperatures and enables its nuclear targeting in vitro and in vivo. Cell membrane translocation of PCI necessarily requires phosphatidylethanolamine (PE). In parallel, PCI acts as a lipid transferase for PE. The internalized serpin promotes phagocytosis of bacteria, thus suggesting a function in host defense. Membrane insertion of PCI depends on the conical shape of PE and is associated with the formation of restricted aqueous compartments within the membrane. Gain- and loss-of-function mutations indicate that the transmembrane passage of PCI requires a branched cavity between its helices H and D, which, according to docking studies, precisely accommodates PE. Our findings show that its specific shape enables cell surface PE to drive plasma membrane translocation of cell-penetrating PCI.
Collapse
Affiliation(s)
- Petra Baumgärtner
- Vaskuläre Biologie und Hämostase, Institut für Klinische Chemie, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Melittin is the principal toxic component in the venom of the European honey bee Apis mellifera and is a cationic, hemolytic peptide. It is a small linear peptide composed of 26 amino acid residues in which the amino-terminal region is predominantly hydrophobic whereas the carboxy-terminal region is hydrophilic due to the presence of a stretch of positively charged amino acids. This amphiphilic property of melittin has resulted in melittin being used as a suitable model peptide for monitoring lipid-protein interactions in membranes. In this review, the solution and membrane properties of melittin are highlighted, with an emphasis on melittin-membrane interaction using biophysical approaches. The recent applications of melittin in various cellular processes are discussed.
Collapse
Affiliation(s)
- H Raghuraman
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
25
|
Danoff EJ, Wang X, Tung SH, Sinkov NA, Kemme AM, Raghavan SR, English DS. Surfactant vesicles for high-efficiency capture and separation of charged organic solutes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:8965-71. [PMID: 17658858 DOI: 10.1021/la070215n] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We demonstrate the unique ability of catanionic vesicles, formed by mixing single-tailed cationic and anionic surfactants, to capture ionic solutes with remarkable efficiency. In an initial study (Wang, X.; Danoff, E. J.; Sinkov, N. A.; Lee, J.-H.; Raghavan, S. R.; English, D. S. Langmuir 2006, 22, 6461) with vesicles formed from cetyl trimethylammonium tosylate (CTAT) and sodium dodecylbenzenesulfonate (SDBS), we showed that CTAT-rich (cationic) vesicles could capture the anionic solute carboxyfluorescein with high efficiency (22%) and that the solute was retained by the vesicles for very long times (t1/2 = 84 days). Here we expand on these findings by investigating the interactions of both anionic and cationic solutes, including the chemotherapeutic agent doxorubicin, with both CTAT-rich and SDBS-rich vesicles. The ability of these vesicles to capture and hold dyes is extremely efficient (>20%) when the excess charge of the vesicle bilayer is opposite that of the solute (i.e., for anionic solutes in CTAT-rich vesicles and for cationic solutes in SDBS-rich vesicles). This charge-dependent effect is strong enough to enable the use of vesicles to selectively capture and separate an oppositely charged solute from a mixture of solutes. Our results suggest that catanionic surfactant vesicles could be useful for a variety of separation and drug delivery applications because of their unique properties and long-term stability.
Collapse
Affiliation(s)
- Emily J Danoff
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2111, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Zutić V, Svetlicić V, Zimmermann AH, DeNardis NI, Frkanec R. Comment on "kinetics of the adhesion of DMPC liposomes on a mercury electrode. Effect of lamellarity, phase composition, size and curvature of liposomes, and presence of the pore forming peptide mastoparan X". LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:8647-9; discussion 8650. [PMID: 17595120 DOI: 10.1021/la063712x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Vera Zutić
- Group for Bioelectrochemistry and Surface Imaging, Division for Marine and Environmental Research, Rudjer Bosković Institute, P.O. Box 180, 10000 Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
27
|
Andersson A, Danielsson J, Gräslund A, Mäler L. Kinetic models for peptide-induced leakage from vesicles and cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:621-35. [PMID: 17273853 DOI: 10.1007/s00249-007-0131-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/19/2006] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
In this article analytical expressions for peptide-induced membrane leakage are presented. Two different models for time-dependent leakage have been developed. In the first, the leakage is assumed to be coupled by pores formed by the peptides. In the second model the peptide is assumed to induce a stress/perturbation in the membrane, and in order to reduce the stress, rearrangements in the membrane are induced. The leakage is coupled to these rearrangements, and when equilibrium is achieved no more leakage occurs. From the kinetic models simple fitting routines have been developed involving only two fitting parameters, and these have been used to fit experimental data for two prion protein-derived peptides as well as the honey bee toxin melittin in both vesicles and erythrocytes with good results. The fitted parameters provide both a quantitative and a qualitative basis for interpreting the experimental results. In addition a model for the peptide concentration-dependent leakage is presented, which was used to fit experimental data for leakage induced by the prion protein-derived peptides. The models presented in this article are compared with other models for peptide-induced membrane leakage.
Collapse
Affiliation(s)
- August Andersson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | | | | | |
Collapse
|
28
|
Hernandez VA, Scholz F. Kinetics of the adhesion of DMPC liposomes on a mercury electrode. Effect of lamellarity, phase composition, size and curvature of liposomes, and presence of the pore forming peptide mastoparan X. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:10723-31. [PMID: 17129052 DOI: 10.1021/la060908o] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Liposomes suspended in aqueous electrolyte solutions can adhere at mercury electrodes. The adhesion is a complex process that starts with the docking and opening and leads to a spreading, finally resulting in the formation of islands of adsorbed lecithin molecules. The adhesion process can be followed by chronoamperometry, and a detailed analysis of the macroscopic and microscopic kinetics can be performed yielding rate constants and activation parameters. By using giant unilamellar liposomes and multilamellar liposomes, the effect of lamellarity and liposome size could be elucidated for liposomes in the liquid crystalline, gel, and superlattice phase states. Below the phase transition temperature, the time constant of opening of the liposomes (i.e., the irreversible binding of the lecithin molecules on the preliminary contact interface liposome|mercury and the therewith associated disintegration of the liposome membrane on that spot) is shown to be strongly size dependent. The activation energy, however, of that process is size independent with the exception of very small liposomes. That size dependence of time constants is a result of the size dependence of the initial contact area. The time constant and the activation energies of the spreading step exhibit a strong size dependence, which could be shown to be due to the size dependence of rate and activation energy of pore formation. Pore formation is necessary to release the solution included in the liposomes. This understanding was corroborated by addition of the pore inducing peptide Mastoparan X to the liposome suspension. The obtained results show that electrochemical studies of liposome adhesion on mercury electrodes can be used as a biomimetic tool to understand the effect of membrane properties on vesicle fusion.
Collapse
Affiliation(s)
- Victor Agmo Hernandez
- Institut für Biochemie, Universität Greifswald, 17489 Greifswald, Soldmannstr. 23, Germany
| | | |
Collapse
|
29
|
Wang X, Danoff EJ, Sinkov NA, Lee JH, Raghavan SR, English DS. Highly efficient capture and long-term encapsulation of dye by catanionic surfactant vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:6461-4. [PMID: 16830982 DOI: 10.1021/la0605135] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Vesicles formed from the cationic surfactant, cetyltrimethylammonium tosylate (CTAT) and the anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), were used to sequester the anionic dye carboxyfluorescein. Carboxyfluorescein was efficiently sequestered in CTAT-rich vesicles via two mechanisms: encapsulation in the inner water pool and electrostatic adsorption to the charged bilayer. The apparent encapsulation efficiency (22%) includes both encapsulated and adsorbed fractions. Entrapment of carboxyfluorescein by SDBS-rich vesicles was not observed. Results show the permeability of the catanionic membrane is an order of magnitude lower than that of phosphatidylcholine vesicles and the loading capacity is more than 10 times greater.
Collapse
Affiliation(s)
- Xiang Wang
- Departments of Chemistry and Biochemistry, and Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742-2111, USA
| | | | | | | | | | | |
Collapse
|
30
|
Silva L, Coutinho A, Fedorov A, Prieto M. Nystatin-induced lipid vesicles permeabilization is strongly dependent on sterol structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:452-9. [PMID: 16626629 DOI: 10.1016/j.bbamem.2006.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 03/03/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
The selectivity of the antibiotic nystatin towards ergosterol compared to cholesterol is believed to be a crucial factor in its specificity for fungi. In order to define the structural features of sterols that control this effect, nystatin interaction with ergosterol-, cholesterol-, brassicasterol- and 7-dehydrocholesterol-containing palmitoyloleoylphosphocholine vesicles was studied by fluorescence spectroscopy. Variations in sterol structure were correlated with their effect on nystatin photophysical and activity properties. Substitution of cholesterol by either 7-dehydrocholesterol or brassicasterol enhance nystatin ability to dissipate a transmembrane K+ gradient, showing that the presence of additional double bonds in these sterols-carbon C7 and C22, plus an additional methyl group on C-24, respectively-as compared to cholesterol, is fundamental for nystatin-sterol interaction. However, both modifications of the cholesterol molecule, like in the fungal sterol ergosterol, are critical for the formation of very compact nystatin oligomers in the lipid bilayer that present a long mean fluorescence lifetime and induce a very fast transmembrane dissipation. These observations are relevant to the molecular mechanism underlying the high selectivity presented by nystatin towards fungal cells (with ergosterol) as compared to mammalian cells (with cholesterol).
Collapse
Affiliation(s)
- Liana Silva
- CQFM, Complexo I, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | |
Collapse
|
31
|
Silva L, Coutinho A, Fedorov A, Prieto M. Competitive binding of cholesterol and ergosterol to the polyene antibiotic nystatin. A fluorescence study. Biophys J 2006; 90:3625-31. [PMID: 16500971 PMCID: PMC1440743 DOI: 10.1529/biophysj.105.075408] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Competition studies between cholesterol and ergosterol were carried out to gain insight into the binding interactions between nystatin and these sterols. Lipid vesicles were prepared with mixtures of palmitoyloleoylphosphocholine/ergosterol/cholesterol, and both sterol molar ratio and total content were varied. The inhibitory effect of cholesterol toward the ergosterol ability to induce the formation of long-lived fluorescent antibiotic species was used to detect nystatin-cholesterol interactions. It was found that the key factor controlling nystatin photophysical properties in the ternary lipid mixtures was their ergosterol/cholesterol molar ratio and not their overall sterol content. Moreover, permeabilization studies showed that nystatin was able to form pores in all the mixed vesicles, but the initial rate of pore formation was also dependent on the ergosterol/cholesterol molar ratio. Our data show that ergosterol is displaced by competing cholesterol, indirectly confirming cholesterol's ability to coassemble with nystatin. The distinct spectroscopic properties emphasize the different molecular architecture adopted by nystatin-cholesterol and -ergosterol complexes, and therefore are relevant to understanding the interaction of the antibiotic with membranes.
Collapse
Affiliation(s)
- Liana Silva
- CQFM, Instituto Superior Técnico, Lisbon, Portugal
| | | | | | | |
Collapse
|
32
|
Gokel GW, Schlesinger PH, Djedovic NK, Ferdani R, Harder EC, Hu J, Leevy WM, Pajewska J, Pajewski R, Weber ME. Functional, synthetic organic chemical models of cellular ion channels. Bioorg Med Chem 2004; 12:1291-304. [PMID: 15018901 DOI: 10.1016/j.bmc.2003.08.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 07/31/2003] [Accepted: 08/01/2003] [Indexed: 10/26/2022]
Affiliation(s)
- George W Gokel
- Department of Molecular Biology & Pharmacology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8103, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Alves DS, Pérez-Fons L, Estepa A, Micol V. Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem Pharmacol 2004; 68:549-61. [PMID: 15242821 DOI: 10.1016/j.bcp.2004.04.012] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 04/21/2004] [Indexed: 11/20/2022]
Abstract
Commercial plant extracts containing anthraquinones are being increasingly used for cosmetics, food and pharmaceuticals due to their wide therapeutic and pharmacological properties. In this work, the interaction with model membranes of two representative 1,8-dihydroxyanthraquinones, barbaloin (Aloe) and emodin (Rheum, Polygonum), has been studied in order to explain their effects in biological membranes. Emodin showed a higher affinity for phospholipid membranes than barbaloin did, and was more effective in weakening hydrophobic interactions between hydrocarbon chains in phospholipid bilayers. Whereas emodin induced the formation of hexagonal-H(II) phase, barbaloin stabilized lamellar structures. Barbaloin promoted the formation of gel-fluid intermediate structures in phosphatidylglycerol membranes at physiological pH and ionic strength values. It is proposed that emodin's chromophore group is located at the upper half of the membrane, whereas barbaloin's one is in a deeper position but having its glucopyranosyl moiety near the phospholipid/water interface. Moreover, membrane disruption by emodin or barbaloin showed specificity for the two major phospholipids present in bacterial membranes, phosphatidylethanolamine and phosphatidylglycerol. In order to relate their strong effects on membranes to their biological activity, the capacity of these compounds to inhibit the infectivity of the viral haemorrhagic septicaemia rhabdovirus (VHSV), a negative RNA enveloped virus, or the growth of Escherichia coli was tested. Anthraquinone-loaded liposomes showed a strong antimicrobial activity whereas these compounds in their free form did not. Both anthraquinones showed antiviral activity but only emodin was a virucidal agent. In conclusion, a molecular mechanism based on the effect of these compounds on the structure of biological membranes is proposed to account for their multiple biological activities. Anthraquinone-loaded liposomes may suppose an alternative for antimicrobial, pharmaceutical or cosmetic applications.
Collapse
Affiliation(s)
- Daiane S Alves
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. del Ferrocarril s/n. E-03202-Elche, Alicante, Spain
| | | | | | | |
Collapse
|
34
|
Coutinho A, Silva L, Fedorov A, Prieto M. Cholesterol and ergosterol influence nystatin surface aggregation: relation to pore formation. Biophys J 2004; 87:3264-76. [PMID: 15315952 PMCID: PMC1304795 DOI: 10.1529/biophysj.104.044883] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nystatin interaction with liposomes mimicking fungal and mammalian membranes (ergosterol- and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) large unilamellar vesicles, respectively) was studied by fluorescence spectroscopy. The activity of this antibiotic was also measured using a pyranine fluorescence detected K+/H+ exchange assay. Nystatin mean fluorescence lifetime varied with the antibiotic concentration and ergosterol content (0-30 mol%) of the lipid vesicles. It sharply increased from 5 to 37 ns upon reaching 100 molecules per liposome, reporting nystatin oligomerization in the membrane. Concomitantly, spectral alterations typical of excitonic coupling were detected and there was a pronounced increase in the initial rate of pore formation by nystatin. These findings suggest that nystatin exerts its antibiotic activity via a two-stage mechanism: at low antibiotic concentrations, surface-adsorbed monomeric antibiotic molecules perturb the lipid packing, changing the permeability properties of the ergosterol-rich liposomes. Upon reaching a critical threshold, nystatin mode of action switches to the classical model of transmembrane aqueous channel formation. In the presence of cholesterol-containing POPC liposomes, neither nystatin spectroscopic properties, nor the kinetics of K+ efflux varied with the antibiotic concentration suggesting that in this case the first stage of antibiotic mode of action always prevails or the assemblies formed by nystatin and cholesterol are very loose.
Collapse
Affiliation(s)
- Ana Coutinho
- Centro de Química-Física Molecular, Instituto Superior Técnico, P-1049-001 Lisbon, Portugal.
| | | | | | | |
Collapse
|
35
|
Takeuchi K, Takahashi H, Sugai M, Iwai H, Kohno T, Sekimizu K, Natori S, Shimada I. Channel-forming Membrane Permeabilization by an Antibacterial Protein, Sapecin. J Biol Chem 2004; 279:4981-7. [PMID: 14630928 DOI: 10.1074/jbc.m307815200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The action mechanism of sapecin, an antibacterial peptide with membrane permeabilization activity, was investigated. The dose dependence of the membrane permeabilization caused by sapecin was sigmoidal, suggesting that sapecin oligomerization leads to the membrane permeabilization. Solution nuclear magnetic resonance analysis of the sapecin-phospholipid vesicle complex revealed the surface buried in the membrane and oligomerization surface on the sapecin molecule. The membrane-buried surface of sapecin was determined by observing the transferred cross-saturation phenomena from the alkyl chains of the phospholipid vesicle to the amide protons of sapecin. The membrane-buried surface contains basic and highly exposed hydrophobic residues, which are suitable for interacting with the acidic bacterial membrane. The oligomerization surface was also identified by comparisons between the results from hydrogen-deuterium exchange experiments and transferred cross-saturation experiments. On the basis of the results from the NMR experiments we built a putative model of sapecin oligomers, which provides insights into the membrane permeabilization caused by insect defensins.
Collapse
Affiliation(s)
- Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Mauro Dalla Serra
- CMR-ITC Institute of Biophysics, Section at Trento, Via Sommarive 18, Povo, Trento 38050, Italy
| | | |
Collapse
|
37
|
Johnson JM, Ha T, Chu S, Boxer SG. Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophys J 2002; 83:3371-9. [PMID: 12496104 PMCID: PMC1302412 DOI: 10.1016/s0006-3495(02)75337-x] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We have developed a single vesicle assay to study the mechanisms of supported bilayer formation. Fluorescently labeled, unilamellar vesicles (30-100 nm diameter) were first adsorbed to a quartz surface at low enough surface concentrations to visualize single vesicles. Fusion and rupture events during the bilayer formation, induced by the subsequent addition of unlabeled vesicles, were detected by measuring two-color fluorescence signals simultaneously. Lipid-conjugated dyes monitored the membrane fusion while encapsulated dyes reported on the vesicle rupture. Four dominant pathways were observed, each exhibiting characteristic two-color fluorescence signatures: 1) primary fusion, in which an unlabeled vesicle fuses with a labeled vesicle on the surface, is signified by the dequenching of the lipid-conjugated dyes followed by rupture and final merging into the bilayer; 2) simultaneous fusion and rupture, in which a labeled vesicle on the surface ruptures simultaneously upon fusion with an unlabeled vesicle; 3) no dequenching, in which loss of fluorescence signal from both dyes occur simultaneously with the final merger into the bilayer; and 4) isolated rupture (pre-ruptured vesicles), in which a labeled vesicle on the surface spontaneously undergoes content loss, a process that occurs with high efficiency in the presence of a high concentration of Texas Red-labeled lipids. Vesicles that have undergone content loss appear to be more fusogenic than intact vesicles.
Collapse
Affiliation(s)
- Joseph M Johnson
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | | | | | |
Collapse
|
38
|
Kumari VK, Nagaraj R. Structure-function studies on the amphibian peptide brevinin 1E: translocating the cationic segment from the C-terminal end to a central position favors selective antibacterial activity. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2001; 58:433-41. [PMID: 11892852 DOI: 10.1034/j.1399-3011.2001.00924.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Brevinin 1E, which has the sequence FLPLLAGLAANFLPKIFCKITRKC, is an antimicrobial peptide isolated from the skin secretions of the European frog Rana esculenta. Both the linear and the disulfide-bridged forms have relatively broad-spectrum antibacterial as well as hemolytic activities. The antibacterial and hemolytic activities and biophysical properties of synthetic peptides corresponding to brevinin 1E and its analog in which the segment CKITRKC has been transposed to a central location resulting in the sequence FLPLLAGLCKITRKCAANFLPKIF have been investigated. Our studies indicate that the analog peptide has antibacterial activity comparable with brevinin 1E, but with considerably reduced hemolytic activity. The linear variant of the analog has no hemolytic activity, unlike the linear form of brevinin 1E. The biological activities can be explained on the basis of relative affinities for anionic and zwitterionic lipids. A cluster of cationic amino acids flanked on one side by a hydrophobic stretch of amino acids and another side composed of apolar amino acids appears to favor preferential antibacterial activity.
Collapse
Affiliation(s)
- V K Kumari
- Center for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
39
|
Ladokhin AS, White SH. 'Detergent-like' permeabilization of anionic lipid vesicles by melittin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1514:253-60. [PMID: 11557025 DOI: 10.1016/s0005-2736(01)00382-0] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melittin (MLT), the 26-residue toxic peptide from the European honeybee Apis mellifera, is widely used for studying the principles of membrane permeabilization by antimicrobial and other host-defense peptides. A striking property of MLT is that its ability to permeabilize zwitterionic phospholipid vesicles is dramatically reduced upon the addition of anionic lipids. Because the mechanism of permeabilization may be fundamentally different for the two types of lipids, we examined MLT-induced release of entrapped fluorescent dextran markers of two different molecular masses (4 and 50 kDa) from anionic palmitoyloleoylphosphatidylglycerol (POPG) vesicles. Unlike release from palmitoyloleoylphosphatidylcholine (POPC) vesicles, which is highly selective for the 4 kDa marker, implying release through pores of about 25 A diameter [Ladokhin et al., Biophys. J. 72 (1997) 1762], release from POPG vesicles was found to be non-selective, i.e., 'detergent-like'. Oriented circular dichroism measurements of MLT in oriented POPG and POPC multilayers disclosed that alpha-helical MLT can be induced to adopt a transbilayer orientation in POPC multilayers, but not in POPG multilayers. The apparent inhibition of MLT permeabilization by anionic membranes may thus be due to suppression of translocation ability.
Collapse
Affiliation(s)
- A S Ladokhin
- Department of Physiology and Biophysics, University of California, 364-D Medical Sciences 1, Irvine, CA 92697-4560, USA.
| | | |
Collapse
|
40
|
Hara T, Kodama H, Kondo M, Wakamatsu K, Takeda A, Tachi T, Matsuzaki K. Effects of peptide dimerization on pore formation: Antiparallel disulfide-dimerized magainin 2 analogue. Biopolymers 2001; 58:437-46. [PMID: 11180056 DOI: 10.1002/1097-0282(20010405)58:4<437::aid-bip1019>3.0.co;2-i] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To elucidate the effects of peptide dimerization on pore formation by magainin 2 (MG2), a covalently linked antiparallel dimer of the MG2 analogue [(F5Y, L6C, F16W, I20C-MG2)(2): II] was synthesized based on the dimer structure revealed by our NMR study. The interactions of the dimer with lipid bilayers were investigated by CD and fluorescence in comparison with a monomer analogue (F5Y, F16W-MG2: I). Similar to I, II was found to form a peptide-lipid supramolecular complex pore accompanied with lipid flip-flop and peptide translocation. The pore formed by II was characterized by a slightly larger pore diameter and a threefold longer lifetime than that of I, although the pore formation rate of the dimer was lower than that of the monomer. The coexistence of the dimer and the monomer exhibited slight but significant synergism in membrane permeabilization, which was maximal at a monomer/dimer ratio of 3. Therefore, we concluded that a pentameric pore composed of one pore-stabilizing dimer and three monomers maximized the overall leakage activity in keeping with our kinetic prediction.
Collapse
Affiliation(s)
- T Hara
- Department of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Selective, carrier-mediated uptake of dilute aqueous heavy metal ions by metal-sorbing vesicles in the presence of excess Mg2+ and Ca2+. J Memb Sci 2000. [DOI: 10.1016/s0376-7388(00)00500-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Uematsu N, Matsuzaki K. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. Biophys J 2000; 79:2075-83. [PMID: 11023911 PMCID: PMC1301097 DOI: 10.1016/s0006-3495(00)76455-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Various physicochemical properties play important roles in the membrane activities of amphipathic antimicrobial peptides. To examine the effects of the polar angle, two model peptides, thetap100 and thetap180, with polar angles of 100 degrees and 180 degrees, respectively, were designed, and their interactions with membranes were investigated in detail. These peptides have almost identical physicochemical properties except for polar angle. Like naturally occurring peptides, these peptides selectively bind to acidic membranes, assuming amphipathic alpha-helices, and formed peptide-lipid supramolecular complex pores accompanied by lipid flip-flop and peptide translocation. Despite its somewhat lower membrane affinity, thetap100 exhibited higher membrane permeabilization activity, a greater flip-flop rate, as well as more antimicrobial activity due to a higher pore formation rate compared with thetap180. Consistent with these results, the peptide translocation rate of thetap100 was higher. Furthermore, the number of peptides constituting thetap100 pores was less than that of thetap180, and thetap100 pores involved more lipid molecules, as reflected by its cation selectivity. The polar angle was found to be an important parameter determining peptide-lipid interactions.
Collapse
Affiliation(s)
- N Uematsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
43
|
Rex S. A Pro --> Ala substitution in melittin affects self-association, membrane binding and pore-formation kinetics due to changes in structural and electrostatic properties. Biophys Chem 2000; 85:209-28. [PMID: 10961508 DOI: 10.1016/s0301-4622(00)00121-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melittin, the main component of bee venom of Apis mellifera, contains a proline at position 14, which is highly conserved in related peptides of various bee venoms. To investigate the structural and functional role of Pro14 a melittin analogue was studied where proline is substituted by an alanine residue (P14A). The investigations were focussed on: (i) the secondary structure in aqueous solution and membranes; (ii) the self-association in solution; (iii) the binding to POPC membranes; and (iv) the P14A-induced leakage and pore formation in membrane vesicles. Circular dichroism and gel filtration experiments showed that P14A exists at concentrations < 12 microM in monomeric form with an alpha-helicity of 28 +/- 7%. A further increase in peptide concentration leads to the formation of large aggregates consisting of 9 +/- 1 monomers. While binding studies with POPC vesicles revealed for P14A a stronger binding affinity towards membranes than for melittin, the peptide-induced leakage of fluorescent markers from vesicles was less efficient for P14A than for melittin. Furthermore, an unexpected efflux behaviour at high values of bound P14A was observed which indicated that the pore formation kinetics for P14A is more complex than it was reported for melittin. The different features of P14A in aggregation, binding and efflux compared to melittin are mainly ascribable directly to structural changes caused by the proline --> alanine substitution. Furthermore, the results indicate an improved screening of the positively charged residues of P14A by counterions which contributes additionally to the observed differences in peptide activities. It is suggested that the presence of proline in melittin is not only of structural importance but also influences indirectly the electrostatic properties of the native peptide.
Collapse
Affiliation(s)
- S Rex
- Department of Biophysical Chemistry, Biocenter of the University of Basel, Switzerland.
| |
Collapse
|
44
|
Nicol F, Nir S, Szoka FC. Effect of phospholipid composition on an amphipathic peptide-mediated pore formation in bilayer vesicles. Biophys J 2000; 78:818-29. [PMID: 10653794 PMCID: PMC1300684 DOI: 10.1016/s0006-3495(00)76639-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
To better understand the influence of phospholipid acyl-chain composition on the formation of pores by cytotoxic amphipathic helices in biological membranes, the leakage of aqueous contents induced by the synthetic peptide GALA (WEAALAEALAE ALAEHLAEALAEALEALAA) from large unilamellar phospholipid vesicles of various compositions has been studied. Peptide-mediated leakage was examined at pH 5.0 from vesicles made of phosphatidylcholine (PC) and phosphatidylglycerol (PG) with the following acyl-chain compositions: 1-palmitoyl-2-oleoyl (PO), 1,2-dioleoyl (DO), 1, 2-dielaidoyl (DE), and 1,2-dipetroselinoyl (DPe). A mathematical model predicts and simulates the final extents of GALA-mediated leakage of 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and p-xylene-bis-pyridinium bromide (DPX) from 1-palmitoyl-2-oleoyl-phosphatidylcholine/1-palmitoyl-2-oleoyl-phospha tidylglycerol (POPC/POPG) and 1, 2-dielaidoyl-sn-glycero-3-phosphocholine/1, 2-dielaidoyl-phosphatidylglycerol (DEPC/DEPG) liposomes at pH 5.0 as a function of peptide concentration in the bilayer, by considering that GALA pores responsible for this leakage have a minimum size of 10 +/- 2 monomers and are formed by quasiirreversible aggregation of the peptide. With the phospholipid acyl-chain compositions tested, GALA-induced ANTS/DPX leakage follows the rank order POPC/POPG approximately DEPC/DEPG > DPePC/DPePG > DOPC/DOPG. Results from binding experiments reveal that this reduced leakage from DOPC/DOPG vesicles cannot be explained by a reduced binding affinity of the peptide to these membranes. As shown by monitoring the leakage of a fluorescent dextran, an increase in the minimum pore size also does not explain the reduction in ANTS/DPX leakage. The data suggest that surface-associated GALA monomers or aggregates are stabilized in bilayers composed of phospholipids containing a cis unsaturation per acyl chain (DO and DPe), while transbilayer peptide insertion is reduced. GALA-induced ANTS/DPX leakage is also decreased when the vesicles contain phosphatidylethanolamine (PE). This lends further support to the suggestion that factors stabilizing the surface state of the peptide reduce its insertion and subsequent pore formation in the bilayer.
Collapse
Affiliation(s)
- F Nicol
- School of Pharmacy, University of California, San Francisco, California 94143-0446, USA
| | | | | |
Collapse
|
45
|
Arbuzova A, Schwarz G. Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1420:139-52. [PMID: 10446298 DOI: 10.1016/s0005-2736(99)00098-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have investigated the wasp venom peptides mastoparan X and polistes mastoparan regarding their apparent potential to induce pore-like defects in phosphatidylcholine unilamellar vesicles. Based on a fundamental theoretical model, the pore activation and deactivation kinetics have been evaluated from the observed efflux of liposome entrapped carboxyfluorescein in relation to the bound peptide to lipid ratio. We can quantitatively describe our experimental data very well in terms of a specific reaction scheme resulting in only a few short-lived pores. They evidently emerge rapidly from a prepore nucleus being produced by two rate-limiting monomeric states of bound peptide. These peculiar states would be favorably populated in an early stage of bilayer perturbation, but tend to die out in the course of a peptide/lipid restabilization process.
Collapse
Affiliation(s)
- A Arbuzova
- Department of Biophysical Chemistry, Biocenter of the University of Basle, Klingelbergstrasse 70, CH-4056, Basle, Switzerland
| | | |
Collapse
|
46
|
Hori Y, Demura M, Niidome T, Aoyagi H, Asakura T. Orientational behavior of phospholipid membranes with mastoparan studied by 31P solid state NMR. FEBS Lett 1999; 455:228-32. [PMID: 10437778 DOI: 10.1016/s0014-5793(99)00881-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Solid state 31P NMR spectroscopy was used to study the perturbing effect of the wasp venom peptide mastoparan (MP) on lipid bilayers composed of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG). The 31P chemical shift anisotropy of multilamellar vesicles decreased with increasing peptide concentration, indicating that MP interacts strongly and selectively with the charged DMPG head group. Macroscopically oriented MP-lipid samples between glass plates were studied by 31P NMR as a function of tilt angle. These spectra showed the coexistence of orientation-dependent lamellar signals as well as an isotropic peak, suggesting that MP can induce non-lamellar phases in DMPC/DMPG membranes.
Collapse
Affiliation(s)
- Y Hori
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Japan
| | | | | | | | | |
Collapse
|
47
|
Nicol F, Nir S, Szoka FC. Orientation of the pore-forming peptide GALA in POPC vesicles determined by a BODIPY-avidin/biotin binding assay. Biophys J 1999; 76:2121-41. [PMID: 10096907 PMCID: PMC1300185 DOI: 10.1016/s0006-3495(99)77368-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We determined the orientation of a biotinylated version of the pore-forming peptide GALA (WEAALAEALAEALAEHLAEALAEALEALAA) at pH 5.0 in large unilamellar phosphatidylcholine vesicles, using the enhancement of BODIPY-avidin fluorescence subsequent to its irreversible binding to a biotin moiety. GALA and its variants were biotinylated at the N- or C-terminus. BODIPY-avidin was either added externally or was pre-encapsulated in vesicles to assess the fraction of liposome-bound biotinylated GALA that exposed its labeled terminus to the external or internal side of the bilayer, respectively. Under conditions where most of the membrane-bound peptides were involved in transmembrane aggregates and formed aqueous pores (at a lipid/bound peptide molar ratio of 2500/1), the head-to-tail (N- to C-terminus) orientation of the membrane-inserted peptides was such that 3/4 of the peptides exposed their N-terminus on the inside of the vesicle and their C-terminus on the outside. Under conditions resulting in reduced pore formation (at higher lipid/peptide molar ratios), we observed an increase in the fraction of GALA termini exposed to the outside of the vesicle. These results are consistent with a model (Parente et al., Biochemistry, 29:8720, 1990) that requires a critical number of peptides (M) in an aggregate to form a transbilayer structure. When the peptides form an aggregate of size i, with i < M = 4 to 6, the orientation of the peptides is mostly parallel to the membrane surface, such that both termini of the biotinylated peptide are exposed to external BODIPY-avidin. This BODIPY-avidin/biotin binding assay should be useful to determine the orientation of other membrane-interacting molecules.
Collapse
Affiliation(s)
- F Nicol
- University of California, School of Pharmacy, Departments of Biopharmaceutics and Pharmaceutical Chemistry, San Francisco, California 94143-0446, USA
| | | | | |
Collapse
|
48
|
Memoli A, Palermiti LG, Travagli V, Alhaique F. Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation. J Pharm Biomed Anal 1999; 19:627-32. [PMID: 10704129 DOI: 10.1016/s0731-7085(98)00229-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spectral behavior of calcein, a water-soluble self quenching fluorescent marker often used in biomedical analysis, can be considerably affected by the presence of surfactants. With this study we intend to obtain further information on the photophysical properties of calcein, in the presence of surfactants and in the concentration range commonly used to investigate the release of such marker from vesicle dispersions. The experiments were carried out both in water and in a physiological buffer (HEPES, pH 7.5), in the presence of Triton X-100, sodium dodecyl sulphate and centyltrimethylammonium bromide, both below and above their critical micelle concentration (c.m.c.). The obtained results confirm that calcein fluorescence can be affected by the presence of surfactants. Thus, environmental conditions must always be carefully checked for the actual quantitative evaluation of this dye. Furthermore, this study sheds some light on the nature and mechanism of calcein quenching.
Collapse
Affiliation(s)
- A Memoli
- Dipartimento di Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Università degli Studi di Roma, La Sapienza, Italy.
| | | | | | | |
Collapse
|
49
|
Matsuzaki K. Magainins as paradigm for the mode of action of pore forming polypeptides. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:391-400. [PMID: 9804997 DOI: 10.1016/s0304-4157(98)00014-8] [Citation(s) in RCA: 444] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Magainins are a class of antimicrobial peptides discovered in the skin of Xenopus laevis. The peptides kill bacteria by permeabilizing the cell membranes without exhibiting significant toxicity against mammalian cells, and are a promising candidate for a new antibiotic of therapeutic value. The main target of the peptides are considered to be the lipid matrix of the membranes. This review summarizes studies on magainin-lipid interactions in comparison with other pore forming peptides. The selective toxicity can be at least partly explained by preferential interactions of magainins with anionic phospholipids abundant in bacterial membranes. A novel mode of action is discussed in detail, i.e., the formation of a dynamic peptide-lipid supramolecular pore, which allows the mutually coupled transbilayer transport of ions, lipids, and peptides per se.
Collapse
Affiliation(s)
- K Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
50
|
Duval D, Riddell FG, Rebuffat S, Platzer N, Bodo B. Ionophoric activity of the antibiotic peptaibol trichorzin PA VI: a 23Na- and 35Cl-NMR study. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1372:370-8. [PMID: 9675337 DOI: 10.1016/s0005-2736(98)00080-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Trichorzin PA VI (Ac Aib1 Ser Ala Aib Iva Gln Aib Val Aib Gly10 Leu Aib Pro Leu Aib Aib Gln Pheol18) is one of the seven main peptaibols forming the natural antibiotic 18-residue peptide mixture biosynthesised by a Trichoderma harzianum strain. Trichorzins exhibit antimycoplasmic activity resulting from membrane permeability perturbations. The membrane permeabilisation process by trichorzin PA VI has been examined in egg yolk phosphatidylcholine large unilamellar vesicles (LUV) and under conditions of ionic equilibrium by 23Na- and 35Cl-NMR experiments conducted in the presence of a chemical shift reagent and a relaxation agent, respectively. In such conditions, trichorzin PA VI exchanges both cations and anions across the vesicle bilayers, indicating the absence of ion- and charge-selectivity, in contrast to antibiotic ionophores, such as monensin or nigericin; the Na+ exchange is not influenced by the ionic strength. The kinetics of the Na+ exchange have been found to be third to fourth order with respect to the peptide concentration. The permeabilisation process of liposomes has been shown to be due to the formation of aggregates of three to four helical peptide monomers arranged into a supramolecular complex including presumably lipid molecules and forming a badly-defined pore in the bilayer. The major mechanism by which ions may exchange through the bilayer involves a long-lasting opening of the pores allowing complete exchange of the internal and external media in an 'all or nothing mode'.
Collapse
Affiliation(s)
- D Duval
- Laboratoire de Chimie des Substances Naturelles, URA CNRS 401, GDR CNRS 790, Muséum National d'Histoire Naturelle, 63 rue Buffon, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|