1
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
2
|
Park MK, Shin DM, Choi YS. Comparison of volatile compound profiles derived from various livestock protein alternatives including edible-insect, and plant-based proteins. Food Chem X 2024; 23:101570. [PMID: 39022786 PMCID: PMC11252785 DOI: 10.1016/j.fochx.2024.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
In this study, the distinctive chemical fingerprints that contribute to the flavor characteristics of various protein materials, such as insects, plant-based protein, and livestock, were investigated. In edible-insects (Tenebrio molitor and Protaetia brevitarsis), aldehydes and cyclic volatile compounds were the predominant volatile components and had distinct flavor characteristics such as cheesy, sharp, green, floral, and sweet. In contrast, the relatively high levels of pyrazines and furans in plant-based protein materials, such as textured vegetable and pea protein. They included unique flavor properties characterized by sweet, fatty, grassy, creamy, and roasted. The primary volatile chemical group detected in livestock protein materials, such as a pork and a beef, was ketones. The pork sample showed specific flavors, such as alcoholic, green, and fruity, while a beef presented distinctive flavor, including creamy, fruity, and alcoholic. Based on the results, this research provided the understanding of the flavor aspects of diverse protein materials.
Collapse
Affiliation(s)
- Min Kyung Park
- Food Processing Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Dong-Min Shin
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Yun-Sang Choi
- Food Processing Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
3
|
Chi X, Yang Q, Su Y, Xi Y, Wang W, Sun B, Ai N. Effect of prebiotics on rheological properties and flavor characteristics of Streptococcus thermophilus fermented milk. Curr Res Food Sci 2024; 9:100839. [PMID: 39290650 PMCID: PMC11406242 DOI: 10.1016/j.crfs.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
The fermentation characteristics and aroma production properties of lactic acid bacteria can influence the flavor quality of fermented milk, which is one of the important factors influencing the consumer preference. In this study, fermented milk was prepared using Streptococcus thermophilus, and dynamic changes in its quality, including rheological properties and flavor characteristics, were evaluated throughout the fermentation process. The results showed that benzaldehyde, 2-undecanone, octanoic acid, n-hexanol and 2-nonanol were the key flavor components during the fermentation process. The quality of the fermented milk tends to be stabilized after 24-h, showing the minimal off-flavor and optimal fermented aroma at 48-h. Three prebiotics (inulin, Galactooligosaccharides and inulin mixed with Galactooligosaccharides) were added to Streptococcus thermophilus fermented milk separately, and the results showed that inulin was the most effective group in improving the organoleptic quality of the fermented milk. These findings contribute to our understanding of the release and retention of flavor compounds during fermentation and can be used as a scientific reference for the application of probiotics and flavor-producing lactic acid bacteria in fermented milk processing.
Collapse
Affiliation(s)
- Xuelu Chi
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Qingyu Yang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Yufang Su
- National Center of Technology Innovation for Dairy, Hohhot, 010110, China
| | - Yanmei Xi
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Weizhe Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Nasi Ai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| |
Collapse
|
4
|
Wang C, Yue Y, Yuan B, Deng Q, Liu Y, Zhou Q. Identification of the key aroma compounds in flaxseed milk using stir bar sorptive extraction, aroma recombination, and omission tests. Food Chem 2024; 446:138782. [PMID: 38402765 DOI: 10.1016/j.foodchem.2024.138782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Flaxseed milk is a plant-based dairy alternative that is rich in nutrients. Due to the low concentration of odor compounds in flaxseed milk, it cannot be completely extracted. This poses significant challenges for analysis. Therefore, this study developed a method suitable for extracting volatile compounds from flaxseed milk and compared it with three other extraction methods. It was found that Stir Bar Sorptive Extraction had the best extraction performance, identifying 39 odorants. Flavor dilution factors ranged from 1 to 512, with higher values observed for esters. 13 key odor compounds were identified (odor activity value > 1) using the external standard method for quantification; these included four aldehydes, three pyrazines, two alcohols, two esters, and two other compounds. Pyrazine compounds exhibited the highest concentrations. Aroma recombination and omission experiments showed that nine key odorants contributed significantly to the flavor profile of flaxseed milk, imparting aroma of cucumber, green, mushroom, fruity, sweet, and coconut.
Collapse
Affiliation(s)
- Chao Wang
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Yang Yue
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Binhong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Ye Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Qi Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China.
| |
Collapse
|
5
|
Lochmann F, Flatschacher D, Speckbacher V, Zeilinger S, Heuschneider V, Bereiter S, Schiller A, Ruzsanyi V. Demonstrating the Applicability of Proton Transfer Reaction Mass Spectrometry to Quantify Volatiles Emitted by the Mycoparasitic Fungus Trichoderma atroviride in Real Time: Monitoring of Trichoderma-Based Biopesticides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1168-1177. [PMID: 38708575 PMCID: PMC11157538 DOI: 10.1021/jasms.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
The present study aims to explore the potential application of proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for real-time monitoring of microbial volatile organic compounds (MVOCs). This investigation can be broadly divided into two parts. First, a selection of 14 MVOCs was made based on previous research that characterized the MVOC emissions of Trichoderma atroviride, which is a filamentous fungus widely used as a biocontrol agent. The analysis of gas-phase standards using PTR-ToF-MS allowed for the categorization of these 14 MVOCs into two groups: the first group primarily undergoes nondissociative proton transfer, resulting in the formation of protonated parent ions, while the second group mainly undergoes dissociative proton transfer, leading to the formation of fragment ions. In the second part of this investigation, the emission of MVOCs from samples of T. atroviride was continuously monitored over a period of five days using PTR-ToF-MS. This also included the first quantitative online analysis of 6-amyl-α-pyrone (6-PP), a key MVOC emitted by T. atroviride. The 6-PP emissions of T. atroviride cultures were characterized by a gradual increase over the first two days of cultivation, reaching a plateau-like maximum with volume mixing ratios exceeding 600 ppbv on days three and four. This was followed by a marked decrease, where the 6-PP volume mixing ratios plummeted to below 50 ppbv on day five. This observed sudden decrease in 6-PP emissions coincided with the start of sporulation of the T. atroviride cultures as well as increasing intensities of product ions associated with 1-octen-3-ol and 3-octanone, whereas both these MVOCs were previously associated with sporulation in T. atroviride. The study also presents the observations and discussion of further MVOC emissions from the T. atroviride samples and concludes with a critical assessment of the possible applications and limitations of PTR-ToF-MS for the online monitoring of MVOCs from biological samples in real time.
Collapse
Affiliation(s)
- Franziska Lochmann
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Daniel Flatschacher
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Verena Speckbacher
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Susanne Zeilinger
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Valentina Heuschneider
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Stephanie Bereiter
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Arne Schiller
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Veronika Ruzsanyi
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
6
|
Delcros L, Collas S, Hervé M, Blondin B, Roland A. Evolution of Markers Involved in the Fresh Mushroom Off-Flavor in Wine During Alcoholic Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14687-14696. [PMID: 37751519 DOI: 10.1021/acs.jafc.3c02692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The fresh mushroom off-flavor (FMOff) is due to several C8 compounds such as 1-octen-3-one, 1-octen-3-ol and 1-hydroxyoctan-3-one, among others. Recently, glycosidic precursors of some FMOff compounds have been identified in grape musts, but the evolution of such compounds during alcoholic fermentation (AF) remains poorly studied. Therefore, the aim of this work was to monitor both FMOff glycosidic precursors and volatile compounds during AF by comparing healthy and Crustomyces subabruptus-contaminated musts. For the first time, glycosidic analysis revealed the presence of 1-hydroxyoctan-3-one glycosides in the laboratory-contaminated musts, together with other FMOff glycosidic fractions already described in the literature. During AF, the FMOff glycosidic fraction decreased, even more in the case of 1-hydroxyoctan-3-one precursors. For the volatile FMOff compounds, their evolutions were both compound- and matrix-dependent except for 1-hydroxyoctan-3-one, which seemed to reach an identical threshold concentration in wine regardless of its initial level in contaminated musts.
Collapse
Affiliation(s)
- Léa Delcros
- MHCS, 51530 Oiry, France
- Comité Champagne, 51200 Epernay, France
| | | | | | - Bruno Blondin
- UMR SPO, Univ Montpellier INRAE, Institut Agro, 34060 Montpellier, France
| | - Aurélie Roland
- UMR SPO, Univ Montpellier INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
7
|
Delcros L, Godet T, Collas S, Hervé M, Blondin B, Roland A. Identification of a Glycosylated Fraction Involved in Mushroom Off-Flavors in Grapes: Influence of Gray Rot, Powdery Mildew and Crustomyces subabruptus. Molecules 2022; 27:7306. [PMID: 36364131 PMCID: PMC9656183 DOI: 10.3390/molecules27217306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 09/28/2023] Open
Abstract
An organoleptic defect, termed fresh mushroom off-flavor and mainly caused by the C8 compounds 1-octen-3-one, 3-octanol and 1-octen-3-ol, has been identified in wines and spirits since the 2000s. The aim of this work was to identify the presence of glycosidic precursors of these C8 compounds and to evaluate the influence of different molds on the glycosylated fractions of three grape varieties. Must samples contaminated by molds (gray rot, powdery mildew and Crustomyces subabruptus) and three levels of attack severity (from healthy to 10-15%) were studied. After a β-glycosidase treatment on Meunier and Pinot noir musts contaminated by Crustomyces subabruptus, 1-octen-3-one, 1-octen-3-ol and 3-octanol were identified by GC-MS, proving the existence of glycosidic fractions in the musts. A Pinot noir must contaminated by Crustomyces subabruptus displayed a 230% increase in the glycosylated fraction responsible for 1-octen-3-one in comparison with an uncontaminated sample. Powdery mildew did not appear to affect the levels of the studied glycosidic fractions in Chardonnay musts. Gray rot on Meunier and Pinot noir musts had opposite effects depending on glycoside type, decreasing the 1-octen-3-one fraction and increasing the 1-octen-3-ol fraction.
Collapse
Affiliation(s)
- Léa Delcros
- MHCS, 51200 Epernay, France
- Comité Champagne, 51200 Epernay, France
| | - Teddy Godet
- UMR SPO, Université de Montpellier INRAE, Institut Agro, 34060 Montpellier, France
| | | | | | - Bruno Blondin
- UMR SPO, Université de Montpellier INRAE, Institut Agro, 34060 Montpellier, France
| | - Aurélie Roland
- UMR SPO, Université de Montpellier INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
8
|
Teshima T, Funai R, Nakazawa T, Ito J, Utsumi T, Kakumyan P, Mukai H, Yoshiga T, Murakami R, Nakagawa K, Honda Y, Matsui K. Coprinopsis cinerea dioxygenase is an oxygenase forming 10(S)-hydroperoxide of linoleic acid, essential for mushroom alcohol, 1-octen-3-ol synthesis. J Biol Chem 2022; 298:102507. [PMID: 36122804 PMCID: PMC9579011 DOI: 10.1016/j.jbc.2022.102507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022] Open
Abstract
1-Octen-3-ol is a volatile oxylipin found ubiquitously in Basidiomycota and Ascomycota. The biosynthetic pathway forming 1-octen-3-ol from linoleic acid via the linoleic acid 10(S)-hydroperoxide was characterized 40 years ago in mushrooms, yet the enzymes involved are not identified. The dioxygenase 1 and 2 genes (Ccdox1 and Ccdox2) in the mushroom Coprinopsis cinerea contain an N-terminal cyclooxygenase-like heme peroxidase domain and a C-terminal cytochrome P450-related domain. Herein, we show that recombinant CcDOX1 is responsible for dioxygenation of linoleic acid to form the 10(S)-hydroperoxide, the first step in 1-octen-3-ol synthesis, whereas CcDOX2 conceivably forms linoleate 8-hydroperoxide. We demonstrate that knockout of the Ccdox1 gene suppressed 1-octen-3-ol synthesis, although added linoleic acid 10(S)-hydroperoxide was still efficiently converted. The P450-related domain of CcDOX1 lacks the characteristic Cys heme ligand and the evidence indicates that a second uncharacterized enzyme converts the 10(S)-hydroperoxide to 1-octen-3-ol. Additionally, we determined the gene knockout strain (ΔCcdox1) was less attractive to fruit fly larvae, while the feeding behavior of fungus gnats on ΔCcdox1 mycelia showed little difference from that on the mycelia of the wild-type strain. The proliferation of fungivorous nematodes on ΔCcdox1 mycelia was similar to or slightly worse than that on wild-type mycelia. Thus, 1-octen-3-ol seems to be an attractive compound involved in emitter-receiver ecological communication in mushrooms.
Collapse
Affiliation(s)
- Takuya Teshima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Risa Funai
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Toshihiko Utsumi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Pattana Kakumyan
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Hiromi Mukai
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Tsukuba, 305-8687, Japan
| | - Toyoshi Yoshiga
- Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Ryutaro Murakami
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
9
|
The Biosynthesis of 1-octene-3-ol by a Multifunctional Fatty Acid Dioxygenase and Hydroperoxide Lyase in Agaricus bisporus. J Fungi (Basel) 2022; 8:jof8080827. [PMID: 36012815 PMCID: PMC9410191 DOI: 10.3390/jof8080827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The biosynthetic pathway from linoleic acid to 1-octen-3-ol in Agaricus bisporus has long been established, in which linoleic acid is converted to 10-hydroperoxide (10-HPOD) by deoxygenation, and 10-HPOD is subsequently cleaved to yield 1-octene-3-ol and 10-oxodecanoic acid. However, the corresponding enzymes have not been identified and cloned. In the present study, four putative genes involved in oxylipid biosynthesis, including one lipoxygenase gene named AbLOX, two linoleate diol synthase genes named AbLDS1 and AbLDS2, and one hydroperoxide lyase gene named AbHPL were retrieved from the A. bisporus genome by a homology search and cloned and expressed prokaryotically. AbLOX, AbLDS1, and AbLDS2 all exhibited fatty acid dioxygenase activity, catalyzing the conversion of linoleic acid to generate hydroperoxide, and AbHPL showed a cleaving hydroperoxide activity, as was determined by the KI-starch method. AbLOX and AbHPL catalyzed linoleic acid to 1-octen-3-ol with an optimum temperature of 35 °C and an optimum pH of 7.2, whereas AbLDS1, AbLDS2, and AbHPL catalyzed linoleic acid without 1-octen-3-ol. Reduced AbLOX expression in antisense AbLOX transformants was correlated with a decrease in the yield of 1-octen-3-ol. AbLOX and AbHPL were highly homologous to the sesquiterpene synthase Cop4 of Coprinus cinerea and the yeast sterol C-22 desaturase, respectively. These results reveal that the enzymes for the oxidative cleavage of linoleic acid to synthesize 1-octen-3-ol in A. bisporus are the multifunctional fatty acid dioxygenase AbLOX and hydroperoxide lyase AbHPL.
Collapse
|
10
|
Fischer E, Cayot N, Cachon R. Potential of Microorganisms to Decrease the "Beany" Off-Flavor: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4493-4508. [PMID: 35384667 DOI: 10.1021/acs.jafc.1c07505] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Vegetable proteins are in high demand due to current issues surrounding meat consumption and changes in eating habits, but they are still not accepted by consumers due to their strong bitterness, astringent taste, and "beany" off-flavor. This review aimed to give an overview of the "beany" off-flavor and the potential of microorganisms to decrease it. Twenty-six volatile compounds were identified from the literature as contributing to the "beany" off-flavor, and their formation pathways were identified in a legume matrix, pea. Biotechnological ways to improve the flavor by reducing these volatile compounds were then looked over. As aldehydes and ketones are the main type of compounds directly linked to the "beany" off-flavor, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) were focused on. By converting aldehyde and ketones into alcohols or carboxylic acids, these two enzymes have the potential to decrease the off-flavor. The presence of the two enzymes in a selection of microorganisms (Lactobacillus acidophilus, Limosilactobacillus fermentum, Lactiplantibacillus plantarum, Streptococcus thermophilus, Saccharomyces cerevisiae, and Gluconobacter suboxydans) was done with a catabolism and a bioinformatical study. Finally, the correlation between the presence of the enzyme and the efficacy to improve the flavor was investigated by comparison with the literature. The presence of ADH and/or ALDH in the strain metabolism seems linked to an odor improvement. Especially, a constitutive enzyme (ADH or ALDH) in the catabolism should give better results, showing that some fermentative types are more inclined to better the flavor. Obligatory fermentative strains, with a constitutive ADH, or acetic acid bacteria, with constitutive ADH and ALDH, show the best results and should be favored to reduce the amount of compounds involved in the "beany" off-flavor and diminish that off-flavor in legume proteins.
Collapse
Affiliation(s)
- Estelle Fischer
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Nathalie Cayot
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Rémy Cachon
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| |
Collapse
|
11
|
Guo S, Zhao X, Ma Y, Wang Y, Wang D. Fingerprints and changes analysis of volatile compounds in fresh-cut yam during yellowing process by using HS-GC-IMS. Food Chem 2022; 369:130939. [PMID: 34469843 DOI: 10.1016/j.foodchem.2021.130939] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to investigate the dynamic change in volatile components during the yellowing process. The volatile components were analyzed by headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and the critical enzyme activities were determined by commercial kits. The results revealed that 29 signal peaks for 20 compounds were identified, which were quantified in all samples: 1 furan, 1 ester, 15 aldehydes, 3 ketones, and 9 alcohols. The contents of most of these compounds increased first and then decreased at 36 h, which were basically consistent with the enzyme activities of LOX, HPL, ADH and AAT. Subsequently, principal component analysis (PCA) results clearly showed that the fresh-cut yams for different yellowing processes were well distinguished by the volatile compounds. These results showed that the potential of HS-GC-IMS-based approaches to evaluate the volatile compound profiles of fresh-cut yam at different stages in the yellowing period.
Collapse
Affiliation(s)
- Shuang Guo
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Xiaoyan Zhao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yue Ma
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yubin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Dan Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| |
Collapse
|
12
|
The Impact of Must Nutrients and Yeast Strain on the Aromatic Quality of Wines for Cognac Distillation. FERMENTATION 2022. [DOI: 10.3390/fermentation8020051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to understand the influence of nitrogen and lipid nutrition on the aromatic quality of wines for cognac distillation, we developed a transdisciplinary approach that combined statistical modeling (experimental central composite design and response surface modeling) with metabolomic analysis. Three Saccharomyces cerevisiae strains that met the requirements of cognac appellation were tested at a laboratory scale (1 L) and a statistical analysis of covariance was performed to highlight the organoleptic profile (fermentative aromas, terpenes, alcohols and aldehydes) of each strain. The results showed that nitrogen and lipid nutrients had an impact on the aromatic quality of cognac wines: high lipid concentrations favored the production of organic acids, 1-octen-3-ol and terpenes and inhibited the synthesis of esters. Beyond this trend, each yeast strain displayed its own organoleptic characteristics but had identical responses to different nutritional conditions.
Collapse
|
13
|
Hammerle F, Quirós-Guerrero L, Rutz A, Wolfender JL, Schöbel H, Peintner U, Siewert B. Feature-Based Molecular Networking-An Exciting Tool to Spot Species of the Genus Cortinarius with Hidden Photosensitizers. Metabolites 2021; 11:791. [PMID: 34822449 PMCID: PMC8619139 DOI: 10.3390/metabo11110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Fungi have developed a wide array of defense strategies to overcome mechanical injuries and pathogen infections. Recently, photoactivity has been discovered by showing that pigments isolated from Cortinarius uliginosus produce singlet oxygen under irradiation. To test if this phenomenon is limited to dermocyboid Cortinarii, six colourful Cortinarius species belonging to different classical subgenera (i.e., Dermocybe, Leprocybe, Myxacium, Phlegmacium, and Telamonia) were investigated. Fungal extracts were explored by the combination of in vitro photobiological methods, UHPLC coupled to high-resolution tandem mass spectrometry (UHPLC-HRMS2), feature-based molecular networking (FBMN), and metabolite dereplication techniques. The fungi C. rubrophyllus (Dermocybe) and C. xanthophyllus (Phlegmacium) exhibited promising photobiological activity in a low concentration range (1-7 µg/mL). Using UHPLC-HRMS2-based metabolomic tools, the underlying photoactive principle was investigated. Several monomeric and dimeric anthraquinones were annotated as compounds responsible for the photoactivity. Furthermore, the results showed that light-induced activity is not restricted to a single subgenus, but rather is a trait of Cortinarius species of different phylogenetic lineages and is linked to the presence of fungal anthraquinones. This study highlights the genus Cortinarius as a promising source for novel photopharmaceuticals. Additionally, we showed that putative dereplication of natural photosensitizers can be done by FBMN.
Collapse
Affiliation(s)
- Fabian Hammerle
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, CCB—Innrain 80/82, 6020 Innsbruck, Austria;
| | - Luis Quirós-Guerrero
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (L.Q.-G.); (A.R.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Adriano Rutz
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (L.Q.-G.); (A.R.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Jean-Luc Wolfender
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (L.Q.-G.); (A.R.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Harald Schöbel
- Department of Biotechnology, MCI—The Entrepreneurial School, Maximilianstraße 2, 6020 Innsbruck, Austria;
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;
| | - Bianka Siewert
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, CCB—Innrain 80/82, 6020 Innsbruck, Austria;
| |
Collapse
|
14
|
Zheng X, Zheng L, Yang Y, Ai B, Zhong S, Xiao D, Sheng Z. Analysis of the volatile organic components of
Camellia oleifera
Abel. oil from China using headspace‐gas chromatography‐ion mobility spectrometry. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xiaoyan Zheng
- Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou China
- Haikou Key Laboratory of Banana Biology Haikou China
| | - Lili Zheng
- Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou China
- Haikou Key Laboratory of Banana Biology Haikou China
| | - Yang Yang
- Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou China
- Haikou Key Laboratory of Banana Biology Haikou China
| | - Binling Ai
- Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou China
- Haikou Key Laboratory of Banana Biology Haikou China
| | - Shuang Zhong
- Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou China
- Haikou Key Laboratory of Banana Biology Haikou China
| | - Dao Xiao
- Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou China
- Haikou Key Laboratory of Banana Biology Haikou China
| | - Zhanwu Sheng
- Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou China
- Haikou Key Laboratory of Banana Biology Haikou China
| |
Collapse
|
15
|
Karrer D, Weigel V, Hoberg N, Atamasov A, Rühl M. Biotransformation of [U-13C]linoleic acid suggests two independent ketonic- and aldehydic cycles within C8-oxylipin biosynthesis in Cyclocybe aegerita (V. Brig.) Vizzini. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01719-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractAlthough the typical aroma contributing compounds in fungi of the phylum Basidiomycota are known for decades, their biosynthetic pathways are still unclear. Amongst these volatiles, C8-compounds are probably the most important ones as they function, in addition to their specific perception of fungal odour, as oxylipins. Previous studies focused on C8-oxylipin production either in fruiting bodies or mycelia. However, comparisons of the C8-oxylipin biosynthesis at different developmental stages are scarce, and the biosynthesis in basidiospores was completely neglected. In this study, we addressed this gap and were able to show that the biosynthesis of C8-oxylipins differs strongly between different developmental stages. The comparison of mycelium, primordia, young fruiting bodies, mature fruiting bodies, post sporulation fruiting bodies and basidiospores revealed that the occurance of the two main C8-oxylipins octan-3-one and oct-1-en-3-ol distinguished in different stages. Whereas oct-1-en-3-ol levels peaked in the mycelium and decreased with ongoing maturation, octan-3-one levels increased during maturation. Furthermore, oct-2-en-1-ol, octan-1-ol, oct-2-enal, octan-3-ol, oct-1-en-3-one and octanal contributed to the C8-oxylipins but with drastically lower levels. Biotransformations with [U-13C]linoleic acid revealed that early developmental stages produced various [U-13C]oxylipins, whereas maturated developmental stages like post sporulation fruiting bodies and basidiospores produced predominantly [U-13C]octan-3-one. Based on the distribution of certain C8-oxylipins and biotransformations with putative precursors at different developmental stages, two distinct biosynthetic cycles were deduced with oct-2-enal (aldehydic-cycle) and oct-1-en-3-one (ketonic-cycle) as precursors.
Collapse
|
16
|
Inamdar AA, Morath S, Bennett JW. Fungal Volatile Organic Compounds: More Than Just a Funky Smell? Annu Rev Microbiol 2021; 74:101-116. [PMID: 32905756 DOI: 10.1146/annurev-micro-012420-080428] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many volatile organic compounds (VOCs) associated with industry cause adverse health effects, but less is known about the physiological effects of biologically produced volatiles. This review focuses on the VOCs emitted by fungi, which often have characteristic moldy or "mushroomy" odors. One of the most common fungal VOCs, 1-octen-3-ol, is a semiochemical for many arthropod species and also serves as a developmental hormone for several fungal groups. Other fungal VOCs are flavor components of foods and spirits or are assayed in indirect methods for detecting the presence of mold in stored agricultural produce and water-damaged buildings. Fungal VOCs function as antibiotics as well as defense and plant-growth-promoting agents and have been implicated in a controversial medical condition known as sick building syndrome. In this review, we draw attention to the ubiquity, diversity, and toxicological significance of fungal VOCs as well as some of their ecological roles.
Collapse
Affiliation(s)
- Arati A Inamdar
- Department of Pathology, RWJ Barnabas Health, Livingston, New Jersey 07039, USA;
| | - Shannon Morath
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA; ,
| | - Joan W Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA; ,
| |
Collapse
|
17
|
Orban A, Weber A, Herzog R, Hennicke F, Rühl M. Transcriptome of different fruiting stages in the cultivated mushroom Cyclocybe aegerita suggests a complex regulation of fruiting and reveals enzymes putatively involved in fungal oxylipin biosynthesis. BMC Genomics 2021; 22:324. [PMID: 33947322 PMCID: PMC8097960 DOI: 10.1186/s12864-021-07648-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cyclocybe aegerita (syn. Agrocybe aegerita) is a commercially cultivated mushroom. Its archetypal agaric morphology and its ability to undergo its whole life cycle under laboratory conditions makes this fungus a well-suited model for studying fruiting body (basidiome, basidiocarp) development. To elucidate the so far barely understood biosynthesis of fungal volatiles, alterations in the transcriptome during different developmental stages of C. aegerita were analyzed and combined with changes in the volatile profile during its different fruiting stages. RESULTS A transcriptomic study at seven points in time during fruiting body development of C. aegerita with seven mycelial and five fruiting body stages was conducted. Differential gene expression was observed for genes involved in fungal fruiting body formation showing interesting transcriptional patterns and correlations of these fruiting-related genes with the developmental stages. Combining transcriptome and volatilome data, enzymes putatively involved in the biosynthesis of C8 oxylipins in C. aegerita including lipoxygenases (LOXs), dioxygenases (DOXs), hydroperoxide lyases (HPLs), alcohol dehydrogenases (ADHs) and ene-reductases could be identified. Furthermore, we were able to localize the mycelium as the main source for sesquiterpenes predominant during sporulation in the headspace of C. aegerita cultures. In contrast, changes in the C8 profile detected in late stages of development are probably due to the activity of enzymes located in the fruiting bodies. CONCLUSIONS In this study, the combination of volatilome and transcriptome data of C. aegerita revealed interesting candidates both for functional genetics-based analysis of fruiting-related genes and for prospective enzyme characterization studies to further elucidate the so far barely understood biosynthesis of fungal C8 oxylipins.
Collapse
Affiliation(s)
- Axel Orban
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392, Giessen, Hesse, Germany
| | - Annsophie Weber
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392, Giessen, Hesse, Germany
| | - Robert Herzog
- International Institute Zittau, Technical University Dresden, 02763, Zittau, Saxony, Germany
| | - Florian Hennicke
- Project Group Genetics and Genomics of Fungi, Ruhr-University Bochum, Chair Evolution of Plants and Fungi, 44780, Bochum, North Rhine-Westphalia, Germany.
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392, Giessen, Hesse, Germany. .,Fraunhofer Institute for Molecular Biology and Applied Ecology IME Branch for Bioresources, 35392, Giessen, Hesse, Germany.
| |
Collapse
|
18
|
Miranda TG, Alves RJM, de Souza RF, Maia JGS, Figueiredo PLB, Tavares-Martins ACC. Volatile concentrate from the neotropical moss Neckeropsis undulata (Hedw.) Reichardt, existing in the brazilian Amazon. BMC Chem 2021; 15:7. [PMID: 33494804 PMCID: PMC7836487 DOI: 10.1186/s13065-021-00736-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/16/2021] [Indexed: 11/22/2022] Open
Abstract
Background Many natural compounds have been identified and synthesized by the advancement of bryophytes phytochemistry studies. This work aimed to report the composition of Neckeropsis undulata (Hedw.) Reichardt moss volatiles, sampled in the Combú Island, Belém city, Pará state, Brazil. The volatile concentrate of N. undulata was obtained by a simultaneous distillation-extraction micro-system, analyzed by GC and GC-MS, and reported for the first time. Results Ten compounds were identified in the volatile concentrate, corresponding to 91.6% of the total, being 1-octen-3-ol (35.7%), α-muurolol (21.4%), naphthalene (11.3%), and n-hexanal (10.0 %) the main constituents. Most of the constituents of the N. undulata volatile concentrate have been previously identified in other mosses, and liverworts spread wide in the world. Conclusions 1-Octen-3-ol, n-hexanal, 2-ethylhexanol, isoamyl propionate, and octan-3-one are already known metabolic products obtained from enzymatic oxidation of polyunsaturated fatty acids, belonging to the large family of minor oxygenated compounds known as oxylipins. The knowledge of the composition of volatiles from moss N. undulata could contribute to the Neckeraceae species’ chemotaxonomy.
Collapse
Affiliation(s)
- Thyago G Miranda
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Raynon Joel M Alves
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Ronilson F de Souza
- Departamento de Ciências Naturais, Universidade do Estado do Pará, Belém, PA, 66050-540, Brazil
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, São Luís, MA, 64080-040, Brazil
| | - Pablo Luis B Figueiredo
- Departamento de Ciências Naturais, Universidade do Estado do Pará, Belém, PA, 66050-540, Brazil.
| | - Ana Cláudia C Tavares-Martins
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.,Departamento de Ciências Naturais, Universidade do Estado do Pará, Belém, PA, 66050-540, Brazil
| |
Collapse
|
19
|
Evaluation of salivary VOC profile composition directed towards oral cancer and oral lesion assessment. Clin Oral Investig 2021; 25:4415-4430. [PMID: 33387033 DOI: 10.1007/s00784-020-03754-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Endogenous substances have been analyzed in biological samples in order to be related with metabolic dysfunctions and diseases. The study aimed to investigate profiles of volatile organic compounds (VOCs) from fresh and incubated saliva donated by healthy controls, individuals with oral tissue lesions and with oral cancer, in order to assess case-specific biomarkers of oxidative stress. MATERIALS AND METHODS VOCs were pre-concentrated using headspace-solid phase microextraction and analyzed using gas chromatography-mass spectrometry. Then, VOCs positively modulated by incubation process were subtracted, yielding profiles with selected features. Principal component analysis and hierarchical cluster analysis were used to inspect data distribution, while univariate statistics was applied to indicate potential markers of oral cancer. Machine learning algorithm was implemented, aiming multiclass prediction. RESULTS The removal of bacterial contribution to VOC profiles allowed the obtaining of more specific case-related patterns. Artificial neural network model included 9 most relevant compounds (1-octen-3-ol, hexanoic acid, E-2-octenal, heptanoic acid, octanoic acid, E-2-nonenal, nonanoic acid, 2,4-decadienal and 9-undecenoic acid). Model performance was assessed using 10-fold cross validation and receiver operating characteristic curves. Obtained overall accuracy was 90%. Oral cancer cases were predicted with 100% of sensitivity and specificity. CONCLUSIONS The selected VOCs were ascribed to lipid oxidation mechanism and presented potential to differentiate oral cancer from other inflammatory conditions. CLINICAL RELEVANCE These results highlight the importance of interpretation of saliva composition and the clinical value of salivary VOCs. Elucidated metabolic alterations have the potential to aid the early detection of oral cancer and the monitoring of oral lesions.
Collapse
|
20
|
Changes in the key aroma compounds of matsutake mushroom (Tricholoma matsutake Sing.) from Canada during pan-frying elucidated by application of the sensomics approach. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03606-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Schmidberger PC, Schieberle P. Changes in the Key Aroma Compounds of Raw Shiitake Mushrooms ( Lentinula edodes) Induced by Pan-Frying As Well As by Rehydration of Dry Mushrooms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4493-4506. [PMID: 32196328 DOI: 10.1021/acs.jafc.0c01101] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Application of the aroma extract dilution analysis (AEDA) on an extract/distillate from raw shiitake mushrooms revealed 32 odorants among which 3-(methylthio)propanal (cooked potato), 1-octen-3-one, and 1-octen-3-ol (both mushroom-like) showed the highest flavor dilution (FD) factors. An isotope enrichment experiment with raw shiitake tissue and either 13C18-linoleic acid or 2H4-1-octen-3-ol confirmed that both 1-octen-3-ol and 1-octen-3-one are direct degradation products of the fatty acid, but it could be proven for the first time that the ketone is not formed by an oxidation of the alcohol. After pan-frying, 42 odor-active compounds appeared among which 3-hydroxy-4,5-dimethylfuran-2(5H)-one (savory), 1,2,4,5-tetrathiane (burnt, sulfury), 4-hydroxy-2,5-dimethylfuran-3(2H)-one (caramel-like), phenylacetic acid (honey-like), 3-(methylthio)-propanal, and trans-4,5-epoxy-(E)-2-decenal (metallic) showed the highest FD factors. To get a deeper insight into their aroma contribution, 19 key odorants were quantitated in the raw shiitake and twenty-one in the pan-fried mushrooms by stable isotope dilution assays, and new methods for the quantitation of four sulfur compounds were developed. A calculation of odor activity values (OAV; ratio of concentration to odor threshold) showed that 1-octen-3-one was by far the most important odorant in raw shiitake. During pan-frying, in particular, four aroma compounds were significantly increased, i.e., 4-hydroxy-2,5-dimethylfuran-3(2H)-one, dimethyl trisulfide, 1,2,4,5-tetrathiane, and 1,2,3,5,6-pentathiepane. The overall aroma profile of pan-fried shiitake could very well be mimicked by an aroma recombinate consisting of 15 reference aroma compounds in the concentrations determined in the pan-fried mushrooms. Further results showed that the sulfur compounds were even higher in rehydrated dry shiitake as compared to the pan-fried mushrooms.
Collapse
Key Words
- [2H4]-1,2,3,5,6-pentathiepane
- [2H4]-1,2,4,5-tetrathiane
- [2H6]-1,2,4,6-tetrathiepane
- dry
- odor activity value
- pan-fried shiitake
- raw shiitake
- rehydrated shiitake
- sensomics
- stable isotope dilution analysis
Collapse
Affiliation(s)
- Philipp C Schmidberger
- Technische Universität München, Lehrstuhl für Lebensmittelchemie, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Peter Schieberle
- Technische Universität München, Lehrstuhl für Lebensmittelchemie, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
22
|
Lee NY, Choi DH, Kim MG, Jeong MJ, Kwon HJ, Kim DH, Kim YG, Luccio ED, Arioka M, Yoon HJ, Kim JG. Biosynthesis of (R)-(-)-1-Octen-3-ol in Recombinant Saccharomyces cerevisiae with Lipoxygenase-1 and Hydroperoxide Lyase Genes from Tricholoma matsutake. J Microbiol Biotechnol 2020; 30:296-305. [PMID: 32120462 PMCID: PMC9728333 DOI: 10.4014/jmb.2001.01049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/04/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022]
Abstract
Tricholoma matsutake is an ectomycorrhizal fungus, related with the host of Pinus densiflora. Most of studies on T. matsutake have focused on mycelial growth, genes and genomics, phylogenetics, symbiosis, and immune activity of this strain. T. matsutake is known for its unique fragrance in Eastern Asia. The most major component of its scent is (R)-(-)-1-octen-3-ol and is biosynthesized from the substrate linoleic acid by the sequential reaction of lipoxygenase and peroxide lyase. Here, we report for the first time the biosynthesis of (R)-(-)- 1-octen-3-ol of T. matsutake using the yeast Saccharomyces cerevisiae as a host. In this study, cDNA genes correlated with these reactions were cloned from T. matsutake, and expression studies of theses genes were carried out in the yeast Saccharomyces cerevisiae. The product of these genes expression study was carried out with Western blotting. The biosynthesis of (R)-(-)- 1-octen-3-ol of T. matsutake in recombinant Saccharomyces cerevisiae was subsequently identified with GC-MS chromatography analysis. The biosynthesis of (R)-(-)-1-octen-3-ol with S. cerevisiae represents a significant step forward.
Collapse
Affiliation(s)
- Nan-Yeong Lee
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Doo-Ho Choi
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Mi-Gyeong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Min-Ji Jeong
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Hae-Jun Kwon
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Dong-Hyun Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Young-Guk Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Eric di Luccio
- School of Life Science, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Manabu Arioka
- Department of Biotechnology, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 11-8657 Japan
| | - Hyeok-Jun Yoon
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Jong-Guk Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 4566, Republic of Korea
| |
Collapse
|
23
|
Fischer E, Cachon R, Cayot N. Pisum sativum vs Glycine max, a comparative review of nutritional, physicochemical, and sensory properties for food uses. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
25
|
Holighaus G, Rohlfs M. Volatile and non-volatile fungal oxylipins in fungus-invertebrate interactions. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Influence of R and S enantiomers of 1-octen-3-ol on gene expression of Penicillium chrysogenum. J Ind Microbiol Biotechnol 2019; 46:977-991. [PMID: 30923972 DOI: 10.1007/s10295-019-02168-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 03/23/2019] [Indexed: 01/18/2023]
Abstract
Inhibition of spore germination offers an attractive and effective target for controlling fungal species involved in food spoilage. Mushroom alcohol (1-octen-3-ol) functions as a natural self-inhibitor of spore germination for many fungi and, therefore, provides a useful tool for probing the molecular events controlling the early stages of fungal growth. In Penicillium spp., the R and S enantiomers of 1-octen-3-ol delayed spore germination and sporulation in four species of Penicillium involved in soils of fruit and grains, but to different degrees. Because of its well-annotated genome, we used Penicillium chrysogenum to perform a comprehensive comparative transcriptomic analysis of cultures treated with the two enantiomers. Altogether, about 80% of the high-quality reads could be mapped to 11,396 genes in the reference genome. The top three active pathways were metabolic (978 transcripts), biosynthesis of secondary metabolites (420 transcripts), and microbial metabolism in diverse environments (318 transcripts). When compared to the control, treatment with (R)-(-)-1-octen-3-ol affected the transcription levels of 91 genes, while (S)-(+)-1-octen-3-ol affected only 41 genes. Most of the affected transcripts were annotated and predicted to be involved in transport, establishment of localization, and transmembrane transport. Alternative splicing and SNPs' analyses indicated that, compared to the control, the R enantiomer had greater effects on the gene expression pattern of Penicillium chrysogenum than the S enantiomer. A qRT-PCR analysis of 28 randomly selected differentially expressed genes confirmed the transcriptome data. The transcriptomic data have been deposited in NCBI SRA under the accession number SRX1065226.
Collapse
|
27
|
Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPME-GC–MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1099:46-55. [DOI: 10.1016/j.jchromb.2018.09.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/30/2023]
|
28
|
Correlation between the key aroma compounds and gDNA copies of Bacillus during fermentation and maturation of natto. Food Res Int 2018; 112:175-183. [DOI: 10.1016/j.foodres.2018.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 11/22/2022]
|
29
|
Li W, Chen Y, Tong S, Guo Y, Zhang Y, Ge M. Kinetic study of the gas-phase reaction of O 3 with three unsaturated alcohols. J Environ Sci (China) 2018; 71:292-299. [PMID: 30195687 DOI: 10.1016/j.jes.2018.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Rate constants for the reactions of ozone with 1-octen-3-ol, 1-nonen-3-ol and 1-nonen-4-ol have been determined at 298±1K and atmospheric pressure for the first time. The experiments were performed in a 100-L FEP Teflon film bag using absolute rate method; the rate constants were (1.91±0.19)×10-17, (1.89±0.20)×10-17, and (0.83±0.08)×10-17cm3/(molecule·sec) for 1-octen-3-ol, 1-nonen-3-ol, and 1-nonen-4-ol, respectively. The rate constants have been compared with those of unsaturated alcohols structural homologs, and used to estimate the reaction reactivity. The electronegativity of carbon-carbon double bond was calculated by atomic charges analysis. The calculated results show that the electronic effect of the lone pair electrons of hydroxyl oxygen is the main cause of the difference in rate coefficient. According to the obtained rate constants, the atmospheric lifetimes of studied unsaturated alcohols were also estimated, which indicates that the reaction with ozone is an important loss pathway in the atmosphere, especially in polluted areas.
Collapse
Affiliation(s)
- Weiran Li
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Peking University, Beijing 100871, China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yucong Guo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yunhong Zhang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China.
| |
Collapse
|
30
|
Oliw EH. Biosynthesis of Oxylipins by Rhizoctonia solani with Allene Oxide and Oleate 8S,9S-Diol Synthase Activities. Lipids 2018; 53:527-537. [PMID: 30009385 DOI: 10.1002/lipd.12051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 11/06/2022]
Abstract
Oxylipin biosynthesis by fungi is catalyzed by both the lipoxygenase (LOX) family and the linoleate diol synthase (LDS) family of the peroxidase-cyclooxygenase superfamily. Rhizoctonia solani, a pathogenic fungus, infects staple crops such as potato and rice. The genome predicts three genes with 9-13 introns, which code for tentative dioxygenase (DOX)-cytochrome P450 fusion enzymes of the LDS family, and one gene, which might code for a 13-LOX. The objective was to determine whether mycelia or nitrogen powder of mycelia oxidized unsaturated C18 fatty acids to LDS- or LOX-related metabolites. Mycelia converted 18:2n-6 to 8R-hydroxy-9Z,12Z-octadecadienoic acid and to an α-ketol, 9S-hydroxy-10-oxo-12Z-octadecenoic acid. In addition to these metabolites, nitrogen powder of mycelia oxidized 18:2n-6 to 9S-hydroperoxy-10E, 12Z-octadecadienoic, and 13S-hydroperoxy-9Z,11E-octadecadienoic acids; the latter was likely formed by the predicted 13-LOX. 18:1n-9 was transformed into 8S-hydroperoxy-9Z-octadecenoic and into 8S,9S-dihydroxy-10E-octadecenoic acids, indicating the expression of 8,9-diol synthase. The allene oxide, 9S(10)epoxy-10,12Z-octadecadienoic acid, is unstable and decomposes rapidly to the α-ketol above, indicating biosynthesis by 9S-DOX-allene oxide synthase. This allene oxide and α-ketol are also formed by potato stolons, which illustrates catalytic similarities between the plant host and fungal pathogen.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| |
Collapse
|
31
|
Volatile components, total phenolic compounds, and antioxidant capacities of worm-infected Gomphidius rutilus. FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2018.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Trapp T, Zajul M, Ahlborn J, Stephan A, Zorn H, Fraatz MA. Submerged Cultivation of Pleurotus sapidus with Molasses: Aroma Dilution Analyses by Means of Solid Phase Microextraction and Stir Bar Sorptive Extraction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2393-2402. [PMID: 28190358 DOI: 10.1021/acs.jafc.6b05292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The basidiomycete Pleurotus sapidus (PSA) was grown in submerged cultures with molasses as substrate for the production of mycelium as a protein source for food applications. The volatilomes of the substrate, the submerged culture, and the mycelia were analyzed by gas chromatography-tandem mass spectrometry-olfactometry. For compound identification, aroma dilution analyses by means of headspace solid phase microextraction and stir bar sorptive extraction were performed via variation of the split vent flow rate. Among the most potent odorants formed by PSA were arylic compounds (e.g., p-anisaldehyde), unsaturated carbonyls (e.g., 1-octen-3-one, ( E)-2-octenal, ( E, E)-2,4-decadienal), and cyclic monoterpenoids (e.g., 3,9-epoxy- p-menth-1-ene, 3,6-dimethyl-3a,4,5,7a-tetrahydro-1-benzofuran-2(3 H)-one). Several compounds from the latter group were described for the first time in Pleurotus spp. After separation of the mycelia from the medium, the aroma compounds were mainly enriched in the culture supernatant. The sensory analysis of the mycelium correlated well with the instrumental results.
Collapse
Affiliation(s)
- Tobias Trapp
- Institute of Food Chemistry and Food Biotechnology , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Martina Zajul
- Institute of Food Chemistry and Food Biotechnology , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Jenny Ahlborn
- Institute of Food Chemistry and Food Biotechnology , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Alexander Stephan
- Institute of Food Chemistry and Food Biotechnology , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
- VAN HEES GmbH , Kurt-van-Hees-Strasse 1 , 65396 Walluf , Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Marco Alexander Fraatz
- Institute of Food Chemistry and Food Biotechnology , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| |
Collapse
|
33
|
Zhu ZJ, Chen HM, Chen JJ, Yang R, Yan XJ. One-Step Bioconversion of Fatty Acids into C8-C9 Volatile Aroma Compounds by a Multifunctional Lipoxygenase Cloned from Pyropia haitanensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1233-1241. [PMID: 29327928 DOI: 10.1021/acs.jafc.7b05341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The multifunctional lipoxygenase PhLOX cloned from Pyropia haitanensis was expressed in Escherichia coli with 24.4 mg·L-1 yield. PhLOX could catalyze the one-step bioconversion of C18-C22 fatty acids into C8-C9 volatile organic compounds (VOCs), displaying higher catalytic efficiency for eicosenoic and docosenoic acids than for octadecenoic acids. C20:5 was the most suitable substrate among the tested fatty acids. The C8-C9 VOCs were generated in good yields from fatty acids, e.g., 2E-nonenal from C20:4, and 2E,6Z-nonadienal from C20:5. Hydrolyzed oils were also tested as substrates. The reactions mainly generated 2E,4E-pentadienal, 2E-octenal, and 2E,4E-octadienal from hydrolyzed sunflower seed oil, corn oil, and fish oil, respectively. PhLOX showed good stability after storage at 4 °C for 2 weeks and broad tolerance to pH and temperature. These desirable properties of PhLOX make it a promising novel biocatalyst for the industrial production of volatile aroma compounds.
Collapse
Affiliation(s)
- Zhu-Jun Zhu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University , Ningbo, Zhejiang 315211, China
- Ningbo Institute of Oceanography , Ningbo, Zhejiang 315832, China
| | - Hai-Min Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University , Ningbo, Zhejiang 315211, China
| | - Juan-Juan Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University , Ningbo, Zhejiang 315211, China
| | - Rui Yang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University , Ningbo, Zhejiang 315211, China
| | - Xiao-Jun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University , Ningbo, Zhejiang 315211, China
| |
Collapse
|
34
|
Xiong C, Li Q, Li S, Chen C, Chen Z, Huang W. In vitro Antimicrobial Activities and Mechanism of 1-Octen-3-ol against Food-related Bacteria and Pathogenic Fungi. J Oleo Sci 2017; 66:1041-1049. [PMID: 28794307 DOI: 10.5650/jos.ess16196] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
1-Octen-3-ol, known as mushroom alcohol, is a natural product extracted from fungi and plants. Its antimicrobial activities against five common food-related bacteria and two pathogenic fungi were evaluated in this paper, including Staphylococcus aureus, Bacillus subtilis, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, Fusarium tricinctum and Fusarium oxysporum. The results showed that 1-octen-3-ol had a strong antibacterial activity against the tested bacteria, especially against Gram-positive bacteria, and it can also inhibit fungal growth and spore germination. The minimum inhibitory concentrations (MICs) for Gram-positive bacteria and Gram-negative bacteria were 1.0 and 2.0 mg/mL, respectively. The minimum bactericidal concentrations (MBCs) for Gram-positive bacteria and Gram-negative bacteria were 4.0 and 8.0 mg/mL, respectively. The completely inhibitory concentrations for fungal growth and spore germination were 8.0 and 2.0 mg/ml, respectively. Cell constituents' leakage and scanning electron microscope assays indicated that 1-octen-3-ol changed the permeability of the cell membrane. Discrepant antimicrobial activity between 1-octen-3-ol and 1-octen-3-one indicated that hydroxyl may play a decisive role in antimicrobial activity. It is suggested that 1-octen-3-ol, with attractive mushroom aroma and antimicrobial activity, has potential applications in control of pathogens.
Collapse
Affiliation(s)
- Chuan Xiong
- College of Life Science, Sichuan University.,Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences
| | - Qiang Li
- College of Life Science, Sichuan University.,Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences
| | - Shuhong Li
- Biotechnology & Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences
| | - Cheng Chen
- Institute of plant protection, Sichuan Academy of Agricultural Sciences
| | - Zuqin Chen
- College of Life Science, Sichuan University
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences
| |
Collapse
|
35
|
Comparison of Four Extraction Methods, SPME, DHS, SAFE, Versus SDE, for the Analysis of Flavor Compounds in Natto. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1005-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Tietel Z, Masaphy S. True morels (Morchella)—nutritional and phytochemical composition, health benefits and flavor: A review. Crit Rev Food Sci Nutr 2017; 58:1888-1901. [DOI: 10.1080/10408398.2017.1285269] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zipora Tietel
- Gilat Research Center, Agricultural Research Organization, M.P. Negev Israel
| | - Segula Masaphy
- Applied Microbiology and Mycology Department, MIGAL, Kiryat Shmona, Israel
- Tel Hai College, Upper Galilee, Israel
| |
Collapse
|
37
|
Ni H, Hao S, Zheng F, Zhang L, Lee B, Wang Y, Chen F. Effects of two enzyme extracts of Aspergillus niger on green tea aromas. Food Sci Biotechnol 2017; 26:611-622. [PMID: 30263585 DOI: 10.1007/s10068-017-0108-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 10/19/2022] Open
Abstract
Green tea was investigated in terms of its aroma changes induced by two enzyme extracts of Aspergillus niger, i.e., crude enzyme extracted from fermentation using tea stalk medium (CETSM) and crude enzyme yielded in potato dextrose medium. The result showed that the former had significant effects on sensory indexes and volatile constituents, with significant increases in toasty and mushroom notes, while the latter had little influence on the aforementioned indexes. In addition, the volatile constituents were significantly affected; in particular, the contents of cis-3-hexenol, 1-octen-3-ol, eucalyptol, hexanol, and benzaldehyde increased. Furthermore, gas chromatography-olfactometry (GC-O) analysis showed that an increase in 1-octen-3-ol strengthened the mushroom note. These results indicate that CETSM contains some novel enzymes that can modify the aroma profile of green tea. This study also provides valuable information and suggestions to use fermented enzymes to modify food aromas.
Collapse
Affiliation(s)
- Hui Ni
- 1College of Food and Bioengineering, Jimei University, Xiamen, 361021 Fujian Province People's Republic of China
| | - Sun Hao
- 1College of Food and Bioengineering, Jimei University, Xiamen, 361021 Fujian Province People's Republic of China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, 361021 Fujian Province People's Republic of China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, 361021 Fujian Province People's Republic of China
| | - Fuping Zheng
- 2Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048 China.,5Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048 People's Republic of China
| | - Liangzhen Zhang
- 1College of Food and Bioengineering, Jimei University, Xiamen, 361021 Fujian Province People's Republic of China
| | - Bolim Lee
- 6Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634 USA
| | - Yaqi Wang
- 6Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634 USA
| | - Feng Chen
- 1College of Food and Bioengineering, Jimei University, Xiamen, 361021 Fujian Province People's Republic of China.,2Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048 China.,6Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634 USA
| |
Collapse
|
38
|
Bush DS, Lawrance A, Siegel JP, Berenbaum MR. Orientation of Navel Orangeworm (Lepidoptera: Pyralidae) Larvae and Adults Toward Volatiles Associated With Almond Hull Split and Aspergillus flavus. ENVIRONMENTAL ENTOMOLOGY 2017; 46:602-608. [PMID: 28379558 DOI: 10.1093/ee/nvx068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Indexed: 06/07/2023]
Abstract
The navel orangeworm Amyelois transitella (Walker, 1863, Lepidoptera: Pyralidae), a pest of California tree nuts, is associated with the fungus Aspergillus flavus, and previous research suggests these species are facultative mutualists. Because navel orangeworm larvae exhibit improved performance on diets containing this fungus, orientation toward hostplants infected with A. flavus may be adaptive. We conducted behavioral assays to determine if larvae respond to chemical cues produced by almond hull split and fungal infection. In petri dish arenas, larvae showed a preference for 1-octen-3-ol and 2-phenylethanol, volatiles characteristic of damaged plants, as well as methanolic extracts of almond meal with 1-octen-3-ol and the fungal volatile conophthorin. In contrast, larvae displayed aversion to ethyl benzoate, an inhibitor of fungal growth. When we assessed oviposition behavior relative to substrates with and without A. flavus, females laid almost twice as many eggs near inoculated surfaces. Moreover, an average of 63% of eggs laid near inoculated substrates were fertilized, compared with 24% of eggs near uninoculated sites. We also tested the hypothesis that unfertilized eggs are laid on nutrient-poor substrates to provide supplemental nutrition for larvae in an assay comparing larval survivorship in the presence and absence of unfertilized eggs. Neonates given eggs survived 2.5 times longer on an average than unprovisioned neonates (208.8 h vs. 85.2 h), indicating that this species may compensate with cannibalism for oviposition on lower-quality food sources. We conclude that larvae orient to probable host plant and fungal volatiles associated with hull split and document a possible strategy for larvae to establish on low-quality hosts.
Collapse
Affiliation(s)
- Daniel S Bush
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (; ; )
| | - Allen Lawrance
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (; ; )
| | - Joel P Siegel
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648
| | - May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (; ; )
| |
Collapse
|
39
|
Kamle M, Bar E, Lewinsohn D, Shavit E, Roth-Bejerano N, Kagan-Zur V, Barak Z, Guy O, Zaady E, Lewinsohn E, Sitrit Y. Characterization of Morphology, Volatile Profiles, and Molecular Markers in Edible Desert Truffles from the Negev Desert. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2977-2983. [PMID: 27989114 DOI: 10.1021/acs.jafc.6b04063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Desert truffles are mycorrhizal, hypogeous fungi considered a delicacy. On the basis of morphological characters, we identified three desert truffle species that grow in the same habitat in the Negev desert. These include Picoa lefebvrei (Pat.), Tirmania nivea (Desf.) Trappe, and Terfezia boudieri (Chatain), all associated with Helianthemum sessiliflorum. Their taxonomy was confirmed by PCR-RFLP. The main volatiles of fruit bodies of T. boudieri and T. nivea were 1-octen-3-ol and hexanal; however, volatiles of the latter species further included branched-chain amino acid derivatives such as 2-methylbutanal and 3-methylbutanal, phenylalanine derivatives such as benzaldehyde and benzenacetaldehyde, and methionine derivatives such as methional and dimethyl disulfide. The least aromatic truffle, P. lefebvrei, contained low levels of 1-octen-3-ol as the main volatile. Axenic mycelia cultures of T. boudieri displayed a simpler volatile profile compared to its fruit bodies. This work highlights differences in the volatile profiles of desert truffles and could hence be of interest for selecting and cultivating genotypes with the most likable aroma.
Collapse
Affiliation(s)
- Madhu Kamle
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Einat Bar
- Agricultural Research Organization, Institute of Plant Sciences, the Volcani Center , Bet-Dagan 50250, Israel
| | | | - Elinoar Shavit
- North American Mycological Association - Medicinal Mushrooms Committee , 192 Partridge LaneConcord, MA 01742, USA
| | - Nurit Roth-Bejerano
- Life Sciences Department, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Varda Kagan-Zur
- Life Sciences Department, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Ze'ev Barak
- Life Sciences Department, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Ofer Guy
- Desert Agro-Research Center, Ramat-Negev R&D , D. N. Halutza 85515, Israel
| | - Eli Zaady
- Agricultural Research Organization, Institute of Plant Sciences, the Volcani Center , Bet-Dagan 50250, Israel
| | - Efraim Lewinsohn
- Agricultural Research Organization, Institute of Plant Sciences, the Volcani Center , Bet-Dagan 50250, Israel
| | - Yaron Sitrit
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| |
Collapse
|
40
|
Mashhadi Z, Newcomer ME, Brash AR. The Thr-His Connection on the Distal Heme of Catalase-Related Hemoproteins: A Hallmark of Reaction with Fatty Acid Hydroperoxides. Chembiochem 2016; 17:2000-2006. [PMID: 27653176 PMCID: PMC5267355 DOI: 10.1002/cbic.201600345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 11/10/2022]
Abstract
This review focuses on a group of heme peroxidases that retain the catalase fold in structure, yet show little or no reaction with hydrogen peroxide. Instead of having a role in oxidative defense, these enzymes are involved in secondary metabolite biosynthesis. The prototypical enzyme is catalase-related allene oxide synthase, an enzyme that converts a specific fatty acid hydroperoxide to the corresponding allene oxide (epoxide). Other catalase-related enzymes form allylic epoxides, aldehydes, or a bicyclobutane fatty acid. In all catalases (including these relatives), a His residue on the distal face of the heme is absolutely required for activity. Its immediate neighbor in sequence as well as in 3 D space is conserved as Val in true catalases and Thr in the fatty acid hydroperoxide-metabolizing enzymes. Thr-His on the distal face of the heme is critical in switching the substrate specificity from H2 O2 to fatty acid hydroperoxide.
Collapse
Affiliation(s)
- Zahra Mashhadi
- Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alan R Brash
- Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
41
|
Spakowicz DJ, Strobel SA. Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl Microbiol Biotechnol 2015; 99:4943-51. [PMID: 25957494 DOI: 10.1007/s00253-015-6641-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/22/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Recent advances in the biological production of fuels have relied on the optimization of pathways involving genes from diverse organisms. Several recent articles have highlighted the potential to expand the pool of useful genes by looking to filamentous fungi. This review highlights the enzymes and organisms used for the production of a variety of fuel types and commodity chemicals with a focus on the usefulness and promise of those from filamentous fungi.
Collapse
Affiliation(s)
- Daniel J Spakowicz
- Department of Molecular Biophysics and Biochemistry, Yale University, 260/266 Whitney Avenue, PO Box 208114, New Haven, CT, 06520-8114, USA
| | | |
Collapse
|
42
|
Costa R, De Grazia S, Grasso E, Trozzi A. Headspace-Solid-Phase Microextraction-Gas Chromatography as Analytical Methodology for the Determination of Volatiles in Wild Mushrooms and Evaluation of Modifications Occurring during Storage. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2015; 2015:951748. [PMID: 25945282 PMCID: PMC4405290 DOI: 10.1155/2015/951748] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 06/03/2023]
Abstract
Mushrooms are sources of food, medicines, and agricultural means. Not much is reported in the literature about wild species of the Mediterranean flora, although many of them are traditionally collected for human consumption. The knowledge of their chemical constituents could represent a valid tool for both taxonomic and physiological characterizations. In this work, a headspace-solid-phase microextraction (HS-SPME) method coupled with GC-MS and GC-FID was developed to evaluate the volatile profiles of ten wild mushroom species collected in South Italy. In addition, in order to evaluate the potential of this analytical methodology for true quantitation of volatiles, samples of the cultivated species Agaricus bisporus were analyzed. The choice of this mushroom was dictated by its ease of availability in the food market, due to the consistent amounts required for SPME method development. For calibration of the main volatile compounds, the standard addition method was chosen. Finally, the assessed volatile composition of A. bisporus was monitored in order to evaluate compositional changes occurring during storage, which represents a relevant issue for such a wide consumption edible product.
Collapse
Affiliation(s)
- Rosaria Costa
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute (SCIFAR), University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Selenia De Grazia
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute (SCIFAR), University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Elisa Grasso
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute (SCIFAR), University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Alessandra Trozzi
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute (SCIFAR), University of Messina, Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
43
|
Shaw JJ, Spakowicz DJ, Dalal RS, Davis JH, Lehr NA, Dunican BF, Orellana EA, Narváez-Trujillo A, Strobel SA. Biosynthesis and genomic analysis of medium-chain hydrocarbon production by the endophytic fungal isolate Nigrograna mackinnonii E5202H. Appl Microbiol Biotechnol 2015; 99:3715-28. [PMID: 25672844 PMCID: PMC4667366 DOI: 10.1007/s00253-014-6206-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 01/16/2023]
Abstract
An endophytic fungus was isolated that produces a series of volatile natural products, including terpenes and odd chain polyenes. Phylogenetic analysis of the isolate using five loci suggests that it is closely related to Nigrograna mackinnonii CBS 674.75. The main component of the polyene series was purified and identified as (3E,5E,7E)-nona-1,3,5,7-tetraene (NTE), a novel natural product. Non-oxygenated hydrocarbons of this chain length are uncommon and desirable as gasoline-surrogate biofuels. The biosynthetic pathway for NTE production was explored using metabolic labeling and gas chromatography time of flight mass spectometer (GCMS). Two-carbon incorporation (13)C acetate suggests that it is derived from a polyketide synthase (PKS) followed by decarboxylation. There are several known mechanisms for such decarboxylation, though none have been discovered in fungi. Towards identifying the PKS responsible for the production of NTE, the genome of N. mackinnonii E5202H (ATCC SD-6839) was sequenced and assembled. Of the 32 PKSs present in the genome, 17 are predicted to contain sufficient domains for the production of NTE. These results exemplify the capacity of endophytic fungi to produce novel natural products that may have many uses, such as biologically derived fuels and commodity chemicals.
Collapse
Affiliation(s)
- Jeffery J Shaw
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Signaling pathways involved in 1-octen-3-ol-mediated neurotoxicity in Drosophila melanogaster: implication in Parkinson’s disease. Neurotox Res 2014; 25:183-91. [PMID: 23959949 DOI: 10.1007/s12640-013-9418-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 01/20/2023]
Abstract
Previously, we have pioneered Drosophila melanogaster as a reductionist model to show that 1-octen-3-ol, a musty-smelling volatile compound emitted by fungi and other organisms, causes loss of dopaminergic neurons and Parkinson’s disease-like symptoms in flies. Using our in vivo Drosophila system, the modulatory roles of important signaling pathways—JNK, Akt and the caspase-3-dependent apoptotic pathway were investigated in the context of 1-octen-3-ol-induced dopamine neurotoxicity. When heterozygous flies carrying mutant alleles for these proteins were exposed to 0.5 ppm of 1-octen-3-ol, they had shorter survival times than wild-type Drosophila. The overexpressed levels of wild-type JNK and Akt, (UAS-bsk and UAS-Akt) with TH-GAL4 and elav-GAL4 drivers improved the survival duration of exposed flies compared with controls. Thus, we found that Akt and JNK both protect against loss of dopamine activity associated with 1-octen-3-ol exposure, indicating the pro-survival role of these signaling pathways. Further, 1-octen-3-ol exposure was associated with activation of caspase 3, a hallmark for apoptosis.
Collapse
|
45
|
Abstract
Early detection of invasive aspergillosis is absolutely required for efficient therapy of this fungal infection. The identification of fungal volatiles in patient breath can be an alternative for the detection of Aspergillus fumigatus that still remains problematic. In this work, we investigated the production of volatile organic compounds (VOCs) by A. fumigatus in vitro, and we show that volatile production depends on the nutritional environment. A. fumigatus produces a multiplicity of VOCs, predominantly terpenes and related compounds. The production of sesquiterpenoid compounds was found to be strongly induced by increased iron concentrations and certain drugs, i.e., pravastatin. Terpenes that were always detectable in large amounts were α-pinene, camphene, and limonene, as well as sesquiterpenes, identified as α-bergamotene and β-trans-bergamotene. Other substance classes that were found to be present in the volatome, such as 1-octen-3-ol, 3-octanone, and pyrazines, were found only under specific growth conditions. Drugs that interfere with the terpene biosynthesis pathway influenced the composition of the fungal volatome, and most notably, a block of sesquiterpene biosynthesis by the bisphosphonate alendronate fundamentally changed the VOC composition. Using deletion mutants, we also show that a terpene cyclase and a putative kaurene synthase are essential for the synthesis of volatile terpenes by A. fumigatus. The present analysis of in vitro volatile production by A. fumigatus suggests that VOCs may be used in the diagnosis of infections caused by this fungus.
Collapse
|
46
|
Hung R, Lee S, Bennett JW. The effects of low concentrations of the enantiomers of mushroom alcohol (1-octen-3-ol) on Arabidopsis thaliana.. Mycology 2014; 5:73-80. [PMID: 24999439 PMCID: PMC4066924 DOI: 10.1080/21501203.2014.902401] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/25/2014] [Indexed: 01/12/2023] Open
Abstract
"Mushroom alcohol," or 1-octen-3-ol, is a common fungal volatile organic compound (VOC) that has been studied for its flavor properties, its effects on fungal spore germination, mushroom development, and as a signaling agent for insects. Far less is known about its effects on plants. We exposed Arabidopsis thaliana seeds, under conditions conducive to germination, to high (10 and 100 mg/1) and low concentrations (1, 2, and 3 mg/1) of racemic, S, and R forms of 1-octen-3-ol for 3 days. In addition, 1-, 2-, 3-, and 4-week-old A.thaliana plants also were exposed to 1 mg/1 of the compounds for the same period of time. Seedling formation was retarded with all tested levels of exposure to 1-octen-3-ol for both enantiomers and the racemer, while 95% of unexposed control seeds germinated to seedling within 3 days. There was a dose-dependent response in the reduction of seedling formation between 1 mg/1 and 3 mg/1 of exposure. When exposed seeds were removed from the VOC, nearly all resumed germination. Young plants exposed to 1 mg/1 of the R and S enantiomers of 1-octen-3-ol exhibited a mild inhibition of growth and chlorophyll production at 2 and 3 weeks but not at 4 weeks.
Collapse
Affiliation(s)
- Richard Hung
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, 59 Dudley Rd., New Brunswick, 08901, NJ, USA
| | - Samantha Lee
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, 59 Dudley Rd., New Brunswick, 08901, NJ, USA
| | - Joan W. Bennett
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, 59 Dudley Rd., New Brunswick, 08901, NJ, USA
| |
Collapse
|
47
|
|
48
|
Miyamoto K, Murakami T, Kakumyan P, Keller NP, Matsui K. Formation of 1-octen-3-ol from Aspergillus flavus conidia is accelerated after disruption of cells independently of Ppo oxygenases, and is not a main cause of inhibition of germination. PeerJ 2014; 2:e395. [PMID: 24883255 PMCID: PMC4034645 DOI: 10.7717/peerj.395] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/06/2014] [Indexed: 11/20/2022] Open
Abstract
Eight-carbon (C8) volatiles, such as 1-octen-3-ol, are ubiquitous among fungi. They are the volatiles critical for aroma and flavor of fungi, and assumed to be signals controlling germination of several fungi. In this study, we found that intact Aspergillus flavus conidia scarcely synthesized C8 volatiles but repeated freeze-thaw treatment that made the cell membrane permeable promoted (R)-1-octen-3-ol formation. Loss or down regulation of any one of five fatty acid oxygenases (PpoA, PpoB, PpoC, PpoD or lipoxygenase) hypothesized contribute to 1-octen-3-ol formation had little impact on production of this volatile. This suggested that none of the oxygenases were directly involved in the formation of 1-octen-3-ol or that compensatory pathways exist in the fungus. Germination of the conidia was markedly inhibited at high density (1.0 × 109spores mL−1). It has been postulated that 1-octen-3-ol is an autoinhibitor suppressing conidia germination at high density. 1-Octen-3-ol at concentration of no less than 10 mM was needed to suppress the germination while the concentration of 1-octen-3-ol in the suspension at 1.0 × 109 mL−1 was under the detection limit (<1 µM). Thus, 1-octen-3-ol was not the principal component responsible for inhibition of germination. Instead, it was evident that the other heat-labile factor(s) suppressed conidial germination.
Collapse
Affiliation(s)
- Kana Miyamoto
- Department of Biological Chemistry, Faculty of Agriculture and the Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University , Yamaguchi , Japan
| | - Tomoko Murakami
- Department of Biological Chemistry, Faculty of Agriculture and the Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University , Yamaguchi , Japan
| | - Pattana Kakumyan
- Department of Biological Chemistry, Faculty of Agriculture and the Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University , Yamaguchi , Japan
| | - Nancy P Keller
- Departments of Bacteriology and Medical Microbiology/Immunology, University of Wisconsin-Madison , Madison, WI , USA
| | - Kenji Matsui
- Department of Biological Chemistry, Faculty of Agriculture and the Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University , Yamaguchi , Japan
| |
Collapse
|
49
|
Brash AR, Niraula NP, Boeglin WE, Mashhadi Z. An ancient relative of cyclooxygenase in cyanobacteria is a linoleate 10S-dioxygenase that works in tandem with a catalase-related protein with specific 10S-hydroperoxide lyase activity. J Biol Chem 2014; 289:13101-11. [PMID: 24659780 DOI: 10.1074/jbc.m114.555904] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the course of exploring the scope of catalase-related hemoprotein reactivity toward fatty acid hydroperoxides, we detected a novel candidate in the cyanobacterium Nostoc punctiforme PCC 73102. The immediate neighboring upstream gene, annotated as "cyclooxygenase-2," appeared to be a potential fatty acid heme dioxygenase. We cloned both genes and expressed the cDNAs in Escherichia coli, confirming their hemoprotein character. Oxygen electrode recordings demonstrated a rapid (>100 turnovers/s) reaction of the heme dioxygenase with oleic and linoleic acids. HPLC, including chiral column analysis, UV, and GC-MS of the oxygenated products, identified a novel 10S-dioxygenase activity. The catalase-related hemoprotein reacted rapidly and specifically with linoleate 10S-hydroperoxide (>2,500 turnovers/s) with a hydroperoxide lyase activity specific for the 10S-hydroperoxy enantiomer. The products were identified by NMR as (8E)10-oxo-decenoic acid and the C8 fragments, 1-octen-3-ol and 2Z-octen-1-ol, in ∼3:1 ratio. Chiral HPLC analysis established strict enzymatic control in formation of the 3R alcohol configuration (99% enantiomeric excess) and contrasted with racemic 1-octen-3-ol formed in reaction of linoleate 10S-hydroperoxide with hematin or ferrous ions. The Nostoc linoleate 10S-dioxygenase, the sequence of which contains the signature catalytic sequence of cyclooxygenases and fungal linoleate dioxygenases (YRWH), appears to be a heme dioxygenase ancestor. The novel activity of the lyase expands the known reactions of catalase-related proteins and functions in Nostoc in specific transformation of the 10S-hydroperoxylinoleate.
Collapse
Affiliation(s)
- Alan R Brash
- From the Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | | | | | | |
Collapse
|
50
|
Plagemann I, Zelena K, Arendt P, Ringel PD, Krings U, Berger RG. LOXPsa1, the first recombinant lipoxygenase from a basidiomycete fungus. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|