1
|
Wagner-Golbs A, Neuber S, Kamlage B, Christiansen N, Bethan B, Rennefahrt U, Schatz P, Lind L. Effects of Long-Term Storage at -80 °C on the Human Plasma Metabolome. Metabolites 2019; 9:metabo9050099. [PMID: 31108909 PMCID: PMC6572224 DOI: 10.3390/metabo9050099] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
High-quality biological samples are required for the favorable outcome of research studies, and valid data sets are crucial for successful biomarker identification. Prolonged storage of biospecimens may have an artificial effect on compound levels. In order to investigate the potential effects of long-term storage on the metabolome, human ethylenediaminetetraacetic acid (EDTA) plasma samples stored for up to 16 years were analyzed by gas and liquid chromatography-tandem mass spectrometry-based metabolomics. Only 2% of 231 tested plasma metabolites were altered in the first seven years of storage. However, upon longer storage periods of up to 16 years and more time differences of few years significantly affected up to 26% of the investigated metabolites when analyzed within subject age groups. Ontology classes that were most affected included complex lipids, fatty acids, energy metabolism molecules, and amino acids. In conclusion, the human plasma metabolome is adequately stable to long-term storage at −80 °C for up to seven years but significant changes occur upon longer storage. However, other biospecimens may display different sensitivities to long-term storage. Therefore, in retrospective studies on EDTA plasma samples, analysis is best performed within the first seven years of storage.
Collapse
Affiliation(s)
| | - Sebastian Neuber
- Biocrates Life Sciences AG, Eduard-Bodem-Gasse 8, 6020 Innsbruck, Austria.
| | - Beate Kamlage
- Metanomics Health GmbH, Tegeler Weg 33, 10589 Berlin, Germany.
| | | | - Bianca Bethan
- Metanomics Health GmbH, Tegeler Weg 33, 10589 Berlin, Germany.
| | | | - Philipp Schatz
- Metanomics Health GmbH, Tegeler Weg 33, 10589 Berlin, Germany.
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Dag Hammarskjöldsv 10 B, Uppsala Science Park, 75237 Uppsala, Sweden.
| |
Collapse
|
2
|
Lamraoui A, Adi-Bessalem S, Laraba-Djebari F. Immunopathologic effects of scorpion venom on hepato-renal tissues: Involvement of lipid derived inflammatory mediators. Exp Mol Pathol 2015; 99:286-96. [DOI: 10.1016/j.yexmp.2015.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/24/2015] [Indexed: 12/19/2022]
|
3
|
|
4
|
O'Dowd YM, El-Benna J, Perianin A, Newsholme P. Inhibition of formyl-methionyl-leucyl-phenylalanine-stimulated respiratory burst in human neutrophils by adrenaline: inhibition of Phospholipase A2 activity but not p47phox phosphorylation and translocation. Biochem Pharmacol 2004; 67:183-90. [PMID: 14667941 DOI: 10.1016/j.bcp.2003.08.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The polymorphonuclear neutrophil (PMN)-respiratory burst plays a key role in host defense and inflammatory reactions. Modulation of this key neutrophil function by endogenous agents and the mechanisms involved are poorly understood. This study was designed to analyze the mechanisms involved in the effect of adrenaline on neutrophil superoxide anions production. Using the superoxide dismutase (SOD)-inhibitable cytochrome c reduction assay, we report here that the beta-adrenergic agonist, adrenaline at physiologic concentrations (5-100 nM) inhibited formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated but not phorbol-myristate-acetate (PMA)-stimulated PMN superoxide anion production. The inhibitory effect of adrenaline runs in parallel with an increase in intracellular levels of cAMP which was reversed by the protein kinase A (PKA) inhibitor H-89, suggesting a role for PKA in mediating the inhibitory effect of adrenaline on fMLP-induced superoxide production. Adrenaline at physiological concentrations did not inhibit the fMLP-stimulated membrane translocation of the NADPH oxidase components p47phox and p67phox, nor the fMLP-stimulated phosphorylation of p47phox. However, adrenaline strongly depressed the activity of the cytosolic isoform of Phospholipase A(2) (cPLA(2)). We suggest that adrenaline inhibits fMLP induced superoxide production upstream of the NADPH oxidase via a mechanism involving PKA and cPLA(2).
Collapse
Affiliation(s)
- Yvonne M O'Dowd
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, 4, Dublin, Ireland
| | | | | | | |
Collapse
|
5
|
Zhao X, Bey EA, Wientjes FB, Cathcart MK. Cytosolic phospholipase A2 (cPLA2) regulation of human monocyte NADPH oxidase activity. cPLA2 affects translocation but not phosphorylation of p67(phox) and p47(phox). J Biol Chem 2002; 277:25385-92. [PMID: 12101222 DOI: 10.1074/jbc.m203630200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NADPH oxidase of human monocytes is activated upon exposure to opsonized zymosan and a variety of other stimuli to catalyze the formation of superoxide anion. Assembly of the NADPH oxidase complex is believed to be a highly regulated process, and molecular mechanisms responsible for this regulation have yet to be fully elucidated. We have previously reported that cytosolic phospholipase A(2) (cPLA(2)) expression and activity are essential for superoxide anion production in activated human monocytes. In this study, we investigated the mechanisms involved in cPLA(2) regulation of NADPH oxidase activation by evaluating the effects of cPLA(2) on translocation and phosphorylation of p67(phox) and p47(phox). We report that translocation and phosphorylation of p67(phox), as well as p47(phox), occur upon activation of human monocytes and that decreased cPLA(2) protein expression, mediated by antisense oligodeoxyribonucleotides (AS-ODN) specific for cPLA(2) mRNA, blocked the stimulation-induced translocation of p47(phox) and p67(phox) from the cytosol to the membrane fraction. Inhibition of translocation of both p47(phox) and p67(phox) by cPLA(2) AS-ODN was above 85%. Arachidonic acid (AA), a product of cPLA(2) enzymatic activity, completely restored translocation of both of these oxidase components in the AS-ODN-treated, cPLA(2)-deficient human monocytes. These results represent the first report that cPLA(2) activity or AA is required for p67(phox) and p47(phox) translocation in human monocytes. Although cPLA(2) was required for translocation of p47(phox) and p67(phox), it did not influence phosphorylation of these components. These results suggest that one mechanism of cPLA(2) regulation of NADPH oxidase activity is to control the arachidonate-sensitive assembly of the complete oxidase complex through modulating the translocation of both p47(phox) and p67(phox). These studies provide insight into the mechanisms by which activation signals are transduced to allow the induction of superoxide anion production in human monocytes.
Collapse
Affiliation(s)
- Xiaoxian Zhao
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | |
Collapse
|
6
|
Girón-Calle J, Srivatsa K, Forman HJ. Priming of alveolar macrophage respiratory burst by H(2)O(2) is prevented by phosphatidylcholine-specific phospholipase C inhibitor Tricyclodecan-9-yl-xanthate (D609). J Pharmacol Exp Ther 2002; 301:87-94. [PMID: 11907161 DOI: 10.1124/jpet.301.1.87] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The respiratory burst in alveolar macrophages is enhanced in vitro by pre-exposure to nontoxic concentrations of hydroperoxides before stimulation by an agonist, which may represent a feed-forward regulatory mechanism. Tricyclodecan-9-yl-xanthate (D609), an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), suppresses this priming of the respiratory burst by pre-exposure to H(2)O(2) in NR8383 alveolar macrophages (up to 100 microM D609, 400 nmol of H(2)O(2) added to 5 x 10(6) cells 15 min before stimulation with ADP). D609 has potential as an antioxidant due to its dithiocarbonate functional group that allows it to slowly react with H(2)O(2) and rapidly reduce cytochrome c, which interferes with a common assay for the respiratory burst. Nonetheless, the antioxidant properties of D609 do not account for its inhibition of priming of the respiratory burst by H(2)O(2). Reduction of nitro blue tetrazolium is the basis for an assay for superoxide production with which D609 does not interfere. With this assay, it was found that D609 does not inhibit the respiratory burst per se, but prevents its enhancement by pre-exposure to H(2)O(2). Consistent with a role of diacylglycerol generation by phospholipase C, this enhancement was mimicked by pre-exposure to phorbol ester. In contrast with priming, receptor-mediated stimulation of the respiratory burst depends on the better characterized phosphatidylinositol-specific phospholipase C. Priming of the respiratory burst by H(2)O(2) joins the list of inflammatory responses that are inhibited by D609. Nevertheless, the results herein indicate that caution should be exercised in the interpretation of the effects of D609 to consider both antioxidant effects and inhibition of PC-PLC.
Collapse
Affiliation(s)
- Julio Girón-Calle
- Department of Environmental Health Sciences, School of Public Health, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0022, USA
| | | | | |
Collapse
|
7
|
Smolen JE, Hessler RJ, Nauseef WM, Goedken M, Joe Y. Identification and cloning of the SNARE proteins VAMP-2 and syntaxin-4 from HL-60 cells and human neutrophils. Inflammation 2001; 25:255-65. [PMID: 11580102 DOI: 10.1023/a:1010903804063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Degranulation and membrane fusion by neutrophils are essential to host defense. We sought homologues of neuron-specific fusion proteins in human neutrophils and in their precursors, the promyelocytic cell line HL-60. We screened a differentiated HL-60 library and obtained an 848 bp sequence with a 351 bp open reading frame, identical to that published for human VAMP-2 and including 5' and 3' untranslated regions. RNA from HL-60 cells during differentiation into the neutrophil lineage was subjected to Northern blot analysis. which revealed a transcript of approximately 1050 bp at all stages of differentiation. The amount of these transcripts increased approximately threefold during differentiation, a finding confirmed by quantitative RT-PCR. We also detected mRNA for VAMP-2 in human neutrophils and monocytes using RT-PCR. In like fashion, transcripts of syntaxin-4, another fusion protein, were recovered from a neutrophil cDNA library. As with VAMP-2, expression of syntaxin-4 (determined by Northern blots) also increased, but by only 50%, during differentiation of HL-60 cells. These studies demonstrate that neutrophils and their progenitors possess mRNA for the fusion proteins VAMP-2 and syntaxin-4, and that their transcription increases during differentiation, concurrent with the functional maturation of myeloid cells.
Collapse
Affiliation(s)
- J E Smolen
- Department of Pediatrics, Leukocyte Biology Section, Baylor College of Medicine, Houston, Texas 77030-2600, USA.
| | | | | | | | | |
Collapse
|
8
|
Abstract
During the acute inflammatory response to implanted medical devices, human neutrophils (PMN) release oxidative and hydrolytic activities which may ultimately contribute to the degradation of the biomaterial. In this study, the biological activities secreted by live PMNs which may contribute to biodegradation were investigated using a 14C label in the monomer unit of a poly(ester-urea-urethane) (PEUU) substrate. By using specific inhibitors, it was possible to propose a mechanism for PMN-mediated biodegradation. PMN, labeled with 3H-arachidonic acid, released significantly more 3H when adherent to PEUU than when adherent to tissue culture grade polystyrene (P<0.05). The phospholipase A2 (PLA2) inhibitors, aristolochic acid (ARIST) and quinacrine (QUIN), decreased the release of 3H and inhibited PEUU biodegradation (>50%, P<0.05). ARIST had no effect on cell viability, whereas QUIN significantly decreased it. The serine protease inhibitor, phenylmethylsulfonylfluoride inhibited biodegradation, but did not decrease cell survival. There is evidence to suggest that activation via the PLA2 pathway caused the release of hydrolytic activities which were able to elicit 14C release from PEUU. The role of oxidative compounds which were released via activation by phorbol myristate acetate (PMA), was not apparent, since PMA inhibited biodegradation and cell survival (>40%, P<0.05). This study has shown that it is possible to find out the differences in PMN activation through the PLA2 pathway when exposed to different material surfaces, making this a model system worthy of further investigation.
Collapse
Affiliation(s)
- R S Labow
- Cardiovascular Devices Division, University of Ottawa Heart Institute, ON, Canada.
| | | | | |
Collapse
|
9
|
Marshall J, Krump E, Lindsay T, Downey G, Ford DA, Zhu P, Walker P, Rubin B. Involvement of cytosolic phospholipase A2 and secretory phospholipase A2 in arachidonic acid release from human neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2084-91. [PMID: 10657662 DOI: 10.4049/jimmunol.164.4.2084] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to define the role of secretory phospholipase A2 (sPLA2), calcium-independent PLA2, and cytosolic PLA2 (cPLA2) in arachidonic acid (AA) release from fMLP-stimulated human neutrophils. While fMLP induced the release of extracellular sPLA2 activity and AA, 70% of sPLA2 activity remained associated with the cell. Treatment with the cell-impermeable sPLA2 inhibitors DTT or LY311-727, or the anti-sPLA2 Ab 3F10 all inactivated extracellular sPLA2 activity, but had minimal effect on neutrophil AA mass release. In contrast, coincubation of streptolysin-O toxin-permeabilized neutrophils with DTT, LY311-727, or 3F10 all decreased [3H8]AA release from [3H8]AA-labeled, fMLP-stimulated cells. Exposure to fMLP resulted in a decrease in the electrophoretic mobility of cPLA2, a finding consistent with cPLA2 phosphorylation, and stimulated the translocation of cPLA2 from cytosolic to microsomal and nuclear compartments. The role of cPLA2 was further evaluated with the cPLA2 inhibitor methyl arachidonyl fluorophosphonate, which attenuated cPLA2 activity in vitro and decreased fMLP-stimulated AA mass release by intact neutrophils, but had no effect on neutrophil sPLA2 activity. Inhibition of calcium-independent PLA2 with haloenol lactone suicide substrate had no effect on neutrophil cPLA2 activity or AA mass release. These results indicate a role for cPLA2 and an intracellular or cell-associated sPLA2 in the release of AA from fMLP-stimulated human neutrophils.
Collapse
Affiliation(s)
- J Marshall
- Division of Vascular Surgery, Max Bell Research Center, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nilsson IM, Hartford O, Foster T, Tarkowski A. Alpha-toxin and gamma-toxin jointly promote Staphylococcus aureus virulence in murine septic arthritis. Infect Immun 1999; 67:1045-9. [PMID: 10024541 PMCID: PMC96427 DOI: 10.1128/iai.67.3.1045-1049.1999] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Septic arthritis is a common and feared complication of staphylococcal infections. Staphylococcus aureus produces a number of potential virulence factors including certain adhesins and enterotoxins. In this study we have assessed the roles of cytolytic toxins in the development of septic arthritis by inoculating mice with S. aureus wild-type strain 8325-4 or isogenic mutants differing in the expression of alpha-, beta-, and gamma-toxin production patterns. Mice inoculated with either an alpha- or beta-toxin mutant showed degrees of inflammation, joint damage, and weight decrease similar to wild-type-inoculated mice. In contrast, mice inoculated with either double (alpha- and gamma-toxin-deficient)- or triple (alpha-, beta-, and gamma-toxin-deficient)-mutant S. aureus strains showed lower frequency and severity of arthritis, measured both clinically and histologically, than mice inoculated with the wild-type strain. We conclude that simultaneous production of alpha- and gamma-toxin is a virulence factor in S. aureus arthritis.
Collapse
Affiliation(s)
- I M Nilsson
- Department of Rheumatology, Göteborg University, Göteborg, Sweden.
| | | | | | | |
Collapse
|
11
|
Syrbu SI, Waterman WH, Molski TFP, Nagarkatti D, Hajjar JJ, Sha’afi RI. Phosphorylation of Cytosolic Phospholipase A2 and the Release of Arachidonic Acid in Human Neutrophils. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.4.2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Kinases mediating phosphorylation and activation of cytosolic phospholipase A2 (cPLA2) in intact cells remain to be fully characterized. Platelet-activating factor stimulation of human neutrophils increases cPLA2 phosphorylation. This increase is inhibited by PD 98059, a mitogen-activated protein (MAP)/extracellular signal-regulating kinase (erk) 1 inhibitor, but not by SB 203580, a p38 MAP kinase inhibitor, indicating that this action is mediated through activation of the p42 MAP kinase (erk2). However, platelet-activating factor-induced arachidonic acid release is inhibited by both PD 98059 and SB 203580. Stimulation by TNF-α increases cPLA2 phosphorylation, which is inhibited by SB 203580, but not PD 98059, suggesting a role for p38 MAP kinase. LPS increases cPLA2 phosphorylation and arachidonic acid release. However, neither of these actions is inhibited by either PD 98059 or SB 203580. PMA increases cPLA2 phosphorylation. This action is inhibited by PD 98059 but not SB 203580. Finally, FMLP increases cPLA2 phosphorylation and arachidonic acid release. Interestingly, while the FMLP-induced phosphorylation of cPLA2 is not affected by the inhibitors of the p38 MAP kinase or erk cascades, both inhibitors significantly decrease arachidonic acid release stimulated by FMLP. SB 203580 or PD 98059 has no inhibitory effects on the activity of coenzyme A-independent transacylase.
Collapse
Affiliation(s)
- Sergei I. Syrbu
- Department of Physiology, University of Connecticut Health Center, Farmington, CT 06030
| | - Waltraut H. Waterman
- Department of Physiology, University of Connecticut Health Center, Farmington, CT 06030
| | - Thaddeus F. P. Molski
- Department of Physiology, University of Connecticut Health Center, Farmington, CT 06030
| | - Deepa Nagarkatti
- Department of Physiology, University of Connecticut Health Center, Farmington, CT 06030
| | - Jean-Jacques Hajjar
- Department of Physiology, University of Connecticut Health Center, Farmington, CT 06030
| | - Ramadan I. Sha’afi
- Department of Physiology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
12
|
Zhang H, Garlichs CD, Mügge A, Daniel WG. Role of Ca2+-ATPase inhibitors in activation of cytosolic phospholipase A2 in human polymorphonuclear neutrophils. Eur J Pharmacol 1999; 364:229-37. [PMID: 9932728 DOI: 10.1016/s0014-2999(98)00808-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we investigated the involvement of Ca2+-signaling and protein kinases in the effect of Ca2+-ATPase inhibitors on the activation of cytosolic phospholipase A2 (cPLA2) in human polymorphonuclear neutrophils. We found that activity and mobility on electrophoresis gels of the cPLA2 protein were significantly increased by f-Met-Leu-Phe (fMLP), 12-myristate 13-acetate (PMA) and the Ca2+-ATPase inhibitors, thapsigargin and cyclopiazonic acid. This effect was completely suppressed by staurosporine. Calphostin C partially inhibited the fMLP- and PMA-induced cPLA 2 activation, but had no influence on thapsigargin- and cyclopiazonic acid-treated cells. Thapsigargin and cyclopiazonic acid also showed no effect on protein kinase C activity. However, the thapsigargin- and cyclopiazonic acid-induced cPLA2 activation was completely inhibited by the tyrosine kinase inhibitor, erbstatin, and Ca2+ chelator, EGTA. In addition, the cPLA2 activity was reduced after pretreatment with the mitogen-activated protein kinase kinase inhibitor PD98059. The arachidonic acid release was significantly reduced in cells pretreated with the cPLA2 inhibitor, AACOCF3. Furthermore, we found that the human neutrophil cPLA2 cDNA contain a Ca2+-dependent-lipid binding domain which shares homology to several other enzymes such as protein kinase C and phospholipase C. Our results suggest that tyrosine kinases and the MAP kinase cascade are involved in Ca2+-ATPase inhibitor-induced activation and phosphorylation of cPLA2. Protein kinase C is not required in this event.
Collapse
Affiliation(s)
- H Zhang
- Department of Cardiology, Medical Clinic II, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | |
Collapse
|
13
|
Surette ME, Dallaire N, Jean N, Picard S, Borgeat P. Mechanisms of the priming effect of lipopolysaccharides on the biosynthesis of leukotriene B4 in chemotactic peptide-stimulated human neutrophils. FASEB J 1998; 12:1521-31. [PMID: 9806761 DOI: 10.1096/fasebj.12.14.1521] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The goal of this study was to explain the priming effect of lipopolysaccharides (LPS) in human polymorphonuclear leukocytes on leukotriene B4 (LTB4) biosynthesis after stimulation with the receptor-mediated agonist formyl-methionyl-leucyl-phenylalanine (fMLP). This priming effect for LTB4 biosynthesis was maximal after a 30 min preincubation with LPS but was lost when incubations were extended to 90 min or longer. Priming with LPS resulted in an enhanced maximal activation of 5-lipoxygenase (5- to15-fold above unprimed cells) as well as a prolonged activation of the enzyme after stimulation with fMLP compared to that measured in unprimed cells. The activation of 5-lipoxygenase was associated with its translocation to the nuclear fraction of the cell after stimulation of LPS-primed cells but not of unprimed cells. Priming of cells with LPS also resulted in an enhanced capacity (fivefold increase) for arachidonic acid (AA) release after stimulation with fMLP compared to unprimed cells as measured by mass spectrometry. This release of AA was very efficiently blocked in a dose-dependent manner by the 85 kDa cytosolic phospholipase A2 (PLA2) inhibitor MAFP (IC50=10nM) but not by the 14 kDa secretory PLA2 inhibitor SB 203347 (up to 5 microM), indicating that the 85 kDa cPLA2 is the PLA2 responsible for AA release in response to receptor-mediated agonists. In accord with inhibitor studies, the LPS-mediated phosphorylation of cPLA2 followed the same kinetics as the priming for AA release, and a measurable fMLP-induced translocation of cPLA2 was observed only in primed cells. As with AA release and LTB4 biosynthesis, both the phosphorylation and capacity to translocate cPLA2 were reversed when the preincubation period with LPS was extended to 120 min. These results explain some of the cellular events responsible for the potentiation and subsequent decline of functional responses of human polymorphonuclear leukocytes recruited to inflammatory foci.
Collapse
Affiliation(s)
- M E Surette
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec and Université Laval, Canada
| | | | | | | | | |
Collapse
|
14
|
Dana R, Leto TL, Malech HL, Levy R. Essential requirement of cytosolic phospholipase A2 for activation of the phagocyte NADPH oxidase. J Biol Chem 1998; 273:441-5. [PMID: 9417101 DOI: 10.1074/jbc.273.1.441] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Arachidonic acid (AA) can trigger activation of the phagocyte NADPH oxidase in a cell-free assay. However, a role for AA in activation of the oxidase in intact cells has not been established, nor has the AA generating enzyme critical to this process been identified. The human myeloid cell line PLB-985 was transfected to express p85 cytosolic phospholipase A2 (cPLA2) antisense mRNA and stable clones were selected that lack detectable cPLA2. cPLA2-deficient PLB-985 cells differentiate similarly to control PLB-985 cells in response to retinoic acid or 1,25-dihydroxyvitamin D3, indicating that cPLA2 is not involved in the differentiation process. Neither cPLA2 nor stimulated [3H]AA release were detectable in differentiated cPLA2-deficient PLB-985 cells, demonstrating that cPLA2 is the major type of PLA2 activated in phagocytic-like cells. Despite the normal synthesis of NADPH oxidase subunits during differentiation of cPLA2-deficient PLB-985 cells, these cells fail to activate NADPH oxidase in response to a variety of soluble and particulate stimuli, but the addition of exogenous AA fully restores oxidase activity. This establishes an essential requirement of cPLA2-generated AA for activation of phagocyte NADPH oxidase.
Collapse
Affiliation(s)
- R Dana
- Infectious Diseases Laboratory, Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka Medical Center, Beer Sheva 84105, Israel
| | | | | | | |
Collapse
|
15
|
Burke JR, Davern LB, Gregor KR, Tramposch KM. Leukotriene B4 stimulates the release of arachidonate in human neutrophils via the action of cytosolic phospholipase A2. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1359:80-8. [PMID: 9398088 DOI: 10.1016/s0167-4889(97)00094-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Leukotriene B4 (LTB4) is a potent lipid mediator of inflammation and is involved in the receptor-mediated activation of a number of leukocyte responses including degranulation, superoxide formation, and chemotaxis. In the present research, stimulation of unprimed polymorphonuclear leukocytes (neutrophils) with LTB4 results in the transient release of arachidonate as measured by mass. This release of arachidonate was maximal at an LTB4 concentration of 50-75 nM and peaked at 45 s after stimulation with LTB4. The transient nature of this release can be attributed, in part, to a fast (< 60 s) metabolism of the added LTB4. Moreover, the inhibition of the reacylation of the released arachidonate with thimerosal results in greater than 4-times as much arachidonate released. Thus, a rapid reacylation of the released arachidonate also contributes to the transient nature of its measured release. Multiple additions of LTB4, which would be expected to more closely resemble the situation in vivo where the cell may come into contact with an environment where LTB4 is in near constant supply, yielded a more sustained release of arachidonate. No release of [3H]arachidonate was observed when using [3H]arachidonate-labeled cells. This indicates that the release of arachidonate as measured by mass is most probably the result of hydrolysis of arachidonate-containing phosphatidylethanolamine within the cell since the radiolabeled arachidonate is almost exclusively incorporated into phosphatidylcholine and phosphatidylinositol pools under the non-equilibrium radiolabeling conditions used. Consistent with the role of cytosolic phospholipase A2 (cPLA2) in the release of arachidonate, potent inhibition of the LTB4-stimulated release was observed with methylarachidonylfluorophosphonate, an inhibitor of cPLA2 (IC50 of 1 microM). The bromoenol lactone of the calcium-independent phosphospholipase A2. failed to affect LTB4-stimulated release of arachidonate in these cells.
Collapse
Affiliation(s)
- J R Burke
- Dermatology Discovery Research, Bristol-Myers Squibb Pharmaceutical Research Institute, Buffalo, NY 14213, USA
| | | | | | | |
Collapse
|
16
|
Hazan I, Dana R, Granot Y, Levy R. Cytosolic phospholipase A2 and its mode of activation in human neutrophils by opsonized zymosan. Correlation between 42/44 kDa mitogen-activated protein kinase, cytosolic phospholipase A2 and NADPH oxidase. Biochem J 1997; 326 ( Pt 3):867-76. [PMID: 9307039 PMCID: PMC1218744 DOI: 10.1042/bj3260867] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of cytosolic phospholipase A2 (cPLA2) and its mode of activation by opsonized zymosan (OZ) was studied in human neutrophils in comparison with activation by PMA. The activation of cPLA2 by 1 mg/ml OZ or 50 ng/ml PMA is evidenced by its translocation to the membrane fractions on stimulation. This translocation is consistent with dithiothreitol (DTT)-resistant phospholipase A2 (PLA2) activity detected in the membranes of activated cells. Neutrophils stimulated by either OZ or PMA exhibited an immediate stimulation of extracellular-signal-regulated kinases (ERKs). The inhibition of ERKs, DTT-resistant PLA2 and NADPH oxidase activities by the MAP kinase kinase inhibitor PD-98059 indicates that ERKs mediate the activation of cPLA2 and NADPH oxidase stimulated by either OZ or PMA. The protein kinase C (PKC) inhibitor GF-109203X inhibited epidermal growth factor receptor peptide kinase activity, the release of [3H]arachidonic acid, DTT-resistant PLA2 activity and superoxide generation induced by PMA, but did not inhibit any of these activities induced by OZ. PKC activity was similarly inhibited by GF-109203X in membrane fractions separated from neutrophils stimulated by either PMA or OZ. In the presence of the tyrosine kinase inhibit orgenistein, ERKs, PLA2 and NADPH oxidase activities were inhibited in cells stimulated by OZ, whereas they were hardly affected in cells stimulated by PMA. The results suggest that the activation of cPLA2 by PMA or OZ is mediated by ERKs. Whereas PMA stimulates ERKs activity through a PKC-dependent pathway, signal transduction stimulated by OZ involves tyrosine kinase activity leading to activation of ERKs via a PKC-independent pathway.
Collapse
Affiliation(s)
- I Hazan
- Infectious Disease Laboratory and Clinical Biochemistry Department, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka Medical Center, 84105 Beer Sheva, Israel
| | | | | | | |
Collapse
|
17
|
|
18
|
|
19
|
Bauldry SA, Wooten RE. Induction of cytosolic phospholipase A2 activity by phosphatidic acid and diglycerides in permeabilized human neutrophils: interrelationship between phospholipases D and A2. Biochem J 1997; 322 ( Pt 2):353-63. [PMID: 9065750 PMCID: PMC1218199 DOI: 10.1042/bj3220353] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Relationships between phospholipases are poorly understood, but phosphatidic acid (PA) and diglycerides (DGs), produced by phospholipase D (PLD) and phosphatidate phosphohydrolase actions, might function as second messengers coupling cell stimulation to cellular responses. This study investigates the role of PLD-mediated PA and DG formation in inducing phospholipase A2 (PLA2) activity in intact human neutrophils (PMNs) and in PMNs permeabilized with Staphylococcus aureus alpha-toxin. PMNs were labelled with [3H]arachidonic acid (AA) to assess AA release and metabolism and diacylglycerol formation, or with [3H]1-O-hexadecyl-2-lyso-glycerophosphatidylcholine for the determination of platelet-activating factor (PAF), PA and alkylacylglycerol production. In intact PMNs primed with tumour necrosis factor alpha before stimulation with N-formyl-Met-Leu-Phe, AA release and metabolism and PAF formation increased in parallel with enhanced PA and DG formation, and inhibition of PA and DG production led to a decrease in both AA release and PAF accumulation. In alpha-toxin-permeabilized PMNs, AA release and PAF production result from the specific activation of cytosolic PLA2 (cPLA2). In this system, PA and DG formation were always present when cPLA2 activation occurred; blocking PA and DG production inhibited AA release and PAF accumulation. Adding either PA or DG back to permeabilized cells (with endogenous PA and DG formation blocked) led to a partial restoration of AA release and PAF formation; a combination of PA and DGs reconstituted full cPLA2 activity. These results strongly suggest that products of PLD participate in activating cPLA2 in PMNs.
Collapse
Affiliation(s)
- S A Bauldry
- Pulmonary and Critical Care Medicine, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC 27157, U.S.A
| | | |
Collapse
|
20
|
Fujita K, Murakami M, Yamashita F, Amemiya K, Kudo I. Phospholipase D is involved in cytosolic phospholipase A2-dependent selective release of arachidonic acid by fMLP-stimulated rat neutrophils. FEBS Lett 1996; 395:293-8. [PMID: 8898114 DOI: 10.1016/0014-5793(96)01056-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
When rat polymorphonuclear neutrophils (PMN) were treated with N-formyl-Met-Leu-Phe (fMLP), the release of arachidonic acid in preference to other fatty acids was observed. Levels of arachidonic acid reached a plateau within 5 min, and were accompanied by an approximately 4-fold increase in in vitro phospholipase (PL) A2 and PLD activities in PMN lysates. Treatment of PMN with ethanol (an inhibitor of PLD-mediated phosphatidic acid formation), propranolol (a phosphatidic acid phosphatase inhibitor), or 4-bromophenacylbromide (a PLA2 inhibitor), each suppressed fMLP-stimulated arachidonate release. Treatment with RHC-80267 (a diacylglycerol lipase inhibitor), however, had no such effect. The cytosolic PLA2 (cPLA2) inhibitor, arachidonoyl trifluoromethyl ketone, suppressed PLA2 activity in PMN homogenates and arachidonate release by fMLP-treated PMN. These results suggest that fMLP-elicited arachidonate release is mediated by cPLA2 but not diacylglycerol lipase, and that the activation of cPLA2 is downstream of the PLD-dependent signaling pathway.
Collapse
Affiliation(s)
- K Fujita
- Department of Biological Science, Kaken Pharmaceutical Co., Ltd., Shizuoka, Japan
| | | | | | | | | |
Collapse
|
21
|
Waterman WH, Molski TF, Huang CK, Adams JL, Sha'afi RI. Tumour necrosis factor-alpha-induced phosphorylation and activation of cytosolic phospholipase A2 are abrogated by an inhibitor of the p38 mitogen-activated protein kinase cascade in human neutrophils. Biochem J 1996; 319 ( Pt 1):17-20. [PMID: 8870643 PMCID: PMC1217729 DOI: 10.1042/bj3190017] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of the newly identified p38 mitogen-activated protein kinase (MAP kinase) in terminally differentiated cells, such as human neutrophils, is totally unknown. In order to examine the possible role of this MAP kinase in the phosphorylation and activation of cytoplasmic phospholipase A2 (cPLA2), we tested the effect of the recently synthesized inhibitor of p38 MAP kinase, SB 203580, on the phosphorylation and activation of both p38 MAP kinase and cPLA2. We found that while tumour necrosis factor-alpha (TNF-alpha)-stimulated tyrosine phosphorylation of p38 MAP kinase is affected only slightly by SB 203580, its stimulated kinase activity is greatly reduced in human neutrophils in suspension treated with this inhibitor. Furthermore, the TNF-alpha-stimulated phosphorylation and activation of cPLA2 are completely abolished in cells treated with SB 203580. Based on these data, it is reasonable to conclude that an SB 203580-sensitive kinase, or kinases and/or phosphatases, are involved in the phosphorylation and activation of cPLA2 in intact human neutrophils in suspension stimulated by TNF-alpha. The possible role of the p38 MAP kinase cascade in the phosphorylation and activation of cPLA2 is discussed.
Collapse
Affiliation(s)
- W H Waterman
- Department of Physiology, University of Connecticut Health Center, Farmington 06030, USA
| | | | | | | | | |
Collapse
|
22
|
Bauldry SA, Wooten RE. Leukotriene B4 and platelet activating factor production in permeabilized human neutrophils: role of cytosolic PLA2 in LTB4 and PAF generation. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1303:63-73. [PMID: 8816854 DOI: 10.1016/0005-2760(96)00077-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The specific type of phospholipase A2 (PLA2) involved in formation of leukotriene B4 (LTB4) and platelet activating factor (PAF) in inflammatory cells has been controversial. In a recent report we characterized activation of the 'cytosolic' form of PLA2 (cPLA2) in human neutrophils (PMN) permeabilized with Staphylococcus aureus alpha-toxin under conditions where the secretory form of PLA2 (sPLA2) was inactive. In the current study, generation of both LTB4 and PAF in porated PMN are demonstrated. PMN, prelabeled with [3H]arachidonic acid (3H-AA, to assess AA release and LTB4 production) or with 1-O-[9',10'-3H]hexadecyl-2-lyso-glycero-3-phosphocholine (3H-lyso-PAF, for determination of lyso-PAF and PAF formation), were permeabilized with alpha-toxin in a 'cytoplasmic' buffer supplemented with acetyl CoA. Maximum production of both PAF and LTB4 required addition of 500 nM Ca2+, G-protein activation induced with 10 microM GTP gamma S, and stimulation with the chemotactic peptide, N-formyl-Met-Leu-Phe (FMLP, 1 microM); LTB4 production was confirmed by radioimmunoassay. Removal of acetyl CoA from the system had little effect on LTB4 generation but blocked PAF production with a concomitant increase in lyso-PAF formation LTB4 and PAF production occurred in parallel over time and at differing ATP and Ca2+ concentrations. Further work demonstrated that: (i) maximum production of both inflammatory mediators required a hydrolyzable form of ATP; (ii) blocking phosphorylation with staurosporin inhibited production of both; (iii) the reducing agent, dithiotreitol, had little affect on LTB4 formation but slightly enhanced PAF generation. This study clearly shows that cPLA2 activation can provide precursors for both LTB4 and PAF, that maximum PAF and LTB4 formation occur under conditions that induced optimal cPLA2 activation, that a close coupling between LTB4 and PAF formation exists, and that, after substrate generation, no additional requirements are necessary for LTB4 and PAF generation in the permeabilized PMN system.
Collapse
Affiliation(s)
- S A Bauldry
- Department of Medicine, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC 27157, USA
| | | |
Collapse
|