1
|
Cornell RB, Ridgway ND. CTP:phosphocholine cytidylyltransferase: Function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Prog Lipid Res 2015; 59:147-71. [PMID: 26165797 DOI: 10.1016/j.plipres.2015.07.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes a rate-limiting and regulated step in the CDP-choline pathway for the synthesis of phosphatidylcholine (PC) and PC-derived lipids. Control of CCT activity is multi-layered, and includes direct regulation by reversible membrane binding involving a built-in lipid compositional sensor. Thus CCT contributes to phospholipid compositional homeostasis. CCT also modifies the curvature of its target membrane. Knowledge of CCT structure and regulation of its catalytic function are relatively advanced compared to many lipid metabolic enzymes, and are reviewed in detail. Recently the genetic origins of two human developmental and lipogenesis disorders have been traced to mutations in the gene for CCTα.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Department of Molecular Biology and Biochemistry and the Department of Chemistry, Simon Fraser University, Burnaby, B.C. V5A-1S6, Canada.
| | - Neale D Ridgway
- Departments of Pediatrics, and Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia B3H-4H7, Canada
| |
Collapse
|
2
|
Morton CC, Aitchison AJ, Gehrig K, Ridgway ND. A mechanism for suppression of the CDP-choline pathway during apoptosis. J Lipid Res 2013; 54:3373-84. [PMID: 24136823 DOI: 10.1194/jlr.m041434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inhibition of the CDP-choline pathway during apoptosis restricts the availability of phosphatidylcholine (PtdCho) for assembly of membranes and synthesis of signaling factors. The N-terminal nuclear localization signal (NLS) in CTP:phosphocholine cytidylyltransferase (CCT)α is removed during apoptosis but the caspase(s) involved and the contribution to suppression of the CDP-choline pathway is unresolved. In this study we utilized siRNA silencing of caspases in HEK293 cells and caspase 3-deficient MCF7 cells to show that caspase 3 is required for CCTα proteolysis and release from the nucleus during apoptosis. CCTα-Δ28 (a caspase-cleaved mimic) expressed in CCTα-deficient Chinese hamster ovary cells was cytosolic and had increased in vitro activity. However, [³H]choline labeling experiments in camptothecin-treated MCF7 cells and MCF7 cells expressing caspase 3 (MCF7-C3) revealed a global suppression of the CDP-choline pathway that was consistent with inhibition of a step prior to CCTα. In camptothecin-treated MCF7 and MCF7-C3 cells, choline kinase activity was unaffected; however, choline transport into cells was reduced by 30 and 60%, respectively. We conclude that caspase 3-mediated removal of the CCTα NLS contributes minimally to the inhibition of PtdCho synthesis during DNA damage-induced apoptosis. Rather, the CDP-choline pathway is inhibited by caspase 3-independent and -dependent suppression of choline transport into cells.
Collapse
Affiliation(s)
- Craig C Morton
- Departments of Pediatrics and Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | | | | | | |
Collapse
|
3
|
Ridgway ND. The role of phosphatidylcholine and choline metabolites to cell proliferation and survival. Crit Rev Biochem Mol Biol 2013; 48:20-38. [PMID: 23350810 DOI: 10.3109/10409238.2012.735643] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reorganization of metabolic pathways in cancer facilitates the flux of carbon and reducing equivalents into anabolic pathways at the expense of oxidative phosphorylation. This provides rapidly dividing cells with the necessary precursors for membrane, protein and nucleic acid synthesis. A fundamental metabolic perturbation in cancer is the enhanced synthesis of fatty acids by channeling glucose and/or glutamine into cytosolic acetyl-CoA and upregulation of key biosynthetic genes. This lipogenic phenotype also extends to the production of complex lipids involved in membrane synthesis and lipid-based signaling. Cancer cells display sensitivity to ablation of fatty acid synthesis possibly as a result of diminished capacity to synthesize complex lipids involved in signaling or growth pathways. Evidence has accrued that phosphatidylcholine, the major phospholipid component of eukaryotic membranes, as well as choline metabolites derived from its synthesis and catabolism, contribute to both proliferative growth and programmed cell death. This review will detail our current understanding of how coordinated changes in substrate availability, gene expression and enzyme activity lead to altered phosphatidylcholine synthesis in cancer, and how these changes contribute directly or indirectly to malignant growth. Conversely, apoptosis targets key steps in phosphatidylcholine synthesis and degradation that are linked to disruption of cell cycle regulation, reinforcing the central role that phosphatidylcholine and its metabolites in determining cell fate.
Collapse
Affiliation(s)
- Neale D Ridgway
- Departments of Pediatrics and Biochemistry & Molecular Biology, The Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada.
| |
Collapse
|
4
|
Ward CS, Eriksson P, Izquierdo-Garcia JL, Brandes AH, Ronen SM. HDAC inhibition induces increased choline uptake and elevated phosphocholine levels in MCF7 breast cancer cells. PLoS One 2013; 8:e62610. [PMID: 23626839 PMCID: PMC3633900 DOI: 10.1371/journal.pone.0062610] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors have emerged as effective antineoplastic agents in the clinic. Studies from our lab and others have reported that magnetic resonance spectroscopy (MRS)-detectable phosphocholine (PC) is elevated following SAHA treatment, providing a potential noninvasive biomarker of response. Typically, elevated PC is associated with cancer while a decrease in PC accompanies response to antineoplastic treatment. The goal of this study was therefore to elucidate the underlying biochemical mechanism by which HDAC inhibition leads to elevated PC. We investigated the effect of SAHA on MCF-7 breast cancer cells using 13C MRS to monitor [1,2-13C] choline uptake and phosphorylation to PC. We found that PC synthesis was significantly higher in treated cells, representing 154±19% of control. This was within standard deviation of the increase in total PC levels detected by 31P MRS (129±7% of control). Furthermore, cellular choline kinase activity was elevated (177±31%), while cytidylyltransferase activity was unchanged. Expression of the intermediate-affinity choline transporter SLC44A1 and choline kinase α increased (144% and 161%, respectively) relative to control, as determined by mRNA microarray analysis with protein-level confirmation by Western blotting. Taken together, our findings indicate that the increase in PC levels following SAHA treatment results from its elevated synthesis. Additionally, the concentration of glycerophosphocholine (GPC) increased significantly with treatment to 210±45%. This is likely due to the upregulated expression of several phospholipase A2 (PLA2) isoforms, resulting in increased PLA2 activity (162±18%) in SAHA-treated cells. Importantly, the levels of total choline (tCho)-containing metabolites, comprised of choline, PC and GPC, are readily detectable clinically using 1H MRS. Our findings thus provide an important step in validating clinically translatable non-invasive imaging methods for follow-up diagnostics of HDAC inhibitor treatment.
Collapse
Affiliation(s)
- Christopher S. Ward
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Pia Eriksson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Jose L. Izquierdo-Garcia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Alissa H. Brandes
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Arsenault DJ, Yoo BH, Rosen KV, Ridgway ND. ras-Induced up-regulation of CTP:phosphocholine cytidylyltransferase α contributes to malignant transformation of intestinal epithelial cells. J Biol Chem 2012; 288:633-43. [PMID: 23155050 DOI: 10.1074/jbc.m112.347682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cancer cells have enhanced lipogenic capacity characterized by increased synthesis of fatty acids and complex lipids, including phosphatidylcholine (PC). As the rate-limiting enzyme in the CDP-choline pathway for PC synthesis, CTP:phosphocholine cytidylyltransferase α (CCTα) is implicated in the provision of membranes and bioactive lipids necessary of cell proliferation. In this study, we assessed the role of CCTα in malignant intestinal epithelial cells transformed with activated H-ras (IEC-ras). Three IEC-ras clones had significant up-regulation CCTα expression, but PC synthesis and in vitro activity of CCTα were similar to control IEC. RNA interference of CCTα in adherent IEC-ras did not affect PC synthesis, confirming that the enzyme was relatively inactive. However, CCTα silencing in ras-transformed IEC reduced anchorage-independent growth, a criterion for malignant transformation, as well as tumorigenicity in mice. Relative to their adherent counterparts, detached IEC-ras had increased PC synthesis that was attenuated by inducible CCTα silencing. Detachment of IEC-ras was accompanied by increased CCTα phosphorylation and cytosolic enzyme activity. We conclude that the expanded pool of CCTα in IEC-ras is activated by detachment. This provides the increased PC biosynthetic capacity that contributes to malignant transformation of intestinal epithelial cells when detached from the extracellular matrix.
Collapse
Affiliation(s)
- Daniel J Arsenault
- Atlantic Research Centre, Department of Pediatrics and Biochemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | | | | | |
Collapse
|
6
|
Podo F, Canevari S, Canese R, Pisanu ME, Ricci A, Iorio E. MR evaluation of response to targeted treatment in cancer cells. NMR IN BIOMEDICINE 2011; 24:648-672. [PMID: 21387442 DOI: 10.1002/nbm.1658] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 11/22/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
The development of molecular technologies, together with progressive sophistication of molecular imaging methods, has allowed the further elucidation of the multiple mutations and dysregulatory effects of pathways leading to oncogenesis. Acting against these pathways by specifically targeted agents represents a major challenge for current research efforts in oncology. As conventional anatomically based pharmacological endpoints may be inadequate to monitor the tumor response to these targeted treatments, the identification and use of more appropriate, noninvasive pharmacodynamic biomarkers appear to be crucial to optimize the design, dosage and schedule of these novel therapeutic approaches. An aberrant choline phospholipid metabolism and enhanced flux of glucose derivatives through glycolysis, which sustain the redirection of mitochondrial ATP to glucose phosphorylation, are two major hallmarks of cancer cells. This review focuses on the changes detected in these pathways by MRS in response to targeted treatments. The progress and limitations of our present understanding of the mechanisms underlying MRS-detected phosphocholine accumulation in cancer cells are discussed in the light of gene and protein expression and the activation of different enzymes involved in phosphatidylcholine biosynthesis and catabolism. Examples of alterations induced in the MRS choline profile of cells exposed to different agents or to tumor environmental factors are presented. Current studies aimed at the identification in cancer cells of MRS-detected pharmacodynamic markers of therapies targeted against specific conditional or constitutive cell receptor stimulation are then reviewed. Finally, the perspectives of present efforts addressed to identify enzymes of the phosphatidylcholine cycle as possible novel targets for anticancer therapy are summarized.
Collapse
Affiliation(s)
- Franca Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Taylor LA, Arends J, Hodina AK, Unger C, Massing U. Plasma lyso-phosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status. Lipids Health Dis 2007; 6:17. [PMID: 17623088 PMCID: PMC1939842 DOI: 10.1186/1476-511x-6-17] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 07/10/2007] [Indexed: 11/25/2022] Open
Abstract
Background It has been observed that ras-transformed cell lines in culture have a higher phosphatidylcholine (PC) biosynthesis rate as well as higher PC-degradation rate (increased PC-turnover) than normal cells. In correspondence to these findings, the concentrations of the PC-degradation product lyso-phosphatidylcholine (LPC) in cancer patients were found to be decreased. Our objective was the systematic investigation of the relationship between LPC and inflammatory and nutritional parameters in cancer patients. Therefore, plasma LPC concentrations were assessed in 59 cancer patients and related to nutritional and inflammatory parameters. To determine LPC in blood plasma we developed and validated a HPTLC method. Results Average plasma LPC concentration was 207 ± 59 μM which corresponds to the lower limit of the reported range in healthy subjects. No correlation between LPC and age, performance status, body mass index (BMI) or fat mass could be seen. However, LPC correlated inversely with plasma C-reactive protein (CRP) and whole blood hydrogen peroxides (HPO). Further, a negative correlation could be observed between LPC and whole body extra cellular fluid volume (ECF) as well as with relative change in body weight since cancer diagnosis. Conclusion In conclusion, LPC concentrations were decreased in cancer patients. LPC plasma concentrations correlated with weight loss and inflammatory parameters and, therefore, might be a general indicator of severity of malignant disease.
Collapse
Affiliation(s)
- Lenka A Taylor
- Tumor Biology Center, Dept. of Clinical Research, Breisacher Straße 117, D-79106 Freiburg, Germany
| | - Jann Arends
- Tumor Biology Center, Dept. of Clinical Research, Breisacher Straße 117, D-79106 Freiburg, Germany
| | - Arwen K Hodina
- Tumor Biology Center, Dept. of Clinical Research, Breisacher Straße 117, D-79106 Freiburg, Germany
| | - Clemens Unger
- Tumor Biology Center, Dept. of Clinical Research, Breisacher Straße 117, D-79106 Freiburg, Germany
| | - Ulrich Massing
- Tumor Biology Center, Dept. of Clinical Research, Breisacher Straße 117, D-79106 Freiburg, Germany
| |
Collapse
|
8
|
Beloueche-Babari M, Jackson LE, Al-Saffar NMS, Workman P, Leach MO, Ronen SM. Magnetic Resonance Spectroscopy Monitoring of Mitogen-Activated Protein Kinase Signaling Inhibition. Cancer Res 2005; 65:3356-63. [PMID: 15833869 DOI: 10.1158/10.1158/0008-5472.can-03-2981] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several mitogen-activated protein kinase (MAPK) signaling inhibitors are currently undergoing clinical trial as part of novel mechanism-based anticancer treatment strategies. This study was aimed at detecting biomarkers of MAPK signaling inhibition in human breast and colon carcinoma cells using magnetic resonance spectroscopy. We investigated the effect of the prototype MAPK kinase inhibitor U0126 on the (31)P-MR spectra of MDA-MB-231, MCF-7 and Hs578T breast, and HCT116 colon carcinoma cells. Treatment of MDA-MB-231 cells with 50 micromol/L U0126 for 2, 4, 8, 16, 24, 32, and 40 hours caused inhibition of extracellular signal-regulated kinases (ERK1/2) phosphorylation from 2 hours onwards. (31)P-MR spectra of extracted cells indicated that this was associated with a significant drop in phosphocholine levels to 78 +/- 8% at 8 hours, 74 +/- 8% at 16 hours, 66 +/- 7% at 24 hours, 71 +/- 10% at 32 hours, and 65 +/- 10% at 40 hours post-treatment. In contrast, the lower concentration of 10 micromol/L U0126 for 40 hours had no significant effect on either P-ERK1/ 2 or phosphocholine levels in MDA-MB-231 cells. Depletion of P-ERK1/2 in MCF-7 and Hs578T cells with 50 micromol/L U0126 also produced a drop in phosphocholine levels to 51 +/- 17% at 40 hours and 23 +/- 12% at 48 hours, respectively. Similarly, in HCT116 cells, inhibition with 30 micromol/L U0126 caused depletion of P-ERK1/2 and a decrease in phosphocholine levels to 80 +/- 9% at 16 hours and 61 +/- 4% at 24 hours post-treatment. The reduction in phosphocholine in MDA-MB-231 and HCT116 cells correlated positively with the drop in P-ERK1/2 levels. Our results show that MAPK signaling inhibition with U0126 is associated with a time-dependent decrease in cellular phosphocholine levels. Thus, phosphocholine has potential as a noninvasive pharmacodynamic marker for monitoring MAPK signaling blockade.
Collapse
Affiliation(s)
- Mounia Beloueche-Babari
- Cancer Research UK Clinical Magnetic Resonance Research Group, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Bakovic M, Waite K, Vance DE. Oncogenic Ha-Ras transformation modulates the transcription of the CTP:phosphocholine cytidylyltransferase alpha gene via p42/44MAPK and transcription factor Sp3. J Biol Chem 2003; 278:14753-61. [PMID: 12584202 DOI: 10.1074/jbc.m300162200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have shown previously that expression of the murine CTP:phosphocholine cytidylyltransferase (CT) alpha gene is regulated during cell proliferation (Golfman, L. S., Bakovic, M., and Vance, D. E. (2001) J. Biol. Chem. 276, 43688-43692). We have now characterized the role of Ha-Ras in the transcriptional regulation of the CTalpha gene. The expression of CTalpha and CTbeta2 proteins and mRNAs was stimulated in C3H10T1/2 murine fibroblasts expressing oncogenic Ha-Ras. Incubation of cells with the specific inhibitor (PD98059) of p42/44(MAPK) decreased the expression of both CT isoforms. Transfection of fibroblasts with CTalpha promoter-luciferase constructs resulted in an approximately 2-fold enhanced luciferase expression in Ha-Ras-transformed, compared with nontransformed, fibroblasts. Electromobility shift assays indicated enhanced binding of the Sp3 transcription factor to the CTalpha promoter in Ha-Ras-transformed cells. Expression of several forms of Sp3 was increased in nuclear extracts of Ha-Ras-transformed fibroblasts compared with nontransformed cells. Tyrosine phosphorylation of one Sp3 form was decreased, whereas phosphorylation of two other forms of Sp3 was increased in nuclear extracts of Ha-Ras-transformed cells. When control fibroblasts were transfected with a Sp3-expressing plasmid, an enhanced expression of CTalpha and CTbeta was observed. However, the expression of CTalpha or CTbeta was not increased in Ha-Ras-transformed cells transfected with a Sp3 plasmid presumably because expression was already maximally enhanced. The results suggest that Sp3 is a downstream effector of a Ras/p42/44(MAPK) signaling pathway which increases CTalpha gene transcription.
Collapse
Affiliation(s)
- Marica Bakovic
- Department of Biochemistry and Canadian Institutes of Health Research Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
10
|
Chiu CH, Jackowski S. Role of calcium-independent phospholipases (iPLA(2)) in phosphatidylcholine metabolism. Biochem Biophys Res Commun 2001; 287:600-6. [PMID: 11563837 DOI: 10.1006/bbrc.2001.5632] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proposed role of calcium-independent phospholipase A(2) (iPLA(2)) in membrane phospholipid homeostasis was tested by examining the perturbation of phosphatidylcholine metabolism by enzyme overexpression. There are alternatively spliced forms of murine iPLA(2) that were widely expressed in mouse tissues: a long form containing exon-9 that is membrane-associated and a short form lacking exon-9 that is distributed between the membrane and cytosolic fractions. Enforced expression of either iPLA(2) isoform led to a significant increase in intracellular free fatty acid, lysophosphatidylcholine, and GPC without a concomitant increase in the incorporation of either exogenous arachidonic acid or choline. The accumulation of lysophosphatidylcholine in iPLA(2)-expressing cells illustrates the limited capacity of cells for reacylation and degradation of lysophospholipids. Since iPLA(2) overexpression did not accelerate either phospholipid remodeling or phosphatidylcholine synthesis, this enzyme does play a determinant (rate-controlling?) role in either of these cellular processes.
Collapse
Affiliation(s)
- C H Chiu
- Protein Science Division, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| | | |
Collapse
|
11
|
Ramírez de Molina A, Rodríguez-González A, Penalva V, Lucas L, Lacal JC. Inhibition of ChoK is an efficient antitumor strategy for Harvey-, Kirsten-, and N-ras-transformed cells. Biochem Biophys Res Commun 2001; 285:873-9. [PMID: 11467831 DOI: 10.1006/bbrc.2001.5250] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increasing amount of evidence suggests that elevated PCho levels are related to the transforming properties of the H-Ras oncoprotein. Based on these observations, we have designed an antitumor strategy using choline kinase, the enzyme responsible of PCho production, as a novel target for drug discovery. However, little relationship between this lipid-related pathway and the other two Ras members, N- and K-ras, has been established. Since N- and K-ras are the most frequently mutated ras genes in human tumors, we have analyzed the PC-PLD/ChoK pathway and the sensitivity to ChoK inhibition of all three ras-transformed cells. Here we demonstrate that transformation by the three Ras oncoproteins results in increased levels of PCho to a similar extent, resulting from a similar constitutive increase of ChoK activity. As well, sensitivity to choline kinase inhibitors as antiproliferative drugs is similar in cell lines transformed by each of the three ras oncogenes, being in all cases higher than parental, nontransformed cells. In addition, H, K and N-ras-induced alterations in PC metabolism is discussed. These results indicate that ChoK can be used as a general target for anticancer drug design against Ras-dependent tumorigenesis.
Collapse
|
12
|
Chung T, Huang JS, Mukherjee JJ, Crilly KS, Kiss Z. Expression of human choline kinase in NIH 3T3 fibroblasts increases the mitogenic potential of insulin and insulin-like growth factor I. Cell Signal 2000; 12:279-88. [PMID: 10822168 DOI: 10.1016/s0898-6568(00)00065-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.
Collapse
Affiliation(s)
- T Chung
- Department of Biochemistry, Yeungnam University, Keongsan, South Korea
| | | | | | | | | |
Collapse
|
13
|
Nakagami K, Uchida T, Ohwada S, Koibuchi Y, Morishita Y. Increased choline kinase activity in 1,2-dimethylhydrazine-induced rat colon cancer. Jpn J Cancer Res 1999; 90:1212-7. [PMID: 10622531 PMCID: PMC5926018 DOI: 10.1111/j.1349-7006.1999.tb00698.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cancer cells acquire particular characteristics that benefit their proliferation. We previously reported that human colon cancers examined had increased choline kinase activity and phosphocholine levels. The elevated phosphocholine levels were in part due to both activation of choline kinase and increased choline kinase alpha protein levels. In this report, we analyzed choline kinase, which catalyzes the phosphorylation of choline to produce phosphocholine, in rat 1,2-dimethylhydrazine (DMH)-induced colon cancer. This study is the first to demonstrate increased choline kinase alpha enzymatic activity, protein levels, and mRNA levels in DMH-induced colon cancer as well as human colon cancer, although phosphocholine was not increased in DMH-induced rat cancer. The increase in the mRNA level was partly due to an increase in the transcription of the choline kinase alpha gene. The increased choline kinase activity may be a specific characteristic acquired by cancer cells that benefits their proliferation.
Collapse
Affiliation(s)
- K Nakagami
- Second Department of Surgery, Gunma University School of Medicine, Maebashi
| | | | | | | | | |
Collapse
|
14
|
Abstract
Phosphatidylcholine (PtdCho) is the major membrane phospholipid in mammalian cells, and its synthesis is controlled by the activity of CDP:phosphocholine cytidylyltransferase (CCT). Enforced CCT expression accelerated the rate of PtdCho synthesis. However, the amount of cellular PtdCho did not increase as a result of the turnover of both the choline and glycerol components of PtdCho. Metabolic labeling experiments demonstrated that cells compensated for elevated CCT activity by the degradation of PtdCho to glycerophosphocholine (GPC). Phospholipase D-mediated PtdCho hydrolysis and phosphocholine formation were unaffected. Most of the GPC produced in response to excess phospholipid production was secreted into the medium. Cells also degraded the excess membrane PtdCho to GPC when phospholipid formation was increased by exposure to exogenous lysophosphatidylcholine or lysophosphatidylethanolamine. The replacement of the acyl moiety at the 1-position of PtdCho with a non-hydrolyzable alkyl moiety prevented degradation to GPC. Accumulation of alkylacyl-PtdCho was associated with the inhibition of cell proliferation, demonstrating that alternative pathways of degradation will not substitute. GPC formation was blocked by bromoenol lactone, implicating the calcium-independent phospholipase A2 as a key participant in the response to excess phospholipid. Owing to the fact that PtdCho is biosynthetically converted to PtdEtn, excess PtdCho resulted in overproduction and exit of GPE as well as GPC. Thus, general membrane phospholipid homeostasis is achieved by a balance between the opposing activities of CCT and phospholipase A2.
Collapse
Affiliation(s)
- I Baburina
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
15
|
Abstract
Many recent observations implicate choline and ethanolamine kinases as well as phosphatidylcholine-specific phospholipase C in the regulation of mitogenesis and carcinogenesis. For example, human cancers generally contain high concentrations of phosphoethanolamine and phosphocholine, and in different cell lines various growth factors, cytokines, oncogenes and chemical carcinogens were all shown to stimulate the formation of phosphocholine and phosphoethanolamine. In addition, other reports have appeared showing that both extracellular and intracellular phosphocholine as well as ethanolamine and its derivatives can regulate cell growth. This area of research has clearly arrived at a stage when it becomes important to examine critically the feasibility of water-soluble phospholipid intermediates serving as potential regulators of cell growth in vivo. Accordingly, the goal of this review is to summarise available information relating to the formation and mitogenic actions of intracellular and extracellular phosphocholine as well as ethanolamine and its derivatives.
Collapse
Affiliation(s)
- Z Kiss
- The Hormel Institute, University of Minnesota, Austin 55912, USA.
| |
Collapse
|
16
|
Igal RA, Coleman RA. Neutral lipid storage disease: a genetic disorder with abnormalities in the regulation of phospholipid metabolism. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)34200-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Kinnunen PK. On the molecular-level mechanisms of peripheral protein-membrane interactions induced by lipids forming inverted non-lamellar phases. Chem Phys Lipids 1996. [DOI: 10.1016/0009-3084(96)02579-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|