1
|
Nagpal R, Georgi G, Knauth S, Schmid-Herrmann C, Muschol N, Braulke T, Kahl-Nieke B, Amling M, Schinke T, Koehne T, Petersen J. Early enzyme replacement therapy prevents dental and craniofacial abnormalities in a mouse model of mucopolysaccharidosis type VI. Front Physiol 2022; 13:998039. [PMID: 36213247 PMCID: PMC9532570 DOI: 10.3389/fphys.2022.998039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Mucopolysaccharidosis VI (MPS VI) is a hereditary lysosomal storage disease caused by the absence of the enzyme arylsulfatase B (ARSB). Craniofacial defects are common in MPS VI patients and manifest as abnormalities of the facial bones, teeth, and temporomandibular joints. Although enzyme replacement therapy (ERT) is the treatment of choice for MPS VI, the effects on the craniofacial and dental structures are still poorly understood. In this study, we used an Arsb-deficient mouse model (Arsbm/m) that mimics MPS VI to investigate the effects of ERT on dental and craniofacial structures and compared these results with clinical and radiological observations from three MPS VI patients. Using micro-computed tomography, we found that the craniofacial phenotype of the Arsbm/m mice was characterized by bone exostoses at the insertion points of the masseter muscles and an overall increased volume of the jaw bone. An early start of ERT (at 4 weeks of age for 20 weeks) resulted in a moderate improvement of these jaw anomalies, while a late start of ERT (at 12 weeks of age for 12 weeks) showed no effect on the craniofacial skeleton. While teeth typically developed in Arsbm/m mice, we observed a pronounced loss of tooth-bearing alveolar bone. This alveolar bone loss, which has not been described before in MPS VI, was also observed in one of the MPS VI patients. Interestingly, only an early start of ERT led to a complete normalization of the alveolar bone in Arsbm/m mice. The temporomandibular joints in Arsbm/m mice were deformed and had a porous articular surface. Histological analysis revealed a loss of physiological cartilage layering, which was also reflected in an altered proteoglycan content in the cartilage of Arsbm/m mice. These abnormalities could only be partially corrected by an early start of ERT. In conclusion, our results show that an early start of ERT in Arsbm/m mice achieves the best therapeutic effects for tooth, bone, and temporomandibular joint development. As the MPS VI mouse model in this study resembles the clinical findings in MPS VI patients, our results suggest enzyme replacement therapy should be started as early as possible.
Collapse
Affiliation(s)
- Rohit Nagpal
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gina Georgi
- Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sarah Knauth
- Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany
| | - Carmen Schmid-Herrmann
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Muschol
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Braulke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bärbel Kahl-Nieke
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Koehne
- Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany
- *Correspondence: Julian Petersen, ; Till Koehne,
| | - Julian Petersen
- Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany
- *Correspondence: Julian Petersen, ; Till Koehne,
| |
Collapse
|
2
|
D’Avanzo F, Zanetti A, De Filippis C, Tomanin R. Mucopolysaccharidosis Type VI, an Updated Overview of the Disease. Int J Mol Sci 2021; 22:ijms222413456. [PMID: 34948256 PMCID: PMC8707598 DOI: 10.3390/ijms222413456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
Mucopolysaccharidosis type VI, or Maroteaux-Lamy syndrome, is a rare, autosomal recessive genetic disease, mainly affecting the pediatric age group. The disease is due to pathogenic variants of the ARSB gene, coding for the lysosomal hydrolase N-acetylgalactosamine 4-sulfatase (arylsulfatase B, ASB). The enzyme deficit causes a pathological accumulation of the undegraded glycosaminoglycans dermatan-sulphate and chondroitin-sulphate, natural substrates of ASB activity. Intracellular and extracellular deposits progressively take to a pathological scenario, often severe, involving most organ-systems and generally starting from the osteoarticular apparatus. Neurocognitive and behavioral abilities, commonly described as maintained, have been actually investigated by few studies. The disease, first described in 1963, has a reported prevalence between 0.36 and 1.3 per 100,000 live births across the continents. With this paper, we wish to contribute an updated overview of the disease from the clinical, diagnostic, and therapeutic sides. The numerous in vitro and in vivo preclinical studies conducted in the last 10-15 years to dissect the disease pathogenesis, the efficacy of the available therapeutic treatment (enzyme replacement therapy), as well as new therapies under study are here described. This review also highlights the need to identify new disease biomarkers, potentially speeding up the diagnostic process and the monitoring of therapeutic efficacy.
Collapse
Affiliation(s)
- Francesca D’Avanzo
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (F.D.); (A.Z.); (C.D.F.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Alessandra Zanetti
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (F.D.); (A.Z.); (C.D.F.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Concetta De Filippis
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (F.D.); (A.Z.); (C.D.F.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (F.D.); (A.Z.); (C.D.F.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
- Correspondence: ; Tel.: +39-049-821-1264
| |
Collapse
|
3
|
Odiparcil, a potential glycosaminoglycans clearance therapy in mucopolysaccharidosis VI-Evidence from in vitro and in vivo models. PLoS One 2020; 15:e0233032. [PMID: 32413051 PMCID: PMC7228089 DOI: 10.1371/journal.pone.0233032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mucopolysaccharidoses are a class of lysosomal storage diseases, characterized by enzymatic deficiency in the degradation of specific glycosaminoglycans (GAG). Pathological accumulation of excess GAG leads to multiple clinical symptoms with systemic character, most severely affecting bones, muscles and connective tissues. Current therapies include periodic intravenous infusion of supplementary recombinant enzyme (Enzyme Replacement Therapy–ERT) or bone marrow transplantation. However, ERT has limited efficacy due to poor penetration in some organs and tissues. Here, we investigated the potential of the β-D-xyloside derivative odiparcil as an oral GAG clearance therapy for Maroteaux–Lamy syndrome (Mucopolysaccharidosis type VI, MPS VI). In vitro, in bovine aortic endothelial cells, odiparcil stimulated the secretion of sulphated GAG into culture media, mainly of chondroitin sulphate (CS) /dermatan sulphate (DS) type. Efficacy of odiparcil in reducing intracellular GAG content was investigated in skin fibroblasts from MPS VI patients where odiparcil was shown to reduce efficiently the accumulation of intracellular CS with an EC50 in the range of 1 μM. In vivo, in wild type rats, after oral administrations, odiparcil was well distributed, achieving μM concentrations in MPS VI disease-relevant tissues and organs (bone, cartilage, heart and cornea). In MPS VI Arylsulphatase B deficient mice (Arsb-), after chronic oral administration, odiparcil consistently stimulated the urinary excretion of sulphated GAG throughout the treatment period and significantly reduced tissue GAG accumulation in liver and kidney. Furthermore, odiparcil diminished the pathological cartilage thickening observed in trachea and femoral growth plates of MPS VI mice. The therapeutic efficacy of odiparcil was similar in models of early (treatment starting in juvenile, 4 weeks old mice) or established disease (treatment starting in adult, 3 months old mice). Our data demonstrate that odiparcil effectively diverts the synthesis of cellular glycosaminoglycans into secreted soluble species and this effect can be used for reducing cellular and tissue GAG accumulation in MPS VI models. Therefore, our data reveal the potential of odiparcil as an oral GAG clearance therapy for MPS VI patients.
Collapse
|
4
|
Hashimoto S, Nobuta R, Izawa T, Inada T. Translation arrest as a protein quality control system for aberrant translation of the 3'-UTR in mammalian cells. FEBS Lett 2019; 593:777-787. [PMID: 30883710 DOI: 10.1002/1873-3468.13362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023]
Abstract
Read-through or mutations of a stop codon resulting in translation of the 3'-UTR produce potentially toxic C-terminally extended proteins. However, quality control mechanisms for such proteins are poorly understood in mammalian cells. Here, a comprehensive analysis of the 3'-UTRs of genes associated with hereditary diseases identified novel arrest-inducing sequences in the 3'-UTRs of 23 genes that can repress the levels of their protein products. In silico analysis revealed that the hydrophobicity of the polypeptides encoded in the 3'-UTRs is correlated with arrest efficiency. These results provide new insight into quality control mechanisms mediated by 3'-UTRs to prevent the production of C-terminally extended cytotoxic proteins.
Collapse
Affiliation(s)
- Satoshi Hashimoto
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| | - Risa Nobuta
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| | - Toshiaki Izawa
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Stütz AE, Wrodnigg TM. Carbohydrate-Processing Enzymes of the Lysosome: Diseases Caused by Misfolded Mutants and Sugar Mimetics as Correcting Pharmacological Chaperones. Adv Carbohydr Chem Biochem 2016; 73:225-302. [PMID: 27816107 DOI: 10.1016/bs.accb.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lysosomal storage diseases are hereditary disorders caused by mutations on genes encoding for one of the more than fifty lysosomal enzymes involved in the highly ordered degradation cascades of glycans, glycoconjugates, and other complex biomolecules in the lysosome. Several of these metabolic disorders are associated with the absence or the lack of activity of carbohydrate-processing enzymes in this cell compartment. In a recently introduced therapy concept, for susceptible mutants, small substrate-related molecules (so-called pharmacological chaperones), such as reversible inhibitors of these enzymes, may serve as templates for the correct folding and transport of the respective protein mutant, thus improving its concentration and, consequently, its enzymatic activity in the lysosome. Carbohydrate-processing enzymes in the lysosome, related lysosomal diseases, and the scope and limitations of reported reversible inhibitors as pharmacological chaperones are discussed with a view to possibly extending and improving research efforts in this area of orphan diseases.
Collapse
Affiliation(s)
- Arnold E Stütz
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
6
|
Lawrence R, Brown JR, Al-Mafraji K, Lamanna WC, Beitel JR, Boons GJ, Esko JD, Crawford BE. Disease-specific non-reducing end carbohydrate biomarkers for mucopolysaccharidoses. Nat Chem Biol 2012; 8:197-204. [PMID: 22231271 PMCID: PMC3262053 DOI: 10.1038/nchembio.766] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 10/30/2011] [Indexed: 11/09/2022]
Abstract
A considerable need exists for improved biomarkers for differential diagnosis, prognosis and monitoring of therapeutic interventions for mucopolysaccharidoses (MPS), inherited metabolic disorders that involve lysosomal storage of glycosaminoglycans. Here we report a simple, reliable method based on the detection of abundant nonreducing ends of the glycosaminoglycans that accumulate in cells, blood and urine of individuals with MPS. In this method, glycosaminoglycans are enzymatically depolymerized, releasing unique mono-, di- or trisaccharides from the nonreducing ends of the chains. The composition of the released mono- and oligosaccharides depends on the nature of the lysosomal enzyme deficiency, and therefore they serve as diagnostic biomarkers. Analysis by LC/MS allowed qualitative and quantitative assessment of the biomarkers in biological samples. We provide a simple conceptual scheme for diagnosing MPS in uncharacterized samples and a method to monitor efficacy of enzyme replacement therapy or other forms of treatment.
Collapse
Affiliation(s)
- Roger Lawrence
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Jillian R. Brown
- Zacharon Pharmaceuticals, Inc., 5626 Oberlin Drive, San Diego CA 92121
| | - Kanar Al-Mafraji
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - William C. Lamanna
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - James R. Beitel
- Zacharon Pharmaceuticals, Inc., 5626 Oberlin Drive, San Diego CA 92121
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Brett E. Crawford
- Zacharon Pharmaceuticals, Inc., 5626 Oberlin Drive, San Diego CA 92121
| |
Collapse
|
7
|
Duffey TA, Sadilek M, Scott CR, Turecek F, Gelb MH. Tandem mass spectrometry for the direct assay of lysosomal enzymes in dried blood spots: application to screening newborns for mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Anal Chem 2010; 82:9587-91. [PMID: 20961069 PMCID: PMC2980560 DOI: 10.1021/ac102090v] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new assay of N-acetylgalactosamine-4-sulfatase (aryl sulfatase B) activity in dried blood spots (DBS) for the early detection of mucopolysaccharidosis VI (Maroteaux-Lamy syndrome) in newborn screening. The assay uses a synthetic substrate consisting of N-acetylgalactosamine-4-sulfate moiety glycosidically linked to a hydrophobic residue and furnished with a tert-butyloxycarbamido group as a marker for specific mass spectrometric fragmentation. Incubation with aryl sulfatase B present in DBS converts the substrate to a desulfated product which is detected by electrospray tandem mass spectrometry and quantified using a homologous internal standard. Assay and workup procedures were optimized to be compatible with the work flow in newborn screening laboratories. Analysis of DBS from human newborns showed clear distinction of aryl sulfatase B activity from 89 healthy individuals where it ranged between 1.4 and 16.9 μmol/(h L of blood), with an average activity of 7.4 μmol/(h L of blood), and an MPS-VI patient that had an activity of 0.12 μmol/(h L of blood). Results are also reported for the aryl sulfatase B assay in DBS from groups of normal felines and felines affected with MPS-VI.
Collapse
Affiliation(s)
- Trisha A. Duffey
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington
| | - C. Ronald Scott
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Frantisek Turecek
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Buono M, Cosma MP. Sulfatase activities towards the regulation of cell metabolism and signaling in mammals. Cell Mol Life Sci 2010; 67:769-80. [PMID: 20165970 PMCID: PMC11115828 DOI: 10.1007/s00018-009-0203-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/27/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
In higher vertebrates, sulfatases belong to a conserved family of enzymes that are involved in the regulation of cell metabolism and in developmental cell signaling. They cleave the sulfate from sulfate esters contained in hormones, proteins, and complex macromolecules. A highly conserved cysteine in their active site is post-translationally converted into formylglycine by the formylglycine-generating enzyme encoded by SUMF1 (sulfatase modifying factor 1). This post-translational modification activates all sulfatases. Sulfatases are extensively glycosylated proteins and some of them follow trafficking pathways through cells, being secreted and taken up by distant cells. Many proteoglycans, glycoproteins, and glycolipids contain sulfated carbohydrates, which are sulfatase substrates. Indeed, sulfatases operate as decoding factors for a large amount of biological information contained in the structures of the sulfated sugar chains that are covalently linked to proteins and lipids. Modifications to these sulfate groups have pivotal roles in modulating specific signaling pathways and cell metabolism in mammals.
Collapse
Affiliation(s)
- M. Buono
- Telethon Institute of Genetics and Medicine (TIGEM), CNR, via P. Castellino, 111, 80134 Naples, Italy
- Institute of Genetics and Biophysics (IGB), CNR, via P. Castellino, 111, 80134 Naples, Italy
| | - Maria Pia Cosma
- Telethon Institute of Genetics and Medicine (TIGEM), CNR, via P. Castellino, 111, 80134 Naples, Italy
- Institute of Genetics and Biophysics (IGB), CNR, via P. Castellino, 111, 80134 Naples, Italy
| |
Collapse
|
9
|
Ishida H, Nakata T, Suzuki M, Shiotsu Y, Tanaka H, Sato N, Terasaki Y, Takebayashi M, Anazawa H, Murakata C, Li PK, Kuwabara T, Akinaga S. A novel steroidal selective steroid sulfatase inhibitor KW-2581 inhibits sulfated-estrogen dependent growth of breast cancer cells in vitro and in animal models. Breast Cancer Res Treat 2007; 106:215-27. [PMID: 17268815 DOI: 10.1007/s10549-007-9495-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 01/01/2007] [Indexed: 02/01/2023]
Abstract
We screened a series of 17beta-(N-alkylcarbamoyl)-estra-1,3,5(10)trine-3-O-sulfamate derivatives, and describe here a potent and selective steroid sulfatase (STS) inhibitor with antitumor effects in breast cancer models in vitro and in vivo. In biochemical assays using crude enzymes isolated from recombinant Chinese hamster ovary cells expressing human arylsulfatses (ARSs), one of the best compounds, KW-2581, inhibited STS activity with an IC(50) of 4.0 nM, while > 1000-fold higher concentrations were required to inhibit the other ARSs. The failure to stimulate the growth of MCF-7 human breast cancer cells as well as in uteri in ovariectomized rats indicated the lack of estrogenicity of this compound. In MCF-7 cells transfected with the STS gene, termed MCS-2 cells, KW-2581 inhibited the growth of cells stimulated by estrone sulfate (E1S) but also 5-androstene-3beta, 17beta-diol 3-sulfate (ADIOLS) and dehydroepiandrostenedione 3-sulfate. We found that oral administration of KW-2581 inhibited both E1S- and ADIOLS-stimulated growth of MCS-2 cells in a mouse hollow fiber model. In a nitrosomethylurea-induced rat mammary tumor model, KW-2581 induced regression of E1S-stimulated tumor growth as effectively as tamoxifen or another STS inhibitor, 667 Coumate. Dose-response studies in the same rat model demonstrated that more than 90% inhibition of STS activity in tumors was necessary to induce tumor shrinkage. STS activity in tumors has well correlated with that in leukocytes, suggesting that STS activity in leukocytes could be used as an easily detectable pharmacodynamic marker. These findings demonstrate that KW-2581 is a candidate for development as a therapeutic agent for the treatment of hormone receptors-positive breast cancer.
Collapse
Affiliation(s)
- Hiroyuki Ishida
- Pharmaceutical Research Center, Kyowa Hakko Kogyo Co., Ltd, 1188 Shimotogari, Sunto-gun, Nagaizumi-cho, Shizuoka 4118731, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kresse H, Glössl J. Glycosaminoglycan degradation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 60:217-311. [PMID: 3310531 DOI: 10.1002/9780470123065.ch4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- H Kresse
- Institute of Physiological Chemistry, University of Münster, Federal Republic of Germany
| | | |
Collapse
|
11
|
KONDE LINDAJ, THRALL MARYANNA, GASPER PETER, DIAL SHARONM, MCBILES KIT, COLGAN SEAN, HASKINS MARK. RADIOGRAPHICALLY VISUALIZED SKELETAL CHANGES ASSOCIATED WITH MUCOPOLYSACCHARIDOSIS VI IN CATS. ACTA ACUST UNITED AC 2005. [DOI: 10.1111/j.1740-8261.1987.tb00059.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
|
13
|
Petry MFG, Nonemacher K, Sebben JC, Schwartz IVD, Azevedo ACM, Burin MG, de Rezende AR, Kim CA, Giugliani R, Leistner-Segal S. Mucopolysaccharidosis type VI: Identification of novel mutations on the arylsulphatase B gene in South American patients. J Inherit Metab Dis 2005; 28:1027-34. [PMID: 16435196 DOI: 10.1007/s10545-005-0020-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 07/05/2005] [Indexed: 01/27/2023]
Abstract
Mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome, MPS VI) is an autosomal recessive disorder caused by deficiency of N-acetylgalactosamine-4-sulphatase (ARSB),which leads to the lysosomal accumulation and excretion of dermatan sulphate (DS). In this study, 13 unrelated MPS VI patients (12 Brazilian and 1 Chilean) were investigated regarding the identification of the ARSB gene mutations using PCR, SSCP and sequencing. The exons with altered mobility on SSCP were sequenced, as well as all the exons of patients with no SSCP alteration. Seven novel mutations were identified: D59N, L72R, Q88H, P93S, R197X, 1279delA and c.1143-8T > G. The previously reported mutations 1533del23, R315Q and 427delG were found in six, three and two alleles respectively. The other mutations already reported, S384N and G144R, were found in only one allele. In addition, three polymorphisms previously described (V358M, V376M and P397P) were detected in the patients analysed. Our findings are in agreement with the literature confirming the great genetic heterogeneity associated with MPS VI.
Collapse
Affiliation(s)
- M F G Petry
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hanson SR, Best MD, Wong CH. Sulfatases: Structure, Mechanism, Biological Activity, Inhibition, and Synthetic Utility. Angew Chem Int Ed Engl 2004; 43:5736-63. [PMID: 15493058 DOI: 10.1002/anie.200300632] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sulfatases, which cleave sulfate esters in biological systems, play a key role in regulating the sulfation states that determine the function of many physiological molecules. Sulfatase substrates range from small cytosolic steroids, such as estrogen sulfate, to complex cell-surface carbohydrates, such as the glycosaminoglycans. The transformation of these molecules has been linked with important cellular functions, including hormone regulation, cellular degradation, and modulation of signaling pathways. Sulfatases have also been implicated in the onset of various pathophysiological conditions, including hormone-dependent cancers, lysosomal storage disorders, developmental abnormalities, and bacterial pathogenesis. These findings have increased interest in sulfatases and in targeting them for therapeutic endeavors. Although numerous sulfatases have been identified, the wide scope of their biological activity is only beginning to emerge. Herein, accounts of the diversity and growing biological relevance of sulfatases are provided along with an overview of the current understanding of sulfatase structure, mechanism, and inhibition.
Collapse
Affiliation(s)
- Sarah R Hanson
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC 357, La Jolla, California 92037, USA
| | | | | |
Collapse
|
15
|
Hanson SR, Best MD, Wong CH. Sulfatasen: Struktur, Mechanismus, biologische Aktivität, Inhibition, Anwendung in Synthesen. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200300632] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Urbitsch P, Salzer MJ, Hirschmann P, Vogt PH. Arylsulfatase D gene in Xp22.3 encodes two protein isoforms. DNA Cell Biol 2000; 19:765-73. [PMID: 11177574 DOI: 10.1089/104454900750058125] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human genome contains six arylsulfatase genes (ARSA-ARSF), of which four are clustered in a distal region of the short arm of the X chromosome (Xp22.3). They were probably generated by a series of evolutionary duplication events; their exon-intron boundaries are identical. Nevertheless, different transcript lengths and the absence of cross-hybridizations point to a specific function of each gene in human cell metabolism, and multiple transcripts suggest the coding of protein isoforms. We identified a novel protein isoform of the ARSD gene by isolation of a series of cDNA clones from a human testis cDNA library. The clones were only partially identical to another series of ARSD clones isolated earlier (now designated ARSDalpha clones). Their specific C-terminal region (1160 nt) encodes a novel ARSD peptide of 48 amino acids and was identified as part of intron 6 of the ARSD gene in Xp22.3. We therefore designate them ARSDbeta clones. Expression analyses of ARSDalpha and ARSDbeta by semiquantitative RT-PCR revealed the presence of both in multiple human tissues, although in different quantities. A physiologic substrate for arylsulfatase D proteins is not known. We therefore estimated their sulfatase activities in vitro with the aid of the 4-methylumbelliferyl sulfate (4-MUS) assay. Surprisingly, neither ARSD protein isoform demonstrated any sulfatase activity alone or in combination, although their catalytic peptide domain is strongly conserved in comparison with that of the other X-chromosomal arylsulfatase enzymes (ARSC, ARSE, ARSF), all of which are functionally active in the 4-MUS assay.
Collapse
Affiliation(s)
- P Urbitsch
- Institute of Human Genetics, University of Heidelberg, INF 328, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
17
|
Leznicki AJ, Bialkowski K. Improved high-performance liquid chromatographic method for N-acetylgalactosamine-4-sulfate sulfatase (arylsulfatase B) activity determination using uridine diphospho-N-acetylgalactosamine-4-sulfate. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1997; 696:193-202. [PMID: 9323540 DOI: 10.1016/s0378-4347(97)00263-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UDP-N-acetylgalactosamine-4-sulfate (UDP-GalNAc-4-S) was isolated from hen oviduct (isthmus) with a yield of 31 mumol per 100 g of wet tissue and used for arylsulfatase B (ASB) activity determination. Two HPLC methods of separation and quantitation of the reaction product were described: (1) an original gradient elution method which makes it possible to determine the reaction product when only partially purified ASB was used and additional uridine derivatives were formed during incubation; (2) an improved, fast isocratic elution method which may be used in the case of purified ASB preparations, devoid of other nucleotide hydrolysing enzymes. For both methods the detection limit was 0.1 nmol of product with standard error of determination < or = 3%. Using the gradient elution method we have found that UDP-GalNAc-4-S was hydrolysed by bovine arylsulfatase B1 most efficiently at pH 5.0 and concentration 0.5 mM with K(m) = 85 microM.
Collapse
Affiliation(s)
- A J Leznicki
- Department of Biochemistry, Nicholas Copernicus University, Torun, Poland
| | | |
Collapse
|
18
|
Evers M, Saftig P, Schmidt P, Hafner A, McLoghlin DB, Schmahl W, Hess B, von Figura K, Peters C. Targeted disruption of the arylsulfatase B gene results in mice resembling the phenotype of mucopolysaccharidosis VI. Proc Natl Acad Sci U S A 1996; 93:8214-9. [PMID: 8710849 PMCID: PMC38649 DOI: 10.1073/pnas.93.16.8214] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mucopolysaccharidosis VI (MPS VI) is a lysosomal storage disease with autosomal recessive inheritance caused by a deficiency of the enzyme arylsulfatase B (ASB), which is involved in degradation of dermatan sulfate and chondroitin 4-sulfate. A MPS VI mouse model was generated by targeted disruption of the ASB gene. Homozygous mutant animals exhibit ASB enzyme deficiency and elevated urinary secretion of dermatan sulfate. They develop progressive symptoms resembling those of MPS VI in humans. Around 4 weeks of age facial dysmorphia becomes overt, long bones are shortened, and pelvic and costal abnormalities are observed. Major alterations in bone formation with perturbed cartilaginous tissues in newborns and widened, perturbed, and persisting growth plates in adult animals are seen. All major parenchymal organs show storage of glycosaminoglycans preferentially in interstitial cells and macrophages. Affected mice are fertile and mortality is not elevated up to 15 months of age. This mouse model will be a valuable tool for studying pathogenesis of MPS VI and may help to evaluate therapeutical approaches for lysosomal storage diseases.
Collapse
Affiliation(s)
- M Evers
- Abteilung Biochemie II, Universität Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Isbrandt D, Hopwood JJ, von Figura K, Peters C. Two novel frameshift mutations causing premature stop codons in a patient with the severe form of Maroteaux-Lamy syndrome. Hum Mutat 1996; 7:361-3. [PMID: 8723688 DOI: 10.1002/(sici)1098-1004(1996)7:4<361::aid-humu12>3.0.co;2-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Abstract
We report a 39-year-old patient with a huge connective tissue naevus on his back, in association with pseudo-Hurler polydystrophy (mucolipidosis III). As far as we are aware, this is the first report of the coexistence of these two rare conditions. The lesional skin was composed of densely packed, coarse collagen fibres, which were immunohistochemically found to consist of type I, type III and type VI collagens. The amount of elastic fibres was moderately reduced. The glycosaminoglycan content of lesional skin was similar to that in a normal control. Activities of several glycosidases were markedly decreased in cultured fibroblasts.
Collapse
Affiliation(s)
- H Shinkai
- Department of Dermatology, Oita Medical University, Japan
| | | | | | | |
Collapse
|
21
|
Arlt G, Brooks D, Isbrandt D, Hopwood J, Bielicki J, Bradford T, Bindloss-Petherbridge C, von Figura K, Peters C. Juvenile form of mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). A C-terminal extension causes instability but increases catalytic efficiency of arylsulfatase B. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36929-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Voskoboeva E, Isbrandt D, von Figura K, Krasnopolskaya X, Peters C. Four novel mutant alleles of the arylsulfatase B gene in two patients with intermediate form of mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Hum Genet 1994; 93:259-64. [PMID: 8125475 DOI: 10.1007/bf00212019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mucopolysaccharidosis type VI (MPSVI, Maroteaux-Lamy syndrome) is a lysosomal storage disease for which multiple clinical phenotypes have been described. A deficiency of the enzyme arylsulfatase B (ASB, N-acetylgalactosamine-4-sulfatase) is the cause of this autosomal recessively inherited disorder. The genotypes of two patients with an intermediate form of MPSVI have been determined by polymerase chain reaction (PCR) amplification of the entire open reading frame of the ASB gene and subsequent direct sequencing of both strands of the PCR fragments by an automated nonradioactive approach. In patient A, a C to T transition in allele I resulting in an exchange of the Arg codon 160 for a premature stop codon (R160*, exon 2), and a G to A transition in allele II leading to a Gln to Arg160 substitution (R160Q, exon 2) were detected. Patient B exhibited a 7-bp deletion in exon 1 of allele I resulting in a frame shift and a premature stop codon 33 triplets 3' of the site of deletion (delta G237-C243), and a C to T transition in allele II giving rise to a Trp to Arg152 substitution (R152W, exon 2). None of these four mutant alleles was present among 60 alleles of the ASB gene in unrelated controls, indicating that the former are not polymorphisms. These results emphasize the broad molecular heterogeneity of Maroteaux-Lamy syndrome and contribute to the establishment of a genotype/phenotype correlation in this disease.
Collapse
Affiliation(s)
- E Voskoboeva
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow
| | | | | | | | | |
Collapse
|
23
|
Modaressi S, Rupp K, von Figura K, Peters C. Structure of the human arylsulfatase B gene. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1993; 374:327-35. [PMID: 7687847 DOI: 10.1515/bchm3.1993.374.1-6.327] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have isolated lambda-phage clones containing the human arylsulfatase B gene region from a genomic lambda 47.1 library. The human arylsulfatase B gene comprises 8 exons interrupted by 7 introns. DNA sequences of all intron-exon boundaries and the 5' flanking region of the gene were determined. All intron-exon splice junctions conformed to the GT/AG consensus sequence. Primer extension analysis revealed multiple start sites 1 to 135 nucleotides 5' of the ATG translational start codon. A 398 bp DNA-fragment of the 5' flanking region exhibits promotor activity when transiently expressed in BHK-21 cells using the bacterial chloramphenicol acetyltransferase gene as a reporter gene. This putative promotor region is located in a CpG island and contains potential Sp1 and AP2 binding sites but lacks typical TATA and CAAT box motifs.
Collapse
|
24
|
Kobayashi T, Honke K, Jin T, Gasa S, Miyazaki T, Makita A. Components and proteolytic processing sites of arylsulfatase B from human placenta. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1159:243-7. [PMID: 1390929 DOI: 10.1016/0167-4838(92)90051-e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous studies have shown that mature arylsulfatase B purified from human sources is composed of two non-identical chains with apparent molecular masses of 43 kDa and 8 kDa. Arylsulfatase B purified from human placenta in the present study, however, included another 7 kDa component that could be detected only by carbohydrate staining on reducing SDS-PAGE employing the Tris-Tricine system. The 43 kDa and 7 kDa components contained a carbohydrate moiety, but the 8 kDa one did not, as demonstrated by periodic acid-Schiff staining, Con-A lectin blotting, endo-glycosidase treatment and in vitro phosphorylation by UDP-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine 1-phosphotransferase. The purified arylsulfatase B migrated as a single polypeptide of 58 kDa on non-reducing SDS-PAGE, indicating that the three chains are linked by disulfide bonds. In order to determine the origin of the components, N-terminal sequencing of the isolated polypeptides was performed. As a result, the 43, 7 and 8 kDa components were found to commence with Ala-41, Ala-424 and Asp-466, respectively. These results suggest that after removal of the signal peptide, human arylsulfatase B undergoes proteolytic processing on at least two sites during maturation.
Collapse
Affiliation(s)
- T Kobayashi
- Biochemistry Laboratory, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Litjens T, Morris CP, Robertson EF, Peters C, von Figura K, Hopwood JJ. An N-acetylgalactosamine-4-sulfatase mutation (delta G238) results in a severe Maroteaux-Lamy phenotype. Hum Mutat 1992; 1:397-402. [PMID: 1301949 DOI: 10.1002/humu.1380010509] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI, MPS VI) is an autosomally inherited lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-4-sulfatase (EC 3.1.6.1; 4-sulfatase). In order to determine the gene defect in a clinically severe MPS VI patient, polymerase chain reaction (PCR) products were generated from the patient's fibroblast mRNA and also from a 4-sulfatase cDNA clone and subjected to the chemical cleavage technique to detect mismatched bases, which were then identified by direct DNA sequencing of the PCR products. The patient was homozygous for an early frameshift mutation caused by the deletion of a G at position 238 (delta G238), which produces a truncated 4-sulfatase with an altered amino acid sequence from amino acid 80 to a premature stop codon at codon 113 relative to the normal 4-sulfatase reading frame of 533 amino acids. Since the mutation occurs only 40 amino acids past the signal peptidase cleavage site, it is most likely that this will result in a protein with no 4-sulfatase activity. This is consistent with the severe clinical presentation and the absence of 4-sulfatase enzyme activity or mutant 4-sulfatase protein in the patient. The patient was also found to be homozygous for two polymorphisms, i.e., a G to A transition at nucleotide 1072 resulting in a valine358 to methionine substitution (V358M) and a salient A to G transition in the third base of the proline397 codon at nucleotide 1191.
Collapse
Affiliation(s)
- T Litjens
- Department of Chemical Pathology, Adelaide Children's Hospital, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Wicker G, Prill V, Brooks D, Gibson G, Hopwood J, von Figura K, Peters C. Mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). An intermediate clinical phenotype caused by substitution of valine for glycine at position 137 of arylsulfatase B. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54649-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Tønnesen T, Gregersen HN, Güttler F. Normal MPS excretion, but dermatan sulphaturia, combined with a mild Maroteaux-Lamy phenotype. J Med Genet 1991; 28:499-501. [PMID: 1832719 PMCID: PMC1016967 DOI: 10.1136/jmg.28.7.499] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A mildly affected Maroteaux-Lamy patient is described. Electrophoretic separation of acid mucopolysaccharides (MPS) in the urine showed an increased excretion of dermatan sulphate in spite of a normal total excretion of MPS.
Collapse
Affiliation(s)
- T Tønnesen
- John F Kennedy Institute, Glostrup, Denmark
| | | | | |
Collapse
|
28
|
Peters C, Rommerskirch W, Modaressi S, von Figura K. Restoration of arylsulphatase B activity in human mucopolysaccharidosis-type-VI fibroblasts by retroviral-vector-mediated gene transfer. Biochem J 1991; 276 ( Pt 2):499-504. [PMID: 1904721 PMCID: PMC1151119 DOI: 10.1042/bj2760499] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI; MPS VI) is a lysosomal storage disease caused by deficiency of the enzyme arylsulphatase B (ASB). A human ASB cDNA has been subcloned into the retroviral vector pXT1 containing the bacterial neomycin-resistance gene and an internal thymidine kinase promoter for transcription of the inserted gene. Replication defective retrovirus was generated by transfecting the construct into the amphotropic packaging cell line PA317. Human MPS VI fibroblasts infected with recombinant retrovirus integrated the provirus into their genome and expressed retrovirus-encoded ASB mRNAs. In infected fibroblasts the level of ASB was up to 36-fold higher than in normal fibroblasts. Biosynthesis and processing of ASB in infected MPS VI fibroblasts was accomplished as in normal fibroblasts, and mature, enzymically active, ASB accumulated in dense lysosomes, indicating that the ASB deficiency in MPS VI fibroblasts was corrected by the retroviral gene transfer.
Collapse
Affiliation(s)
- C Peters
- Biochemie II, Universität Göttingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
29
|
Phylogenetic conservation of arylsulfatases. cDNA cloning and expression of human arylsulfatase B. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39778-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Schuchman EH, Jackson CE, Desnick RJ. Human arylsulfatase B: MOPAC cloning, nucleotide sequence of a full-length cDNA, and regions of amino acid identity with arylsulfatases A and C. Genomics 1990; 6:149-58. [PMID: 1968043 DOI: 10.1016/0888-7543(90)90460-c] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
cDNAs encoding the human lysosomal hydrolase, arylsulfatase B (ASB; N-acetylgalactosamine-4-sulfatase, EC 3.1.6.1), were isolated from a hepatoma cell cDNA library using an ASB-specific oligonucleotide generated by the MOPAC (mixed oligonucleotide primed amplification of cDNA) technique. To facilitate cDNA cloning, human ASB was purified to apparent homogeneity and a total of 112 amino acid residues were microsequenced from the N-terminus and four internal tryptic peptides of the 47-kDa subunit. Based on the ASB N-terminal amino acid sequence, two oligonucleotide mixtures containing inosines to reduce the mixture complexity were constructed and used as primers to amplify an ASB-specific product from human placental cDNA by the polymerase chain reaction. DNA sequencing of this MOPAC product demonstrated colinearity with 21 N-terminal ASB amino acids. Based on this sequence and on codon usage for the adjacent conserved amino acids in human arylsulfatases A and C, a unique 66-mer was synthesized and used to screen a human hepatoma cell cDNA library. Four putative positive cDNA clones were isolated, and the largest insert (pASB-1) was sequenced in both orientations. The 1834-bp pASB-1 insert had a 1278-bp open reading frame encoding 425 amino acids that was colinear with 85 microsequenced amino acids of the purified enzyme, demonstrating its authenticity. Using the pASB-1 cDNA as a probe, a full-length cDNA clone, pASB-4, was isolated from a human testes library and sequenced in both orientations. pASB-4 had a 2811-bp insert containing a 559-bp 5' untranslated sequence, a 1602-bp open reading frame encoding 533 amino acids (six potential N-glycosylation sites), a 641-bp 3' untranslated sequence, and a 9-bp poly(A) tract. Comparison of the predicted amino acid sequences of arylsulfatases A, B, and C revealed regions of identity, particularly in their N-termini.
Collapse
Affiliation(s)
- E H Schuchman
- Division of Medical and Molecular Genetics, Mount Sinai School of Medicine, New York, New York 10029
| | | | | |
Collapse
|
31
|
Black SH, Pelias MZ, Miller JB, Blitzer MG, Shapira E. Maroteaux-Lamy syndrome in a large consanguineous kindred: biochemical and immunological studies. AMERICAN JOURNAL OF MEDICAL GENETICS 1986; 25:273-9. [PMID: 3096137 DOI: 10.1002/ajmg.1320250211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We describe a large consanguineous German-Acadian ("Cajun") family from a rural area in Louisiana in which 11 persons in two generations had the Maroteaux-Lamy syndrome. The mutant arylsulfatase B enzyme in this family was similar to the mutant enzyme in previously studied families in its cross-reactivity with specific antibodies to the enzyme, but it differed in both its electrophoretic mobility and its residual enzymatic activity. These findings indicate that a different mutational event leading to Maroteaux-Lamy syndrome occurred in this family.
Collapse
|
32
|
Biosynthesis and maturation of arylsulfatase B in normal and mutant cultured human fibroblasts. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)43862-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
O'Fagain C, Butler BM, Mantle TJ. The effect of pH on the kinetics of arylsulphatases A and B. Biochem J 1983; 213:603-7. [PMID: 6137211 PMCID: PMC1152174 DOI: 10.1042/bj2130603] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The effect of pH on the kinetics of rat liver arylsulphatases A and B is very similar and shows that two groups with pK values of 4.4-4.5 and 5.7-5.8 are important for enzyme activity. Substrate binding has no effect on the group with a pK of 4.4-4.5; however, the pK of the second group is shifted to 7.1-7.5 in the enzyme-substrate complex. An analysis of the effect of pH on the Ki for sulphate inhibition suggests that HSO4-is the true product. A model is proposed that involves the two ionizing groups identified in the present study in a concerted general acid-base-catalysed mechanism.
Collapse
|
34
|
McGovern MM, Vine DT, Haskins ME, Desnick RJ. Purification and properties of feline and human arylsulfatase B isozymes. Evidence for feline homodimeric and human monomeric structures. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33554-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
|
36
|
Kresse H, Cantz M, von Figura K, Glössl J, Paschke E. The mucopolysaccharidoses: biochemistry and clinical symptoms. KLINISCHE WOCHENSCHRIFT 1981; 59:867-76. [PMID: 6456376 DOI: 10.1007/bf01721920] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mucopolysaccharidoses are a group of genetic diseases which are characterized by an excessive intralysosomal accumulation of partially degraded mucopolysaccharides. This storage is caused by the inactivity of one of eleven enzymes that are required for the degradation of the different types of mucopolysaccharides. There is a rough correlation between phenotype and chemical nature of the storage material. Similar clinical pictures, however, may be caused by an inactivity of different enzymes. Conversely, different clinical expressions of the defect of a single enzyme may be attributed to allelic mutations. The recent development of specific assay procedures for the respective enzymes allows 1. an early genotype-specific diagnosis of affected patients, 2. prenatal diagnosis of the metabolic defect in families at risk, 3. to prognosticate the course of the disease at least in some instances, and 4. genetic counseling for members of affected families. At present, there is no specific therapy. Attempts of enzyme replacement therapy are still at an experimental stage.
Collapse
|
37
|
Characterization of cyclic AMP-resistant Chinese hamster ovary cell mutants lacking type I protein kinase. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)70068-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
38
|
Tsuji M, Nakanishi Y, Habuchi H, Ishihara K, Suzuki S. The common identity of UDP-N-acetylgalactosamine 4-sulfatase, nitrocatechol sulfatase (arylsulfatase), and chondroitin 4-sulfatase. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 612:373-83. [PMID: 7370276 DOI: 10.1016/0005-2744(80)90120-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Evidence is presented indicating that three sulfatase activities towards UDP-N-acetylgalactosamine 4-sulfate, nitrocatechol sulfate, and chondroitin 4-sulfate are functions of the same hen oviduct enzyme. Using chondroitin [35S]sulfate from chick embryo cartilage, it is shown that hydrolysis of ester sulfate by this enzyme is limited to 4-sulfate groups occurring in the non-reducing terminal N-acetylgalactosamine 4-sulfate and N-acetylgalactosamine 4,6-bissulfate residues.
Collapse
|
39
|
|
40
|
|
41
|
Bruns GA, Mintz BJ, Leary AC, Regina VM, Gerald PS. Human lysosomal genes: arylsulfatase A and beta-galactosidase. Biochem Genet 1979; 17:1031-59. [PMID: 120190 DOI: 10.1007/bf00504344] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The segregation of human lysosomal arylsulfatase A (ARS-A) has been evaluated in 50 primary hybrid clones derived from four separate fusions involving WBCs from two unrelated individuals and three hamster cell lines. ARS-A was expressed in the hybrids as a dimeric molecule of very similar or identical subunits. The expression of this enzyme was concordant with that of mitochondrial aconitase (ACON-M), an isozyme assigned to chromosome 22, in all 50 clones and with chromosome 22 segregation in all but one of the 29 karyotyped hybrids. No other human chromosome cosegregated with 22 in these clones, suggesting that this enzyme is specified in hybrid cells by a locus (or loci) on a single chromosome. beta-Galactosidase (B-GAL) expression was analyzed with two different electrophoresis systems and with a number of cell extract preparation methods in 39 of the primary hybrid clones. The B-GAL isozyme expressed in these hybrid cells was concordant with the expression of glutathione peroxidase-1 (GPX-1), an isozyme assigned to chromosome 3, in all 39 clones and with the segregation of this chromosome in 97% of the 29 karyotyped hybrids. These observations substantiate the prior tentative assignments of an ARS-A locus to chromosome 22 and a B-GAL locus to chromosome 3 (Bruns et al., 1978a, b). The implications of the chromosome assignments of loci for 12 human lysosomal enzymes for the cellular assembly of these organelles are discussed.
Collapse
|
42
|
Süveges I. Histological and ultrastructural studies of the cornea in Maroteaux-Lamy syndrome. ALBRECHT VON GRAEFES ARCHIV FUR KLINISCHE UND EXPERIMENTELLE OPHTHALMOLOGIE. ALBRECHT VON GRAEFE'S ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY 1979; 212:29-39. [PMID: 120117 DOI: 10.1007/bf00413322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The author presents the histologic and electron-microscopic examination of the cornea of a patient with Maroteaux-Lamy syndrome. Histochemic examinations established the absence of keratin sulfate and heparin sulfate in the accumulated material. By means of electron microscopy three cell types have been found in the stroma which may show, besides the storage of the accumulated glycosaminoglycans, the morphologic signs of the pathologic enzyme-substrate connection. Considering the presence of the lipidlike material, the question arises whether the Maroteaux-Lamy syndrome belongs to mucolipidoses.
Collapse
|
43
|
Pilz H, von Figura K, Goebel HH. Deficiency of arylsulfatase B in 2 brothers aged 40 and 38 years (Maroteaux-Lamy syndrome, type B). Ann Neurol 1979; 6:315-25. [PMID: 122048 DOI: 10.1002/ana.410060405] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two brothers, aged 40 and 38 years, suffered from dysplastic features, coarse facies, bone and skeletal abnormalities, deformities of spine, and joint impairments. Body heights were 168 and 164 cm, respectively. Enlargement of liver and spleen, cardiac insufficiency, marked corneal clouding, and hernias were absent. Both patients had signs of cervical and lumbar radiculopathy and cervical myelopathy (tetraspastic syndrome). Vacuoles, acid phosphatase-positive granules, and metachromatic inclusions were found in peripheral lymphocytes; granulocytes and monocytes contained azurophilic hypergranulation. By electron microscopy, clear membrane-bound vacuoles were noted in lymphocytes (but not in neurtrophils), fibroblasts, Schwann cells, mural cells of the vasculature, and epidermal cells. Leukocytes, urine, and cultured skin fibroblasts revealed a deficiency of arylsulfatase B (N-acetylgalactosamine 4-sulfate sulfatase). The 6-year-old daughter of one of the patients has an intermediate level of this enzyme. Fibroblasts exhibited a constant intracellular accumulation of 35S-labeled mucopolysaccharides. The urine of one of the brothers showed an abnormal mucopolysacchariduria; in both, the presence of urinary dermatan sulfate could be demonstrated. These findings conform to the mild B variant of Maroteaux-Lamy syndrome with high longevity.
Collapse
|
44
|
Nakanishi Y, Tsuji M, Habuchi H, Suzuki S. Isolation of UDP-N-acetylgalactosamine-6-sulfate sulfatase from quail oviduct and its action on chondroitin sulfate. Biochem Biophys Res Commun 1979; 89:863-70. [PMID: 486204 DOI: 10.1016/0006-291x(79)91858-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
|
46
|
|
47
|
|
48
|
Burns GR, Wynn CH. Differential repression of arylsulphatase synthesis in Aspergillus oryzae. Biochem J 1977; 166:415-20. [PMID: 597236 PMCID: PMC1165024 DOI: 10.1042/bj1660415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
1. The activities of the three arylsulphatases (arylsulphate sulphohydrolase, EC 3.1.6.1) of Aspergillus oryzae produced under a variety of repressing and non-repressing conditions were determined. 2. These enzymes exhibit different sensitivities to repression by inorganic sulphate. 3. Arylsulphatase I, but not arylsulphatases II and III, exhibits a transient de-repression in the early growth phase in sulphate media. 4. When the fungus is cultured in repressing media and subsequently transferred to non-repressing media, the synthesis of the three enzymes is non-co-ordinate. 5. Growth of the fungus in media containing choline O-sulphate or tyrosine O-sulphate as the sole source of sulphur results in complete de-repression of arylsulphatase I, But the synthesis of arylsulphatases II and III is essentially fully repressed. 6. The marked similarities between the repression characteristics of arylsulphatases II and III, contrasted with those of arylsulphatase I, indicate that the genetic locus of arylsulphatase I is distinct from that of arylsulphatases II and III, suggesting that there are distinct physiological roles for the enzyme.
Collapse
|
49
|
|
50
|
Stevens RL, Fluharty AL, Killgrove AR, Kihara Y. Arylsulfatase of human tissue. Studies on a form of arylsulfatase B found predominantly in brain. BIOCHIMICA ET BIOPHYSICA ACTA 1977; 481:549-60. [PMID: 870049 DOI: 10.1016/0005-2744(77)90287-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The distribution of soluble arylsulfatase (aryl-sulfate sulfohydrolases, EC 3.1.6.1) in human tissues was investigated by DEAE-cellulose chromatography, All tissues examined contained arylsulfatase A and arylsulfatase B. In addition, brain singularly contained significant quantities (15-25% of total arylsulfatase) of a minor anionic arylsulfatase from designated arylsulfatase Bm, whereas only trace amounts of arylsulfatase Bm were found in liver, kidney, testis and placenta. Arylsulfatase B and arylsulfatase Bm had equal activity toward methyl-umbelliferyl sulfate, nitrocatechol sulfate and a physiological substrate UDP-N-acetylgalactosamine 4-sulfate, but both forms were inactive toward the arylsulfatase A substrates cerebroside sulfate and ascorbic acid 2-sulfate. Purified preparations of placental arylsulfatase B, brain arylsulfatase Bm, and urinary arylsulfatase A did not hydrolyze estrone sulfate, dehydroepiandrosterone sulfate or pregnenolone sulfate. The physico-chemical properties of arylsulfatase Band arylsulfatase Bm differed with respect to thermal lability, DEAE-cellulose chromatography, polyacrylamide gel electrophoresis and isoelectric focussing. In the latter technique, utilizing thin polyacrylamide slab gels, the isoelectric point for placental arylsulfatase B was 8.2, while brain arylsulfatase Bm resolved into 3 activity bands with pI values 6.8, 7.0 and 7.2. Although the physico-chemical properties differed, arylsulfatase B and arylsulfatase Bm appear to be functionally equivalent as well as generically related.
Collapse
|