1
|
Abstract
The F1F0-ATP synthase (EC 3.6.1.34) is a remarkable enzyme that functions as a rotary motor. It is found in the inner membranes of Escherichia coli and is responsible for the synthesis of ATP in response to an electrochemical proton gradient. Under some conditions, the enzyme functions reversibly and uses the energy of ATP hydrolysis to generate the gradient. The ATP synthase is composed of eight different polypeptide subunits in a stoichiometry of α3β3γδεab2c10. Traditionally they were divided into two physically separable units: an F1 that catalyzes ATP hydrolysis (α3β3γδε) and a membrane-bound F0 sector that transports protons (ab2c10). In terms of rotary function, the subunits can be divided into rotor subunits (γεc10) and stator subunits (α3β3δab2). The stator subunits include six nucleotide binding sites, three catalytic and three noncatalytic, formed primarily by the β and α subunits, respectively. The stator also includes a peripheral stalk composed of δ and b subunits, and part of the proton channel in subunit a. Among the rotor subunits, the c subunits form a ring in the membrane, and interact with subunit a to form the proton channel. Subunits γ and ε bind to the c-ring subunits, and also communicate with the catalytic sites through interactions with α and β subunits. The eight subunits are expressed from a single operon, and posttranscriptional processing and translational regulation ensure that the polypeptides are made at the proper stoichiometry. Recent studies, including those of other species, have elucidated many structural and rotary properties of this enzyme.
Collapse
|
2
|
Senouci-Rezkallah K, Jobin MP, Schmitt P. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH. Microbiologyopen 2015; 4:313-322. [PMID: 25740257 PMCID: PMC4398511 DOI: 10.1002/mbo3.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 11/08/2022] Open
Abstract
This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe ) 7.0 or 5.5 and at a growth rate of 0.2 h-1 . Population reduction and internal pH (pHi ) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells.
Collapse
Affiliation(s)
- Khadidja Senouci-Rezkallah
- UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université d'Avignon, 84914, Avignon, France.,Faculté des Sciences de la Nature et de la Vie, Université de Mascara, Mascara, Algérie.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Michel P Jobin
- UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université d'Avignon, 84914, Avignon, France
| | - Philippe Schmitt
- UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université d'Avignon, 84914, Avignon, France
| |
Collapse
|
3
|
Zhang C, Allegretti M, Vonck J, Langer JD, Marcia M, Peng G, Michel H. Production of fully assembled and active Aquifex aeolicus F1FO ATP synthase in Escherichia coli. Biochim Biophys Acta Gen Subj 2013; 1840:34-40. [PMID: 24005236 DOI: 10.1016/j.bbagen.2013.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/13/2013] [Accepted: 08/27/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane. A number of ATP synthases have been characterized to date. The one from the hyperthermophilic bacterium Aquifex aeolicus presents unique features, i.e. a putative heterodimeric stalk. To complement previous work on the native form of this enzyme, we produced it heterologously in Escherichia coli. METHODS We designed an artificial operon combining the nine genes of A. aeolicus ATP synthase, which are split into four clusters in the A. aeolicus genome. We expressed the genes and purified the enzyme complex by affinity and size-exclusion chromatography. We characterized the complex by native gel electrophoresis, Western blot, and mass spectrometry. We studied its activity by enzymatic assays and we visualized its structure by single-particle electron microscopy. RESULTS We show that the heterologously produced complex has the same enzymatic activity and the same structure as the native ATP synthase complex extracted from A. aeolicus cells. We used our expression system to confirm that A. aeolicus ATP synthase possesses a heterodimeric peripheral stalk unique among non-photosynthetic bacterial F1FO ATP synthases. CONCLUSIONS Our system now allows performing previously impossible structural and functional studies on A. aeolicus F1FO ATP synthase. GENERAL SIGNIFICANCE More broadly, our work provides a valuable platform to characterize many other membrane protein complexes with complicated stoichiometry, i.e. other respiratory complexes, the nuclear pore complex, or transporter systems.
Collapse
Affiliation(s)
- Chunli Zhang
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Tran-Nguyen LTT, Kube M, Schneider B, Reinhardt R, Gibb KS. Comparative genome analysis of "Candidatus Phytoplasma australiense" (subgroup tuf-Australia I; rp-A) and "Ca. Phytoplasma asteris" Strains OY-M and AY-WB. J Bacteriol 2008; 190:3979-91. [PMID: 18359806 PMCID: PMC2395047 DOI: 10.1128/jb.01301-07] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 03/12/2008] [Indexed: 11/20/2022] Open
Abstract
The chromosome sequence of "Candidatus Phytoplasma australiense" (subgroup tuf-Australia I; rp-A), associated with dieback in papaya, Australian grapevine yellows in grapevine, and several other important plant diseases, was determined. The circular chromosome is represented by 879,324 nucleotides, a GC content of 27%, and 839 protein-coding genes. Five hundred two of these protein-coding genes were functionally assigned, while 337 genes were hypothetical proteins with unknown function. Potential mobile units (PMUs) containing clusters of DNA repeats comprised 12.1% of the genome. These PMUs encoded genes involved in DNA replication, repair, and recombination; nucleotide transport and metabolism; translation; and ribosomal structure. Elements with similarities to phage integrases found in these mobile units were difficult to classify, as they were similar to both insertion sequences and bacteriophages. Comparative analysis of "Ca. Phytoplasma australiense" with "Ca. Phytoplasma asteris" strains OY-M and AY-WB showed that the gene order was more conserved between the closely related "Ca. Phytoplasma asteris" strains than to "Ca. Phytoplasma australiense." Differences observed between "Ca. Phytoplasma australiense" and "Ca. Phytoplasma asteris" strains included the chromosome size (18,693 bp larger than OY-M), a larger number of genes with assigned function, and hypothetical proteins with unknown function.
Collapse
Affiliation(s)
- L T T Tran-Nguyen
- Charles Darwin University, School of Environmental and Life Sciences, Darwin, NT, 0909, Australia.
| | | | | | | | | |
Collapse
|
5
|
Futai M. Our research on proton pumping ATPases over three decades: their biochemistry, molecular biology and cell biology. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2007; 82:416-38. [PMID: 25792771 PMCID: PMC4338836 DOI: 10.2183/pjab.82.416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 12/11/2006] [Indexed: 05/24/2023]
Abstract
ATP is synthesized by F-type proton-translocating ATPases (F-ATPases) coupled with an electrochemical proton gradient established by an electron transfer chain. This mechanism is ubiquitously found in mitochondria, chloroplasts and bacteria. Vacuolar-type ATPases (V-ATPases) are found in endomembrane organelles, including lysosomes, endosomes, synaptic vesicles, etc., of animal and plant cells. These two physiologically different proton pumps exhibit similarities in subunit assembly, catalysis and the coupling mechanism from chemistry to proton transport through subunit rotation. We mostly discuss our own studies on the two proton pumps over the last three decades, including ones on purification, kinetic analysis, rotational catalysis and the diverse roles of acidic luminal organelles. The diversity of organellar proton pumps and their stochastic fluctuation are the important concepts derived recently from our studies.
Collapse
Affiliation(s)
- Masamitsu Futai
- Futai Special Laboratory, Microbial Chemistry Research Center, Microbial Chemistry Research Foundation, and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo,
Japan
| |
Collapse
|
6
|
Futai M, Sun-Wada GH, Wada Y. Proton pumping ATPases and diverse inside-acidic compartments. YAKUGAKU ZASSHI 2004; 124:243-60. [PMID: 15118237 DOI: 10.1248/yakushi.124.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proton-translocating ATPases are essential cellular energy converters that transduce the chemical energy of ATP hydrolysis into transmembrane proton electrochemical potential differences. The structures, catalytic mechanism, and cellular functions of three major classes of ATPases including the F-type, V-type, and P-type ATPase are discussed in this review. Physiological roles of the acidic organelles and compartments contained are also discussed.
Collapse
Affiliation(s)
- Masamitsu Futai
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki City, Osaka 567-0047, Japan.
| | | | | |
Collapse
|
7
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
8
|
Cross RL, Duncan TM. Subunit rotation in F0F1-ATP synthases as a means of coupling proton transport through F0 to the binding changes in F1. J Bioenerg Biomembr 1996; 28:403-8. [PMID: 8951086 DOI: 10.1007/bf02113981] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The rotation of an asymmetric core of subunits in F0F1-ATP synthases has been proposed as a means of coupling the exergonic transport of protons through F0 to the endergonic conformational changes in F1 required for substrate binding and produce release. Here we review earlier evidence both for and against subunit rotation and then discuss our most recent studies using reversible intersubunit disulfide cross-links to test for rotation. We conclude that the gamma subunit of F1 rotates relative to the surrounding catalytic subunits during catalytic turnover by both soluble F1 and membrane-bound F0F1. Furthermore, the inhibition of this rotation by the modification of F0 with DCCD suggests that rotation in F1 is obligatorily coupled to rotation in F0 as an integral part of the coupling mechanism.
Collapse
Affiliation(s)
- R L Cross
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center, Syracuse 13210, USA
| | | |
Collapse
|
9
|
Kasimoglu E, Park SJ, Malek J, Tseng CP, Gunsalus RP. Transcriptional regulation of the proton-translocating ATPase (atpIBEFHAGDC) operon of Escherichia coli: control by cell growth rate. J Bacteriol 1996; 178:5563-7. [PMID: 8824597 PMCID: PMC178391 DOI: 10.1128/jb.178.19.5563-5567.1996] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The F0F1 proton-translocating ATPase complex of Escherichia coli, encoded by the atpIBEFHAGDC operon, catalyzes the synthesis of ATP from ADP and Pi during aerobic and anaerobic growth when respiratory substrates are present. It can also catalyze the reverse reaction to hydrolyze ATP during nonrespiratory conditions (i.e., during fermentation of simple sugars) in order to maintain a electrochemical proton gradient across the cytoplasmic membrane. To examine how the atp genes are expressed under different conditions of cell culture, atpI-lacZ operon fusions were constructed and analyzed in single copy on the bacterial chromosome or on low-copy-number plasmids. Expression varied over a relatively narrow range (about threefold) regardless of the complexity of the cell growth medium, the availability of different electron acceptors or carbon compounds, or the pH of the culture medium. In contrast to prior proposals, atp operon expression was shown to occur from a single promoter located immediately before atpI rather than from within it. The results of continuous-culture experiments suggest that the cell growth rate rather than the type of carbon compound used for growth is the major variable in controlling atp gene expression. Together, these studies establish that synthesis of the F0F1 ATPase is not greatly varied by modulating atp operon transcription.
Collapse
Affiliation(s)
- E Kasimoglu
- Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles 90095, USA
| | | | | | | | | |
Collapse
|
10
|
Santana M, Ionescu MS, Vertes A, Longin R, Kunst F, Danchin A, Glaser P. Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. J Bacteriol 1994; 176:6802-11. [PMID: 7961438 PMCID: PMC197047 DOI: 10.1128/jb.176.22.6802-6811.1994] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We cloned and sequenced an operon of nine genes coding for the subunits of the Bacillus subtilis F0F1 ATP synthase. The arrangement of these genes in the operon is identical to that of the atp operon from Escherichia coli and from three other Bacillus species. The deduced amino acid sequences of the nine subunits are very similar to their counterparts from other organisms. We constructed two B. subtilis strains from which different parts of the atp operon were deleted. These B. subtilis atp mutants were unable to grow with succinate as the sole carbon and energy source. ATP was synthesized in these strains only by substrate-level phosphorylation. The two mutants had a decreased growth yield (43 and 56% of the wild-type level) and a decreased growth rate (61 and 66% of the wild-type level), correlating with a twofold decrease of the intracellular ATP/ADP ratio. In the absence of oxidative phosphorylation, B. subtilis increased ATP synthesis through substrate-level phosphorylation, as shown by the twofold increase of by-product formation (mainly acetate). The increased turnover of glycolysis in the mutant strain presumably led to increased synthesis of NADH, which would account for the observed stimulation of the respiration rate associated with an increase in the expression of genes coding for respiratory enzymes. It therefore appears that B. subtilis and E. coli respond in similar ways to the absence of oxidative phosphorylation.
Collapse
Affiliation(s)
- M Santana
- Unité de Régulation de l'Expression Génétique, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Proton ATPases function in biological energy conversion in every known living cell. Their ubiquity and antiquity make them a prime source for evolutionary studies. There are two related families of H(+)-ATPases; while the family of F-ATPases function in eubacteria chloroplasts and mitochondria, the family of V-ATPases are present in archaebacteria and the vacuolar system of eukaryotic cells. Sequence analysis of several subunits of V- and F-ATPases revealed several of the important steps in their evolution. Moreover, these studies shed light on the evolution of the various organelles of eukaryotes and suggested some events in the evolution of the three kingdoms of eubacteria, archaebacteria and eukaryotes.
Collapse
Affiliation(s)
- N Nelson
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110
| |
Collapse
|
12
|
Cross RL. Chapter 13 The reaction mechanism of F0F1ATP synthases. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
13
|
Higuti T, Tsurumi C, Osaka F, Kawamura Y, Tsujita H, Yoshihara Y, Tani I, Tanaka K, Ichihara A. Molecular cloning of cDNA for the import precursor of human subunit B of H(+)-ATP synthase in mitochondria. Biochem Biophys Res Commun 1991; 178:1014-20. [PMID: 1831354 DOI: 10.1016/0006-291x(91)90993-h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nucleotide sequence of the import precursor of subunit b of human H(+)-ATP synthase has been determined from a recombinant cDNA clone isolated by screening a human kidney cDNA library with a cDNA for rat subunit b as a probe. The sequence was composed of 1,134 nucleotides including a coding region for the import precursor of subunit b and noncoding regions on the 5'- and 3'-sides. The import precursor of subunit b and its mature polypeptide deduced from the open reading frame were found to consist of 256 and 214 amino acid residues with molecular weights of 28,893 and 24,610, respectively. The presequence of 42 amino acids could be the import signal peptide for directing the protein into the mitochondrial matrix.
Collapse
Affiliation(s)
- T Higuti
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Oda T, Futaki S, Kitagawa K, Yoshihara Y, Tani I, Higuti T. Orientation of chargerin II (A6L) in the ATP synthase of rat liver mitochondria determined with antibodies against peptides of the protein. Biochem Biophys Res Commun 1989; 165:449-56. [PMID: 2531582 DOI: 10.1016/0006-291x(89)91091-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies suggested that the hydrophobic protein chargerin II, which is encoded in the unidentified reading frame A6L of mitochondrial DNA (URFA6L), may have a key role in the energy transduction by mitochondrial ATP synthase because an antibody against chargerin II inhibited ATP synthesis and ATP-Pi exchange, in an energy-dependent fashion. In the present work, the orientation of chargerin II in Fo of the ATP synthase of rat liver mitochondria was examined using antibodies against peptides of chargerin II. Results showed that its N-terminal region (about 8 amino acid residues) was exposed on the surface of the C-side of Fo, but its C-terminal and charge-cluster regions were buried in Fo.
Collapse
Affiliation(s)
- T Oda
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Schaefer EM, Hartz D, Gold L, Simoni RD. Ribosome-binding sites and RNA-processing sites in the transcript of the Escherichia coli unc operon. J Bacteriol 1989; 171:3901-8. [PMID: 2472380 PMCID: PMC210141 DOI: 10.1128/jb.171.7.3901-3908.1989] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The polycistronic mRNA encoding the nine genes of the unc operon of Escherichia coli was studied. We demonstrated the ribosome-binding capabilities of six of the nine unc genes, uncB, uncE, uncF, uncH, uncA, and uncD, by using the technique of primer extension inhibition or "toeprinting." No toeprint was detected for the other genes, uncI, uncG, and uncC. The lack of a toeprint for uncG suggests that this gene is expressed by some form of translational coupling, such that either uncG is read by ribosomes which have translated the preceding gene, uncA, or translation of uncA is required for ribosome binding at the uncG site. RNA sequencing and primer extension in the regions of uncI and uncC, the first and last genes in the operon, respectively, gave less intense signals than those obtained for the other unc genes. This suggested that there are fewer copies of those regions of the transcript and that processing of the unc transcript occurred. Using primer extension and RNA sequencing, we identified sites in the unc transcript at which processing appears to take place, including a site which may remove much of the uncI portion of the transcript. Northern (RNA) blot analysis of unc RNA is consistent with the presence of an RNA-processing site in the uncI region of the transcript and another in the uncH region. These processing events may account for some of the differential levels of expression of the unc genes.
Collapse
Affiliation(s)
- E M Schaefer
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | | | | | |
Collapse
|
16
|
|
17
|
Brusilow WSA, Scarpetta MA, Hawthorne CA, Clark WP. Organization and Sequence of the Genes Coding for the Proton-translocating ATPase of Bacillus megaterium. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)94219-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Higuti T, Negama T, Takigawa M, Uchida J, Yamane T, Asai T, Tani I, Oeda K, Shimizu M, Nakamura K. A hydrophobic protein, chargerin II, purified from rat liver mitochondria is encoded in the unidentified reading frame A6L of mitochondrial DNA. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68709-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Solomon KA, Brusilow WS. Effect of an uncE ribosome-binding site mutation on the synthesis and assembly of the Escherichia coli proton-translocating ATPase. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)60731-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Schneider E, Altendorf K. Bacterial adenosine 5'-triphosphate synthase (F1F0): purification and reconstitution of F0 complexes and biochemical and functional characterization of their subunits. Microbiol Rev 1987; 51:477-97. [PMID: 2893973 PMCID: PMC373128 DOI: 10.1128/mr.51.4.477-497.1987] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Ehrig K, Hoppe J, Friedl P, Schairer HU. An antibody-binding site in the native enzyme between amino acid residues 205-287 of the gamma-subunit of F1 from Escherichia coli. Biochem Biophys Res Commun 1986; 137:468-73. [PMID: 2424448 DOI: 10.1016/0006-291x(86)91233-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A monoclonal antibody was isolated specific for the isolated denatured gamma-subunit of F1 from Escherichia coli and binding to native F1. The binding site of this antibody was identified between amino acid residues 205-287 of the polypeptide chain thus being located at the surface of the F1 complex.
Collapse
|
22
|
Hawthorne CA, Brusilow WS. Complementation of mutants in the Escherichia coli proton-translocating ATPase by cloned DNA from Bacillus megaterium. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)57205-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Hoppe J, Sebald W. Topological studies suggest that the pathway of the protons through F0 is provided by amino acid residues accessible from the lipid phase. Biochimie 1986; 68:427-34. [PMID: 2874840 DOI: 10.1016/s0300-9084(86)80010-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structure of the F0 part of ATP synthases from E. coli and Neurospora crassa was analyzed by hydrophobic surface labeling with [125I]TID. In the E. coli F0 all three subunits were freely accessible to the reagent, suggesting that these subunits are independently integrated in the membrane. Labeled amino acid residues were identified by Edman degradation of the dicyclohexylcarbodiimide binding (DCCD) proteins from E. coli and Neurospora crassa. The very similar patterns obtained with the two homologous proteins suggested the existence of tightly packed alpha-helices. The oligomeric structure of the DCCD binding protein appeared to be very rigid since little, if any, change in the labeling pattern was observed upon addition of oligomycin or DCCD to membranes from Neurospora crassa. When membranes were pretreated with DCCD prior to the reaction with [125I]TID an additionally labeled amino acid appeared at the position of Glu-65 which binds DCCD covalently, indicating the location of this inhibitor on the outside of the oligomer. It is suggested that proton conduction occurs at the surface of the oligomer of the DCCD binding protein. Possibly this oligomer rotates against the subunit alpha or beta and thus enables proton translocation. Conserved residues in subunit alpha, probably located in the lipid bilayer, might participate in the proton translocation mechanism.
Collapse
|
24
|
Schneider E, Altendorf K. Proton-conducting portion (F0) from Escherichia coli ATP synthase: preparation, dissociation into subunits, and reconstitution of an active complex. Methods Enzymol 1986; 126:569-78. [PMID: 2908466 DOI: 10.1016/s0076-6879(86)26059-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Ehrig K, Lünsdorf H, Friedl P, Schairer HU. Determination of the stoichiometry and arrangement of alpha and beta subunits in F1-ATPase using monoclonal antibodies in immunoelectron microscopy. Methods Enzymol 1986; 126:770-5. [PMID: 2908481 DOI: 10.1016/s0076-6879(86)26076-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Kanazawa H, Noumi T, Futai M. Analysis of Escherichia coli mutants of the H(+)-transporting ATPase: determination of altered site of the structural genes. Methods Enzymol 1986; 126:595-603. [PMID: 2908469 DOI: 10.1016/s0076-6879(86)26062-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Porter AC, Kumamoto C, Aldape K, Simoni RD. Role of the b subunit of the Escherichia coli proton-translocating ATPase. A mutagenic analysis. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39579-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
28
|
Jans DA, Hatch L, Fimmel AL, Gibson F, Cox GB. Complementation between uncF alleles affecting assembly of the F1F0-ATPase complex of Escherichia coli. J Bacteriol 1985; 162:420-6. [PMID: 2858470 PMCID: PMC219005 DOI: 10.1128/jb.162.1.420-426.1985] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A mutant affected in the b subunit (coded by the uncF gene) of the F1F0-ATPase in Escherichia coli was isolated by a localized mutagenesis procedure in which a plasmid carrying the unc genes was mutagenized in vivo. The biochemical properties of cells carrying the uncF515 allele were examined in a strain carrying the allele on a multicopy plasmid and a mutator-induced polar unc mutation on the chromosome. The strain carrying the mutant unc allele was uncoupled with respect to oxidative phosphorylation. Membrane-bound ATPase activity was very low or absent, and membranes were somewhat proton permeable. It was concluded that the F0 sector was assembled. Determination of the DNA sequence of the uncF515 allele showed it differed from wild type in that a G----A substitution occurred at position 392, resulting in glycine being replaced by aspartate at position 131. Genetic complementation tests indicated that the uncF515 allele complemented the uncF476 allele (Gly 9----Asp). Two-dimensional gel electrophoresis of membrane preparations indicated that the uncF515 and uncF476 alleles interrupted assembly of the F1F0-ATPase at different stages.
Collapse
|
29
|
Chapter 8 The Proton-ATPase of Escherichia coli. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/s0070-2161(08)60154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
30
|
Abstract
Fifty-three gene sequences from E. coli containing 18,288 reading frame triplets have been characterized according to the nature and level of average codon preference. The distribution of average preferences is bimodal, with approximately half the genes using an average of only 36 codons, and the remainder just 42 codons. There is a high correlation between the level of codon bias, the tRNA population and the abundance of protein product, indicating biased patterns are exploited by the cell for the production of widely different levels of gene product. This relationship is especially striking in genes involved in the production of components for transcription and translation. Overall, the genes for these processes generate some five-fold more protein than the average in the genome, and use about five fewer codons. The very high codon bias found in the RNA polymerase gene thus provides a simple, autogenous mechanism for the coordinate synthesis of these components and RNA polymerase. A surprisingly high level of codon probability is also found in triplets of the complement of coding sequences. This is apparently due to the evolutionary dispersion of coding sequences and/or the requirement for increased levels of secondary structure in messenger RNAs.
Collapse
Affiliation(s)
- R D Blake
- Department of Biochemistry, University of Maine, Orono
| | | |
Collapse
|
31
|
Schneider E, Altendorf K. Subunit b of the membrane moiety (F0) of ATP synthase (F1F0) from Escherichia coli is indispensable for H+ translocation and binding of the water-soluble F1 moiety. Proc Natl Acad Sci U S A 1984; 81:7279-83. [PMID: 6209711 PMCID: PMC392129 DOI: 10.1073/pnas.81.23.7279] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The ATP synthase complex, designated F1F0, of Escherichia coli is composed of a water-soluble portion (F1; membrane-associated ATPase, EC 3.6.1.3) with ATP-hydrolyzing activity and a membrane-integrated part (F0) with H+-translocating activity. F0 is built up from three kinds of subunits (a, b, and c). We have isolated the F0 portion directly from membranes of an E. coli strain (KY 7485) that overproduces the enzyme several fold. Subunit b was extracted from purified F0 by two methods. One method included prolonged incubation of the F0 complex in the presence of trichloroacetate (2.5 M) and the separation of subunit b and an a-c complex by gel filtration. Alternatively, subunit b was extracted by deoxycholate and separated from the a-c complex by hydrophobic-interaction chromatography. Integrated into liposomes, the a-c complex exhibited neither H+ uptake nor binding of F1. However, a functional F0 complex was reconstituted by adding stoichiometric amounts of subunit b to the a-c complex.
Collapse
|
32
|
Hoppe J, Brunner J, Jørgensen BB. Structure of the membrane-embedded F0 part of F1F0 ATP synthase from Escherichia coli as inferred from labeling with 3-(Trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine. Biochemistry 1984; 23:5610-6. [PMID: 6210106 DOI: 10.1021/bi00318a035] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
3-(Trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I]TID) is a photoactivatable carbene precursor designed to label selectively the hydrophobic core of membranes. We have used this reagent to obtain information on the topological organization of the membrane-embedded subunits of F1F0 ATP synthase from Escherichia coli. The study included [125I]TID labeling of F0 subunits in different structural (conformational) states and Edman degradations of the labeled polypeptides in order to assign the covalently bound radioactivity to individual amino acid residues. Released phenylthiohydantoin amino acids were analyzed by thin-layer chromatography, and the radioactive derivatives were visualized by autoradiography. The data suggest that labeling patterns can be correlated in a meaningful manner with reagent accessibility and hence with protein-lipid contact. Subunit b appears to be anchored to the membrane by a short N-terminal segment. As almost all of the amino acids of this part are accessible to the reagent, it is inferred that this segment has little interaction with the other subunits. In contrast, in the two segments of subunit c that were labeled with [125I]TID, only certain amino acids reacted with the label. The pattern of these labeled residues is compatible with that of tightly packed alpha-helices.
Collapse
|
33
|
Jans DA, Hatch L, Fimmel AL, Gibson F, Cox GB. An acidic or basic amino acid at position 26 of the b subunit of Escherichia coli F1F0-ATPase impairs membrane proton permeability: suppression of the uncF469 nonsense mutation. J Bacteriol 1984; 160:764-70. [PMID: 6209261 PMCID: PMC214802 DOI: 10.1128/jb.160.2.764-770.1984] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The uncF469 allele differed from normal in that a G----A base change occurred at nucleotide 77 of the uncF gene, resulting in a TAG stop codon rather than the tryptophan codon TGG. Two partial revertant strains were isolated which retained the uncF469 allele but formed a partially functional b-subunit, due to suppression of the uncF469 nonsense mutation. From the altered isoelectric points of the b-subunits from these strains, it was concluded that the suppressor gene of partial revertant strain AN1956 inserts an acidic amino acid for the TAG codon, and that the suppressor gene of partial revertant strain AN1958 inserts a basic amino acid. The membranes of both partial revertant strains showed impaired permeability to protons on removal of F1-ATPase. The membranes of both strains, however, were able to carry out oxidative phosphorylation, and the ATPase activities of both were resistant to the inhibitor dicyclohexylcarbodiimide.
Collapse
|
34
|
Modyanov NN, Grinkevich VA, Aldanova NA, Kostetsky PV, Trubetskaya OE, Hundal T, Ernster L. Oligomycin sensitivity-conferring protein (OSCP) of beef heart mitochondria. Internal sequence homology and structural relationship with other proteins. FEBS Lett 1984; 175:109-12. [PMID: 6236996 DOI: 10.1016/0014-5793(84)80580-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Structural analysis of oligomycin sensitivity-conferring protein (OSCP) revealed repeating sequences (residues 1-89, 105-190) suggesting an evolution of the protein by gene duplication. In addition to the reported homology with the delta-subunit of Escherichia coli F1ATPase, OSCP also shows a certain homology with the b-subunit of E. coli F0 and the ADP/ATP carrier of mitochondria.
Collapse
|
35
|
Walker JE, Saraste M, Gay NJ. The unc operon. Nucleotide sequence, regulation and structure of ATP-synthase. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 768:164-200. [PMID: 6206892 DOI: 10.1016/0304-4173(84)90003-x] [Citation(s) in RCA: 408] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
A phenylalanine for serine substitution in the beta subunit of Escherichia coli F1-ATPase affects dependence of its activity on divalent cations. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90929-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
37
|
Replacement of serine 373 by phenylalanine in the alpha subunit of Escherichia coli F1-ATPase results in loss of steady-state catalysis by the enzyme. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90930-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
38
|
Friedl P, Hoppe J, Schairer HU. The DCCD-reactive aspartyl-residue of subunit C from the Escherichia coli ATP-synthase is important for the conformation of F0. Biochem Biophys Res Commun 1984; 120:527-33. [PMID: 6329170 DOI: 10.1016/0006-291x(84)91286-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effect of various point mutations in subunits a and and c of the E. coli ATP-synthase was characterized. In each of the mutants there was no F0-dependent H+-conduction, but still an ATPase-activity comparable to wildtype activities. In addition, the subunit b could be extracted from the mutant's F0 but not from the F0 of wildtype. The effects are interpreted as a change in the conformation of F0 caused by the different mutations.
Collapse
|
39
|
Hoppe J, Sebald W. The proton conducting F0-part of bacterial ATP synthases. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 768:1-27. [PMID: 6231051 DOI: 10.1016/0304-4173(84)90005-3] [Citation(s) in RCA: 203] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Kanazawa H, Kiyasu T, Noumi T, Futai M. Overproduction of subunit a of the F0 component of proton-translocating ATPase inhibits growth of Escherichia coli cells. J Bacteriol 1984; 158:300-6. [PMID: 6325392 PMCID: PMC215412 DOI: 10.1128/jb.158.1.300-306.1984] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A hybrid plasmid, pKY159, carrying the promoter and the proximal region of the gene cluster for proton-translocating ATPase caused growth inhibition of Escherichia coli cells (K. Yamaguchi and M. Yamaguchi, J. Bacteriol. 153:550-554, 1983). The mechanism of this growth inhibition was studied, especially in terms of the responsible gene(s). Insertion of IS1, IS5, or gamma delta between the promoter and the gene for a possible component of the ATPase of 14,000 daltons (14K protein) released the inhibitory effect by pKY159. Deletion of the gene for subunit a also released the effect. However, deletion in the gene for the 14K protein released the effect only with an additional insertion within the gene. These results suggested that overproduction of subunit a is closely related to growth inhibition, whereas the 14K protein is not.
Collapse
|
41
|
Kanazawa H, Kiyasu T, Noumi T, Futai M, Yamaguchi K. Insertions of transposable elements in the promoter proximal region of the gene cluster for Escherichia coli H+-ATPase: 8 base pair repeat generated by insertion of IS1. MOLECULAR & GENERAL GENETICS : MGG 1984; 194:179-87. [PMID: 6328213 DOI: 10.1007/bf00383514] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A plasmid pKY159 (Yamaguchi and Yamaguchi 1983) carrying a promoter proximal portion of the gene cluster of the proton-translocating ATPase (H+-ATPase) of Escherichia coli causes growth inhibition of wild-type cells. Insertion of a transposable element in this plasmid released this inhibitory effect. In analyzing this inhibitory effect, we determined the insertion points at the nucleotide-sequence level of transposable elements on 30 independent derivatives of pKY159 . Insertions of IS1, IS5, and gamma delta were found between the promoter and the gene for a possible component of 14,000 daltons of the H+-ATPase. Of 31 insertions, 26 were of IS1 and were located at the same site, indicating that this site is a hotspot for IS1 insertion and that IS1 insertion is much more frequent than that of IS5 or gamma delta in this region. Four different sites for IS1 insertion were found; in two of these an 8 base pair (bp) duplicate of the target sequence ( AAAAACGT and AAACGTTG ) was generated, while in the other two a 9 bp duplicate was found. In all cases in this study the nucleotide sequence of IS1 was the same as that of IS1-K. In the two cases with an 8 bp duplicate in different sites, a common 6 bp sequence ( AAACGT ) was found. These results suggested that generation of the 8 bp duplicate is related to the common sequence rather than a mutation in IS1 suggested by Iida et al. (1981) and also suggested that the essential length of the duplicate is 8 bp or less than 8 bp. A 6 bp sequence ( GTGATG ) homologous to the end portion of IS1 was found at the hotspot , but not at other sites, suggesting that this homology contributed to the high frequency of IS1 insertion.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
42
|
Alff-Steinberger C. Evidence for a coding pattern on the non-coding strand of the E. coli genome. Nucleic Acids Res 1984; 12:2235-41. [PMID: 6369247 PMCID: PMC318658 DOI: 10.1093/nar/12.5.2235] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Analysis of codon usage frequency for the combined coding sequences of 52 E. coli genes, taken from the European Molecular Biology Laboratory Nucleotide Sequence Data Library, Release 2, shows that there is a significant positive correlation between the frequency with which a given codon appears on the coding strand and the frequency with which it appears, in phase, on the non-coding strand.
Collapse
|
43
|
Lünsdorf H, Ehrig K, Friedl P, Schairer HU. Use of monoclonal antibodies in immuno-electron microscopy for the determination of subunit stoichiometry in oligomeric enzymes. There are three alpha-subunits in the F1-ATPase of Escherichia coli. J Mol Biol 1984; 173:131-6. [PMID: 6230457 DOI: 10.1016/0022-2836(84)90408-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The subunit stoichiometry of oligomeric enzymes can be determined by immuno-electron microscopy using monoclonal antibodies against the individual subunits. Monoclonal antibodies against native F1-ATPase of Escherichia coli were prepared that were specific for the alpha-subunit. The immune complexes of F1 and monoclonal antibodies were isolated. Electron microscopy revealed the presence of three immunoglobulins per molecule of F1-ATPase. This unequivocally demonstrates an alpha 3 stoichiometry for the F1-ATPase of E. coli.
Collapse
|
44
|
Biogenesis of Mitochondria: Genetic and molecular analysis of the oli2 region of mitochondrial DNA in Saccharomyces cerevisiae. Curr Genet 1984; 8:135-46. [DOI: 10.1007/bf00420226] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1983] [Indexed: 10/26/2022]
|
45
|
|
46
|
Kanazawa H, Noumi T, Matsuoka I, Hirata T, Futai M. F1ATPase of Escherichia coli: a mutation (uncA401) located in the middle of the alpha subunit affects the conformation essential for F1 activity. Arch Biochem Biophys 1984; 228:258-69. [PMID: 6230047 DOI: 10.1016/0003-9861(84)90066-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
F1ATPase from the Escherichia coli mutant of H+-ATPase, AN120 (uncA401), has less than 1% of the wild type activity and has been shown to be defective in the alpha subunit by in vitro reconstitution experiments. In the present study, the mutation site was located within a domain of the subunit by recombinant DNA technology. For this, a series of recombinant plasmids carrying various portions of the alpha subunit gene were constructed and used for genetic recombination with AN120. Analysis of the recombinants indicated that the mutation site could be located between amino acid residues 370 and 387. The biochemical properties of the mutant F1 were analyzed further using the fluorescent ATP analog DNS-ATP (2'-(5-dimethylaminonaphthalene-1-sulfonyl)-amino-2'-deoxy ATP). The single turnover process of E. coli F1ATPase proposed by Matsuoka et al. [(1982) J. Biochem. 92, 1383-1398.] was compared in the mutant and wild type F1's. Mutant F1 bound DNS-ATP and hydrolyzed it as efficiently as wild type F1. Results showed that binding of ATP to a low affinity site, possibly in the beta subunit, caused decrease of fluorescence of DNS-ATP in the wild type F1 and that this effect of ATP binding was inhibited by DCCD (dicyclohexyl carbodiimide). However, this effect was not inhibited by DCCD in the mutant F1, suggesting that in the proposed process some step(s) after ATP binding to the low affinity site differed in the mutant and wild F1's. When Pi was added to F1 bound to DNS-ATP or to aurovertin, a fluorescent probe capable of binding to the beta subunit, the opposite changes of fluorescence of these probes in the mutant and wild type F1's were observed, suggesting that the conformational change induced by phosphate binding was altered in the mutant F1. On the basis of the estimated mutation site and the biochemical properties of the mutant F1, the correlation of the domain of this site in the alpha subunit with the function of F1 ATPase is discussed.
Collapse
|
47
|
Nielsen J, Jørgensen BB, van Meyenburg KV, Hansen FG. The promoters of the atp operon of Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1984; 193:64-71. [PMID: 6318052 DOI: 10.1007/bf00327415] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nucleotide sequence has been determined of a 900 bp segment of chromosomal DNA located between 2.6 and 3.5 kb left of the origin of replication, oriC. This segment, which overlaps with the known sequence of the atp operon coding for the eight subunits of the Escherichia coli K12 ATP synthase, contains two coding sequences with the same polarity (counterclockwise) as the atp genes: One of these, designated atpI, which codes for the N-terminal part of a 14 kD polypeptide, is located in front (upstream) of the atpB gene (the first structural gene in the atp operon), the other one codes for the C-terminal part of the gidB gene. The 606 bp segment located between the gidB and the atpI genes contains no coding sequences. By employing the nuclease S1 mapping technique, we have determined a promoter, designated atpIp, for the atp operon located in front of the atpI gene; two additional, weak transcription starts were located within the atpI gene. No transcription start sites were detected up to 1,000 bp upstream of the atpIp promoter, neither were any transcription start sites detected within the cluster of the eight structural atp genes. The atp operon transcription terminates at a site approximately 50 bp downstream from the atpC gene.
Collapse
|
48
|
Hermolin J, Gallant J, Fillingame RH. Topology, organization, and function of the psi subunit in the F0 sector of the H+-ATPase of Escherichia coli. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)43898-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Aris JP, Simoni RD. Cross-linking and labeling of the Escherichia coli F1F0-ATP synthase reveal a compact hydrophilic portion of F0 close to an F1 catalytic subunit. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)43905-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Kanazawa H, Noumi T, Oka N, Futai M. Intracistronic mapping of the defective site and the biochemical properties of beta subunit mutants of Escherichia coli H+-ATPase: correlation of structural domains with functions of the beta subunit. Arch Biochem Biophys 1983; 227:596-608. [PMID: 6320730 DOI: 10.1016/0003-9861(83)90489-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sixteen mutants of Escherichia coli defective in H+-ATPase (proton-translocating ATPase) were tested for their ability to recombine with hybrid plasmids carrying various portions of the beta subunit cistron. Twelve mutations were mapped within the carboxyl half of the cistron corresponding to amino acid residues 279 to 459 (domain II), while four mutations were mapped within residues 17 to 278 (domain I). The biochemical properties of these mutants were analyzed in terms of the proton permeability of their membranes and the assembly properties of their F1F0 complex. The mutants were classified according to the properties into three types, I, II, and III. In 12 mutants of type I, proton conduction in membrane vesicles was blocked and little F1 was released from the membranes under conditions in which F1 could be released from wild-type membranes, suggesting that assembly of the F1F0 complex is structurally and functionally defective. F1 was partially purified with very low recovery from one of the type I mutants, KF16. ATPase activity was reconstituted from this F1 with the beta subunit of the wild type, confirming the genetic results. Only one mutant, KF38, was classified as type II. Its membranes were partially leaky to protons and its F1 was releasable, suggesting that the interaction of its F1 and F0 was unstable. Type III mutants, KF11 and KF43, had an F1F0 complex with very low activity, in which the structure of F1 was relatively similar to that of the wild type. F1 was purified as a single complex from KF43 in this study and from KF11 previously (H. Kanazawa, Y. Horiuchi, M. Takagi, Y. Ishino, and M. Futai (1980) J. Biochem. 88, 695-703). Reconstitution experiments in vitro showed that the F1's of both mutants were defective in the beta subunit. The properties of the altered F1 of KF43 differed from those of F1 of KF11, suggesting that the mutation sites of KF43 and KF11 were different. From the results of mapping mutation sites and the biochemical properties of the mutants, the correlation of structural domains with function of the beta subunit is discussed. Most type I and type II mutations except that of KF39 were mapped in domain II, while the type III mutations were mapped in domain I, suggesting that domain II is more important than domain I for the function of the beta subunit, especially in terms of proper assembly of the F1F0 complex.
Collapse
|