1
|
Nargund R, Wyvratt M, Lin S, Sebhat I, Greenlee W. Annotated Bibliography of Dr. Arthur A. Patchett. J Med Chem 2023; 66:15567-15575. [PMID: 38032081 DOI: 10.1021/acs.jmedchem.3c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
|
2
|
Guney T, Wenderski TA, Boudreau MW, Tan DS. Synthesis of Benzannulated Medium-ring Lactams via a Tandem Oxidative Dearomatization-Ring Expansion Reaction. Chemistry 2018; 24:13150-13157. [PMID: 29936701 PMCID: PMC6242278 DOI: 10.1002/chem.201802880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/19/2022]
Abstract
Medium-ring natural products exhibit diverse biological activities but such scaffolds are underrepresented in probe and drug discovery efforts due to the limitations of classical macrocyclization reactions. We report herein a tandem oxidative dearomatization-ring-expanding rearomatization (ODRE) reaction that generates benzannulated medium-ring lactams directly from simple bicyclic substrates. The reaction accommodates diverse aryl substrates (haloarenes, aryl ethers, aryl amides, heterocycles) and strategic incorporation of a bridgehead alcohol generates a versatile ketone moiety in the products amenable to downstream modifications. Cheminformatic analysis indicates that these medium rings access regions of chemical space that overlap with related natural products and are distinct from synthetic drugs, setting the stage for their use in discovery screening against novel biological targets.
Collapse
Affiliation(s)
- Tezcan Guney
- Dr. T. Guney, Dr. T. A. W enderski, Prof. Dr. D. S. Tan,
Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, Box 422, New York, New York, 10065, USA
| | - Todd A. Wenderski
- Dr. T. Guney, Dr. T. A. W enderski, Prof. Dr. D. S. Tan,
Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, Box 422, New York, New York, 10065, USA
| | - Matthew W. Boudreau
- M. W. Boudreau, Gerstner Sloan Kettering Summer
Undergraduate Research Program, Memorial Sloan Kettering Cancer Center, 1275 York
Avenue, Box 422, New York, New York, 10065, USA
| | - Derek S. Tan
- Dr. T. Guney, Dr. T. A. W enderski, Prof. Dr. D. S. Tan,
Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, Box 422, New York, New York, 10065, USA
- Prof. Dr. D. S. Tan, Tri-Institutional Research Program,
Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New
York, 10065, USA
| |
Collapse
|
3
|
Hallé F, Van der Poorten O, Doebelin C, Niederst M, Schneider S, Schmitt M, Ballet S, Bihel F. Synthesis of 3-amino-3,4-dihydro-1H-quinolin-2-ones through regioselective palladium-catalyzed intramolecular cyclization. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.02.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Mobinikhaledi A, Foroughifar N, Jirandehi HF. A Simple Reduction Method of Azo-Compounds to Amines Using Fe Powder in the Presence of NH4Cl. MONATSHEFTE FUR CHEMIE 2007. [DOI: 10.1007/s00706-007-0633-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Thompson J, Miller SP. N5-(1-carboxyethyl)ornithine and related [N-carboxyalkyl]-amino acids: structure, biosynthesis, and function. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 64:317-99. [PMID: 1905094 DOI: 10.1002/9780470123102.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J Thompson
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
6
|
Lin W, Zhang X, He Z, Jin Y, Gong L, Mi A. REDUCTION OF AZIDES TO AMINES OR AMIDES WITH ZINC AND AMMONIUM CHLORIDE AS REDUCING AGENT. SYNTHETIC COMMUN 2006. [DOI: 10.1081/scc-120014032] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Lauffer DJ, Mullican MD. A practical synthesis of (S) 3-tert-butoxycarbonylamino-2-oxo-2,3,4,5-tetrahydro-1,5-benzodiazepine-1-acetic acid methyl ester as a conformationally restricted dipeptido-mimetic for caspase-1 (ICE) inhibitors. Bioorg Med Chem Lett 2002; 12:1225-7. [PMID: 11934593 DOI: 10.1016/s0960-894x(02)00107-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A simple and versatile method for the synthesis of (S) 3-tert-butoxycarbonylamino-2-oxo-2,3,4,5-tetrahydro-1,5-benzodiazepine-1-acetic acid methyl ester (4), a dipeptide mimetic, has been developed. The regioselective functionalization of the N1 and N5 ring nitrogens and the C3 amino group is demonstrated in the synthesis of an interleukin-1beta converting enzyme inhibitor 13.
Collapse
Affiliation(s)
- David J Lauffer
- Vertex Pharmaceuticals, Inc., 130 Waverly Street, Cambridge, MA 02139-4211, USA.
| | | |
Collapse
|
8
|
Becker JA, Wallace A, Garzon A, Ingallinella P, Bianchi E, Cortese R, Simonin F, Kieffer BL, Pessi A. Ligands for kappa-opioid and ORL1 receptors identified from a conformationally constrained peptide combinatorial library. J Biol Chem 1999; 274:27513-22. [PMID: 10488086 DOI: 10.1074/jbc.274.39.27513] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have screened a synthetic peptide combinatorial library composed of 2 x 10(7) beta-turn-constrained peptides in binding assays on four structurally related receptors, the human opioid receptors mu, delta, and kappa and the opioid receptor-like ORL1. Sixty-six individual peptides were synthesized from the primary screening and tested in the four receptor binding assays. Three peptides composed essentially of unnatural amino acids were found to show high affinity for human kappa-opioid receptor. Investigation of their activity in agonist-promoted stimulation of [(35)S]guanosine 5'-3-O-(thio)triphosphate binding assay revealed that we have identified the first inverse agonist as well as peptidic antagonists for kappa-receptors. To fine-tune the potency and selectivity of these kappa-peptides we replaced their turn-forming template by other turn mimetic molecules. This "turn-scan" process allowed the discovery of compounds with modified selectivity and activity profiles. One peptide displayed comparable affinity and partial agonist activity toward all four receptors. Interestingly, another peptide showed selectivity for the ORL1 receptor and displayed antagonist activity at ORL1 and agonist activity at opioid receptors. In conclusion, we have identified peptides that represent an entirely new class of ligands for opioid and ORL1 receptors and exhibit novel pharmacological activity. This study demonstrates that conformationally constrained peptide combinatorial libraries are a rich source of ligands that are more suitable for the design of nonpeptidal drugs.
Collapse
Affiliation(s)
- J A Becker
- Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
De Lombaert S, Blanchard L, Stamford LB, Sperbeck DM, Grim MD, Jenson TM, Rodriguez HR. Practical syntheses of a novel tricyclic dipeptide mimetic based on a [6H]-azepino indoline nucleus: Application to angiotensin-converting enzyme inhibition. Tetrahedron Lett 1994. [DOI: 10.1016/s0040-4039(00)78331-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Robl JA, Simpkins LM, Stevenson J, Sun CQ, Murugesan N, Barrish JC, Asaad MM, Bird J, Schaeffer TR, Trippodo NC, Petrillo EW, Karanewsky DS. Dual metalloprotease inhibitors. I. constrained peptidomimetics of mercaptoacyl dipeptides. Bioorg Med Chem Lett 1994. [DOI: 10.1016/s0960-894x(01)80372-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Robl JA, Simpkins LM, Sulsky R, Sieber-McMaster E, Stevenson J, Kelly YF, Sun CQ, Misra RN, Ryono DE, Asaad MM, Bird J, Trippodo NC, Karanewsky DS. Dual metalloprotease inhibitors. II. Effect of substitution and stereochemistry on benzazepinone based mercaptoacetyls. Bioorg Med Chem Lett 1994. [DOI: 10.1016/s0960-894x(01)80373-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Affiliation(s)
- K Hino
- Research Laboratories, Dainippon Pharmaceutical Co. Ltd., Osaka, Japan
| | | |
Collapse
|
14
|
Hooper NM, Keen J, Pappin DJ, Turner AJ. Pig kidney angiotensin converting enzyme. Purification and characterization of amphipathic and hydrophilic forms of the enzyme establishes C-terminal anchorage to the plasma membrane. Biochem J 1987; 247:85-93. [PMID: 2825659 PMCID: PMC1148373 DOI: 10.1042/bj2470085] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Angiotensin converting enzyme from pig kidney was isolated by affinity chromatography after solubilization from the membrane by one of four different procedures. Solubilization with Triton X-100, trypsin or by an endogenous activity in microvillar membranes all generated hydrophilic forms of the enzyme as assessed by phase separation in Triton X-114 and failure to incorporate into liposomes. Only when solubilization and purification was effected by Triton X-100 in the presence of EDTA (10 mM) could an amphipathic form of the enzyme (membrane- or m-form) be generated. The m-form of angiotensin converting enzyme (ACE) appeared slightly larger (Mr approx. 180,000) than the hydrophilic forms (Mr approx. 175,000) after SDS/polyacrylamide-gel electrophoresis, and the m-form incorporated into liposomes, consistent with retention of the membrane anchor. The m-form of ACE showed an N-terminal sequence identical with that of preparations of enzyme isolated after solubilization with detergent alone (d-form), with trypsin (t-form) or by the endogenous mechanism (e-form). These data imply that ACE is anchored to the plasma membrane via its C-terminus, in contrast with the N-terminal anchorage of endopeptidase-24.11. No release of ACE from the membrane could be detected with a variety of phospholipases, including bacterial phosphatidylinositol-specific phospholipases C, although an endogenous EDTA-sensitive membrane-associated hydrolase was capable of releasing a soluble, hydrophilic, form of the enzyme.
Collapse
Affiliation(s)
- N M Hooper
- MRC Membrane Peptidase Research Group, University of Leeds, U.K
| | | | | | | |
Collapse
|
15
|
Turner AJ, Hryszko J, Hooper NM, Dowdall MJ. Purification and characterization of a peptidyl dipeptidase resembling angiotensin converting enzyme from the electric organ of Torpedo marmorata. J Neurochem 1987; 48:910-6. [PMID: 3027262 DOI: 10.1111/j.1471-4159.1987.tb05603.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The electric organ of Torpedo marmorata contains a membrane-bound, captopril-sensitive metallopeptidase that resembles mammalian angiotensin converting enzyme (peptidyl dipeptidase A; EC 3.4.15.1). The Torpedo enzyme has now been purified to apparent homogeneity from electric organ by a procedure involving affinity chromatography using the selective inhibitor lisinopril immobilised to Sepharose via a 28-A spacer arm. The purified protein, like the mammalian enzyme, acted as a peptidyl dipeptidase in cleaving dipeptides from the C-terminus of a variety of peptide substrates, including angiotensin I, bradykinin, [Met5]enkephalin, [Leu5]enkephalin, and the model substrate hippuryl (benzoylglycyl; BzGly)-His-Leu. The hydrolysis of BzGly-His-Leu was activated by Cl-. Enzyme activity was inhibited by classical angiotensin converting enzyme inhibitors, including captopril, enalaprilat (MK422), and lisinopril (MK521). Torpedo angiotensin converting enzyme, like its mammalian counterpart, was also able to act as an endopeptidase in hydrolysing the amidated neuropeptide substance P. Hydrolysis of substance P occurred primarily at the Phe8-Gly9 bond with release of the C-terminal tripeptide, Gly-Leu-MetNH2, and this hydrolysis was blocked by selective inhibitors. The Torpedo enzyme was recognised by a polyclonal antibody to pig kidney angiotensin converting enzyme on immunoelectrophoretic (Western) blot analysis. Thus, on the basis of substrate specificity, inhibitor sensitivity, and immunological criteria, the Torpedo enzyme closely resembles mammalian angiotensin converting enzyme. However, the Torpedo enzyme appears somewhat larger (Mr = 190,000) than the pig kidney enzyme (Mr = 180,000) on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The endogenous peptide substrate(s) for Torpedo electric organ angiotensin converting enzyme and the physiological role of the enzyme in this tissue remain to be evaluated.
Collapse
|
16
|
Hooper NM, Turner AJ. Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem J 1987; 241:625-33. [PMID: 2439065 PMCID: PMC1147610 DOI: 10.1042/bj2410625] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peptidyl-dipeptidase A (angiotensin converting enzyme; ACE, EC 3.4.15.1), has been purified from pig kidney and striatum by affinity chromatography employing the selective inhibitor lisinopril as ligand. The inclusion of a 2.8 nm spacer arm improved the yield of the enzyme compared with the 1.4 nm spacer arm described in previous work. Two forms of striatal ACE (Mr 180,000 and 170,000), but only a single form of kidney ACE (Mr 180,000), were isolated by this procedure. Both forms of striatal ACE were recognized by a polyclonal antibody to kidney ACE. No significant differences in substrate specificity or inhibitor sensitivity between kidney and striatal ACE could be detected. In particular, the amidated neuropeptide, substance P, was hydrolysed identically by both preparations and no significant hydrolysis of the related tachykinin peptides neurokinin A and neurokinin B could be detected. After chemical or enzymic deglycosylation, kidney and both forms of striatal ACE migrated identically on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with an apparent Mr of 150,000. We suggest that the two detectable forms of ACE in pig brain are not isoenzymes but are the result of differential glycosylation in different cell types in the brain. It appears that ACE, unlike endopeptidase-24.11, does not have the general capacity to hydrolyse and inactivate the tachykinin peptides at a significant rate in brain.
Collapse
|
17
|
Wyvratt MJ, Patchett AA. Recent developments in the design of angiotensin-converting enzyme inhibitors. Med Res Rev 1985; 5:483-531. [PMID: 2999531 DOI: 10.1002/med.2610050405] [Citation(s) in RCA: 213] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Orally-active angiotensin-converting enzyme inhibitors are rapidly establishing themselves in the therapy of hypertension and congestive heart failure. Concerted efforts in a number of laboratories have now led to the discovery or synthesis of an unparalleled variety of potent inhibitors. The manner in which several of these inhibitors bind to ACE is beginning to be understood. It is hoped that some of the insights to be derived from the SAR and structural studies done with ACE inhibitors will be applicable to other enzyme targets as well. The success of ACE inhibitors as pharmacological tools and in the clinic will also quite certainly encourage future efforts to develop new enzyme inhibitor approaches to drug therapy.
Collapse
|
18
|
Chapter 7. Antihypertensive Agents. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1984. [DOI: 10.1016/s0065-7743(08)60683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|