1
|
Sathiavelu J, Senapathy GJ, Devaraj R, Namasivayam N. Hepatoprotective effect of chrysin on prooxidant-antioxidant status during ethanol-induced toxicity in female albino rats. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.06.0015] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
To evaluate the effect of chrysin, a natural, biologically active compound extracted from many plants, honey and propolis, on the tissue and circulatory antioxidant status, and lipid peroxidation in ethanol-induced hepatotoxicity in rats.
Methods
Rats were divided into four groups. Groups 1 and 2 received isocaloric glucose. Groups 3 and 4 received 20% ethanol, equivalent to 5 g/kg bodyweight every day. Groups 2 and 4 received chrysin (20 mg/kg bodyweight) dissolved in 0.5% dimethylsulfoxide.
Key findings
The results showed significantly elevated levels of tissue and circulatory thiobarbituric acid reactive substances, conjugated dienes and lipid hydroperoxides, and significantly lowered enzymic and non-enzymic antioxidant activity of superoxide dismutase, catalase and glutathione-related enzymes such as glutathione peroxidase, glutathione reductase, glutathione-S-transferase, reduced glutathione, vitamin C and vitamin E in ethanol-treated rats compared with the control. Chrysin administration to rats with ethanol-induced liver injury significantly decreased the levels of thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes, and significantly elevated the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and the levels of reduced glutathione, vitamin C and vitamin E in the tissues and circulation compared with those of the unsupplemented ethanol-treated rats. The histological changes observed in the liver and kidney correlated with the biochemical findings.
Conclusions
Chrysin offers protection against free radical-mediated oxidative stress in rats with ethanol-induced liver injury.
Collapse
Affiliation(s)
- Jayanthi Sathiavelu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Giftson Jebakkan Senapathy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Rajkumar Devaraj
- Division of Physiology, Faculty of Medicine, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Nalini Namasivayam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
2
|
Rewal M, Jung ME, Simpkins JW. Role of the GABA-A system in estrogen-induced protection against brain lipid peroxidation in ethanol-withdrawn rats. Alcohol Clin Exp Res 2005; 28:1907-15. [PMID: 15608608 DOI: 10.1097/01.alc.0000148100.78628.e7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Our previous study showed that 17 beta-estradiol (E2) treatment protects against cerebellar neuronal death and related motor deficits in ethanol-withdrawn rats, in part through the GABAergic system. In this study, we examined the effect of the GABA-A antagonist bicuculline on the neuroprotective effect of E2 by assessing the oxidative marker thiobarbituric acid reactive substances (TBARS) during ethanol withdrawal (EW). METHODS Ovariectomized animals that had implants of E2 (EW/E2) or oil (EW/Oil) pellets received liquid ethanol (7.5% w/v) or dextrin for 7 days by gavage. The GABA-A antagonist bicuculline (1.25 mg/kg) was administered (three times a day intraperitoneally) for 4 days starting 3 days before the onset of EW. After testing for overt EW signs at 7 hr of EW, one set of the animals was immediately killed for the collection of the cerebellum, hippocampus, and cortex. The brain homogenates were further processed for TBARS assay to detect TBARS in the presence or absence of FeCl(3). For assessing motor capacity, the other set of animals was tested for the latency to fall from a rotarod after 1 week of EW. RESULTS The EW/Oil animals had enhanced endogenous and FeCl(3)-stimulated TBARS levels in the cerebellum and the hippocampus in a manner potentiated by bicuculline but inhibited by E2. Bicuculline counteracted the protective effect of E2 when administered along with E2. Pearson correlation coefficients indicated that the latency to fall from the rotarod covaried with TBARS levels in the cerebellum and the hippocampus. CONCLUSION These data suggest that E2 protects against lipid peroxidation in vulnerable brain areas of ethanol-withdrawn rats, in part through the GABAergic system.
Collapse
Affiliation(s)
- Mridula Rewal
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA.
| | | | | |
Collapse
|
3
|
Boby RG, Indira M. The impact of cyanoglycoside rich fraction isolated from Cassava (Manihot esculenta) on alcohol induced oxidative stress. Toxicon 2004; 42:367-72. [PMID: 14505936 DOI: 10.1016/s0041-0101(03)00165-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of feeding a cassava (Manihot esculenta) rich diet on alcohol induced peroxidative damages were investigated in male albino rats. Rats were divided into four groups and maintained for 60 days as follows. (1) CONTROL GROUP: cassava free diet, (2) alcohol group: cassava free diet+ethanol (4 g/kg body wt/day), (3) cassava group: cassava diet and (4) alcohol+cassava group: cassava diet+ethanol (4 g/kg body wt/day). Results revealed that alcohol induced significant lipid peroxidation, since the lipid peroxidation products malondialdehyde (MDA), hydroperoxides and conjugated dienes were elevated in the liver. The activities of free radical scavenging enzymes such as superoxide dismutase (SOD), catalase and glutathione reductase were reduced and glutathione content was decreased in the liver. But the co-administration of a cassava rich diet increased the activity of free radical scavenging enzymes and glutathione content. The level of lipid peroxides in the liver was also decreased on co-administration of cassava. But the oxidative damage caused by cassava was potentiated by alcohol administration. These studies suggested that consumption of alcohol along with cassava offered some protection against the alcohol induced oxidative stress. So we isolated the cyanoglycoside rich fraction from cassava and its impact on rats administered alcohol was also investigated. The results revealed that alcohol induced oxidative stress was potentiated by the co-administration of cyanoglycoside rich fraction. These studies suggested that the fiber and antioxidant vitamins present in the cassava may be playing a protective role against the alcohol induced oxidative stress.
Collapse
Affiliation(s)
- R G Boby
- Department of Biochemistry, University of Kerala, Kariavattom, 695 581 Trivandrum, India
| | | |
Collapse
|
4
|
Suresh MV, Sreeranjit Kumar CV, Lal JJ, Indira M. Impact of massive ascorbic acid supplementation on alcohol induced oxidative stress in guinea pigs. Toxicol Lett 1999; 104:221-9. [PMID: 10079057 DOI: 10.1016/s0378-4274(98)00377-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effects of a mega dose of ascorbic acid (AA) on alcohol induced peroxidative damages were investigated in guinea pigs. In the present study, four groups of male guinea pigs were maintained for 30 days as follows. (1) Control group (1 mg AA/100 g body wt); (2) Ethanol group (1 mg AA/100 g body wt. + 9 g ethanol/kg body wt); (3) AA group (25 mg AA/100 g body wt); (4) AA + ethanol group (25 mg AA/100 g body wt. + 9 g ethanol/kg). Results revealed that alcohol induced significant lipid peroxidation, since the lipid peroxidation products malondialdehyde (MDA), hydroperoxides and conjugated dienes were elevated. The activities of scavenging enzymes superoxide dismutase (SOD), catalase were reduced. However, supplementation of AA along with alcohol reduced the lipid peroxidation products in the liver and enhanced the activities of scavenging enzymes. Activities of glutathione peroxidase and reductase were also greater in guinea pigs given alcohol + AA in comparison with those given alcohol alone. Administration of ascorbic acid also reduced the activity of gamma-glutamyl transpeptidase (GGT), the marker enzyme of alcohol induced toxicity. The vitamin E level, which was reduced by alcohol intake, was raised by the co-administration of AA and alcohol. These studies suggest that a mega dose of AA helps in the prevention of alcohol induced oxidative stress by enhancing the antioxidant capacity and also by reducing the lipid peroxidation products.
Collapse
Affiliation(s)
- M V Suresh
- Department of Biochemistry, University of Kerala, Trivandrum, India
| | | | | | | |
Collapse
|
5
|
Matsuhashi T, Karbowski M, Liu X, Usukura J, Wozniak M, Wakabayashi T. Complete suppresion of ethanol-induced formation of megamitochondria by 4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (4-OH-TEMPO). Free Radic Biol Med 1998; 24:139-47. [PMID: 9436623 DOI: 10.1016/s0891-5849(97)00210-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An attempt has been made to suppress the ethanol-induced formation of megamitochondria (MG) in the rat liver by 4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (4-OH-TEMPO), a free radical scavenger, and by allopurinol (AP), a xanthine oxidase inhibitor. Changes observed in the liver of animals given ethanol (EtOH) for 1 month were remarkable decreases both in the body weight gains during the course of the experiment and in the liver weight at the time of sacrifice compared to those of the control; remarkable increases in the level of thiobarbituric acid reactive substances and lipid soluble fluorophores both in microsomes and mitochondria; decreases in the content of cytochrome a+a3 and b and lowered phosphorylating ability of mitochondria; and formation of MG in the liver. A combined treatment of animals with EtOH plus 4-OH-TEMPO completely suppressed the formation of MG in the liver induced by EtOH and distinctly improved the changes caused by EtOH, as specified above, while AP partly suppressed the MG formation. Results described herein provide additional insight into chronic hepatotoxicity of EtOH besides that previously reported. A novelty of the present work is that we were able for the first time to demonstrate reversibility of EtOH-mediated ultrastructural changes of the liver by a simple administration of aminoxyl-type free radical scavenger, 4-OH-TEMPO. Our results suggest that free radicals may be involved in the mechanism of the formation of MG induced by EtOH.
Collapse
Affiliation(s)
- T Matsuhashi
- Department of Cell Biology and Molecular Pathology, Nagoya University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Cighetti G, Allevi P, Debiasi S, Paroni R. Inhibition of in vitro lipid peroxidation by stable steroidic nitroxyl radicals. Chem Phys Lipids 1997; 88:97-106. [PMID: 9314187 DOI: 10.1016/s0009-3084(97)00052-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
4',4'-dimethylspiro (5 alpha-cholestane-3,2'-oxazolidin)-3'-yloxy (IK-1) and 7 alpha,12 alpha-dihydroxy-4',-4'-dimethylspiro (5 beta-cholan-24-oic-3,2'-oxazolidin)-3'-yloxy acid (IK-2), two stable steroidic nitroxyl radicals, were newly synthesized and tested as possible inhibitors of lipid peroxidation, induced by Fenton's reagent in both rat liver microsomes and egg phosphatidylcholine liposomes. The inhibitory activity, evaluated through the formation of thiobarbituric acid reactive substances (TBARS) and the conjugated diene, was compared with that of alpha-tocopherol and 2,2,6,6-tetramethylpiperidine-1-yloxy (TEMPO). In each model system IK-1 and IK-2 exhibited an IC50 of 8 microM and reduced the formation of TBARS and conjugated diene, showing IK-1 a potency comparable to alpha-tocopherol and higher than TEMPO. Moreover IK-1 and, to a lesser extent IK-2, reduced the lipid peroxidation induced in the microsomes by the water-soluble azo-initiator 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AMPH), indicating the IK-1 and IK-2 ability as chain-breaking antioxidants. The hydroxylamine 4',4'-dimethylspiro (5 alpha-cholestane-3,2'-oxazolidin)-3'-hydroxide (IK-3), obtained by chemical reduction of IK-1, was completely inactive as an inhibitor of lipid peroxidation in heat pre-treated microsomes and in liposomes. However in microsomes it was active since it was oxidized to the corresponding nitroxyl radical IK-1.
Collapse
Affiliation(s)
- G Cighetti
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine, University of Milan, Italy.
| | | | | | | |
Collapse
|
7
|
Azzalis LA, Junqueira VB, Simon K, Giavarotti L, Silva MA, Kogake M, Simizu K, Barros SB, Fraga C, Porta EA. Prooxidant and antioxidant hepatic factors in rats chronically fed an ethanol regimen and treated with an acute dose of lindane. Free Radic Biol Med 1995; 19:147-59. [PMID: 7544317 DOI: 10.1016/0891-5849(94)00235-c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
While acute lindane treatment and chronic ethanol feeding to rats have been associated with hepatic oxidative stress, the possible roles of these stresses in the pathogenesis of hepatic lesions reported in acute lindane intoxication and in those observed in some models of chronic alcoholism have not been established. Our previous studies in rats chronically fed ethanol regimens and then treated with a single intraperitoneal (i.p.) dose of lindane (20 mg/kg) showed that while lindane per se was invariably associated with hepatic oxidative stress, chronic ethanol feeding only produced this stress when the dietary level of vitamin E was relatively low. Chronic ethanol pretreatment did not significantly affect the lindane-associated oxidative stress, and neither chronic ethanol feeding nor acute lindane, single or in combination, produced any histologic and biochemical evidence of liver damage. In the present experiment, the acute dose of lindane was increased to 40 mg/kg, and we have studied a larger number of prooxidant and antioxidant hepatic factors. Male Wistar rats (115.5 +/- 5.4 g) were fed ad lib for 11 weeks a calorically well-balanced and nutritionally adequate basal diet, or the same basal diet plus a 32% ethanol/25% sucrose solution, also ad lib, and were then injected i.p. with a single dose of lindane or with equivalent amounts of corn oil. The results indicated that acute lindane treatment to naive rats increased practically all the prooxidant hepatic factors examined (cytochromes P450 and b5, NADPH cytochrome c reductase, NADPH oxidase), as well as the generation of microsomal superoxide radical and thiobarbituric acid reactive substances of liver homogenates, but did not modify any of the antioxidant hepatic factors studied. Conversely, the chronic administration of ethanol alone did not significantly affect the prooxidant hepatic factors but reduced some of the antioxidants (i.e., the activities of GSH-Px and the contents of alpha-tocopherol and ubiquinols 9 and 10). Although chronic ethanol pretreatment further increased the superoxide generation induced by lindane per se, it did not increase but generally reduced the effects of lindane per se on the other prooxidant factors studied. Furthermore, although acute lindane administration to ethanol-pretreated rats was associated with decreases in GSH and catalase (not affected by ethanol or lindane treatment alone), it did not substantially modify the reducing effects of ethanol feeding per se on GSH-Px, alpha-tocopherol, and ubiquinols. Once again, neither chronic ethanol feeding nor lindane treatment, single or in combination, was associated with any evidence of liver damage.
Collapse
Affiliation(s)
- L A Azzalis
- Department of Biochemistry, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Free radical generation and the mobilization of catalytic iron are important in the pathogenesis of alcohol-induced liver injury. Cimetidine is a free radical scavenger in thermal skin injury and cobra venom-induced lung injury, and was therefore investigated as a scavenger of ethanol-induced free radicals. In vitro cimetidine inhibited iron-mediated cleavage of DNA as well as the potentiation of such cleavage by bleomycin. Peroxidation of microsomes by xanthine-xanthine oxidase, acetaldehyde-xanthine oxidase, as well as by the addition of low-molecular weight iron chelates were inhibited (17-100%) by cimetidine (0.1-1 mM). Free radical generation due to ethanol in isolated rat hepatocytes was studied by measuring ethane and pentane production. Cimetidine (1 mM) significantly decreased ethane and pentane production due to ethanol: 1 mM (2.2 +/- 0.3 vs. 1.0 +/- 0.2 pmol ethane per 10(6) cells/h; p less than 0.01, 4.2 +/- 0.4 versus 1.6 +/- 0.3 pmole per 10(6) cells/h pentane; p less than 0.001). Similar inhibitions were observed in the isolated perfused liver. Studies of superoxide reduction of ferricytochrome-C as well as hydroxyl radical generation by Fe(+)+/EDTA/ascorbate revealed that cimetidine was an effective hydroxyl radical scavenger. In summary, in a variety of in vitro systems, as well as in isolated hepatocytes and perfused liver, cimetidine inhibits ethanol-induced free radical injury. These findings may warrant its investigation as a therapeutic agent.
Collapse
Affiliation(s)
- S Shaw
- Department of Medicine, V.A. Medical Center, Bronx, NY 10468
| | | |
Collapse
|
9
|
Kamimura S, Gaal K, Britton RS, Bacon BR, Triadafilopoulos G, Tsukamoto H. Increased 4-hydroxynonenal levels in experimental alcoholic liver disease: association of lipid peroxidation with liver fibrogenesis. Hepatology 1992; 16:448-53. [PMID: 1639354 DOI: 10.1002/hep.1840160225] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The precise role of lipid peroxidation in the pathogenesis of alcoholic liver disease is still being debated. To explore the issue, this study was undertaken to investigate the status of lipid peroxidation, antioxidants and prooxidants at two discrete stages of experimental alcoholic liver disease. Male Wistar rats were intragastrically fed a high-fat diet plus ethanol for 5 or 16 wk (the duration that resulted in initiation of centrilobular liver necrosis or liver fibrosis, respectively). Lipid peroxidation was assessed in isolated microsomes and mitochondria with three parameters: malondialdehyde equivalents as determined by thiobarbituric acid assay, conjugated diene formation and 4-hydroxynonenal as a 2,4-dinitrophenylhydrazone derivative. To assess antioxidant systems, hepatic concentrations of glutathione, methionine and alpha-tocopherol were determined. The concentration of nonheme iron, a known prooxidant, was also measured. At wk 5, centrilobular liver necrosis was already evident in the ethanol-fed animals, with two- or threefold increases in plasma AST and ALT levels. At this stage, neither malondialdehyde equivalents nor conjugated diene values were elevated, and the 4-hydroxynonemal level was below 0.2 nmol/mg protein. Hepatic concentrations of methionine and alpha-tocopherol in these animals were increased two- and threefold, respectively, whereas the reduced glutathione level remained unchanged. When alcoholic liver disease had progressed to perivenular or bridging fibrosis at wk 16, all three parameters of lipid peroxidation showed consistent increases that were accompanied by significant reductions in the hepatic glutathione and methionine levels. Interestingly, the control animals pair-fed with the high-fat diet also had significantly elevated 4-hydroxynonenal levels at wk 16 compared to the wk 5 level.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Kamimura
- Department of Medicine, Veterans Affairs Medical Center, Martinez, California 94553
| | | | | | | | | | | |
Collapse
|
10
|
Dicker E, Cederbaum AI. Increased NADH-dependent production of reactive oxygen intermediates by microsomes after chronic ethanol consumption: comparisons with NADPH. Arch Biochem Biophys 1992; 293:274-80. [PMID: 1311163 DOI: 10.1016/0003-9861(92)90395-d] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microsomes from chronic ethanol-fed rats were previously shown to catalyze the NADPH-dependent production of reactive oxygen intermediates at elevated rates compared to controls. Recent studies have shown that NADH can also serve as a reductant and promote the production of oxygen radicals by microsomes. The current study evaluated the influence of chronic ethanol consumption on NADH-dependent microsomal production of reactive oxygen intermediates, and compared the results with NADH to those of NADPH. Microsomal oxidation of chemical scavengers, taken as a reflection of the production of hydroxyl radical (.OH)-like species was increased about 50% with NADH as cofactor and about 100% with NADPH after chronic ethanol consumption. The potent inhibition of the production of .OH-like species by catalase suggests a precursor role for H2O2 in .OH production. Rates of NADH- and NADPH-dependent H2O2 production were increased by about 50 and 70%, respectively, after chronic ethanol consumption. A close correlation between rates of H2O2 production and generation of .OH-like species was observed for both NADH and NADPH, and increased rates of H2O2 production appear to play an important role in the elevated generation of .OH-like species after chronic ethanol treatment. Microsomal lipid peroxidation was elevated about 60% with NADH, and 120% with NADPH, after ethanol feeding. With both types of microsomal preparations, the characteristics of the NADH-dependent reactions were similar to the NADPH-dependent reactions, e.g., sensitivity to antioxidants and free radical scavengers and catalytic effectiveness of ferric complexes. However, rates with NADPH exceeded the NADH-dependent rates by 50 to 100%, and the increased production of reactive oxygen intermediates by microsomes after ethanol treatment was greater with NADPH (about twofold) than with NADH (about 50%). Oxidation of ethanol results in an increase in hepatic NADH levels and interaction of NADH, iron, and microsomes can produce potent oxidants capable of initiating lipid peroxidation and oxidizing .OH scavengers. These acute metabolic interactions produced by ethanol-derived NADH are increased, not attenuated, in microsomes from chronic ethanol-fed rats, and it is possible that such increases in NADH (and NADPH)-dependent production of reactive oxygen species play a role in the development of oxidative stress in the liver as a consequence of ethanol treatment.
Collapse
Affiliation(s)
- E Dicker
- Department of Biochemistry, Mount Sinai School of Medicine, New York 10029
| | | |
Collapse
|
11
|
Nakajima T, Ikatsu H, Okino T, Wang RS, Murayama N, Yonekura I, Sato A. Enhancement of ethanol-induced lipid peroxidation in rat liver by lowered carbohydrate intake. Biochem Pharmacol 1992; 43:245-50. [PMID: 1739412 DOI: 10.1016/0006-2952(92)90284-p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In order to investigate the effect of carbohydrate intake on ethanol-induced lipid peroxidation and cytotoxicity, rats were maintained on four different test diets, a medium-carbohydrate (carbohydrate intake, 8.4 g/day/rat on average), a low-carbohydrate (carbohydrate intake, 2.8 g/day/rat on average), an ethanol-containing medium-carbohydrate (carbohydrate and an ethanol intake, 8.4 and 2.9 g/day/rat on average, respectively), and an ethanol-containing low-carbohydrate diet (2.8 and 2.9 g/day/rat on average, respectively). Ethanol and the low-carbohydrate diet each increased the liver malondialdehyde content, but the combined effect of both (ethanol-containing low-carbohydrate diet) was much more prominent than either alone. The degree of increase in malondialdehyde content almost paralleled the activity of the microsomal ethanol oxidizing system. Both the low-carbohydrate and the ethanol-containing low-carbohydrate diets decreased the liver glutathione content, but ethanol combined with the medium-carbohydrate diet had no effect on the content. Ethanol treatment increased the liver triglyceride content only when combined with the low-carbohydrate diet. The rate of NADPH-dependent microsomal malondialdehyde formation was much higher in microsomes from rats maintained on the ethanol-containing low-carbohydrate diet than in those from rats on the ethanol-containing medium-carbohydrate diet, indicating that lowered carbohydrate intake augments ethanol-induced malondialdehyde accumulation in the liver by enhancing the rate of lipid peroxidation. In addition, when incubated with red blood cells in the presence of NADPH, microsomes from rats fed the ethanol-containing low-carbohydrate diet caused marked hemolysis, which was prevented by the addition of 5 mM glutathione to the incubation system. Furthermore, addition of 50 mM ethanol to the reaction system greatly accentuated the hemolysis. These results suggest that lowered carbohydrate intake at the time of ethanol consumption potentiates ethanol cytotoxicity by enhancing ethanol-induced lipid peroxidation.
Collapse
Affiliation(s)
- T Nakajima
- Department of Hygiene, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Dianzani MU. Dietary Prooxidants. TRACE ELEMENTS, MICRONUTRIENTS, AND FREE RADICALS 1991:77-105. [DOI: 10.1007/978-1-4612-0419-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Antonenkov VD, Pirozhkov SV. Effect of chronic ethanol treatment on the t-butyl hydroperoxide-dependent lipid peroxidation in rat liver. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1991; 23:153-60. [PMID: 1999261 DOI: 10.1016/0020-711x(91)90183-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. The effect of chronic ethanol consumption on the level of the t-butyl hydroperoxide (Bu'OOH)-induced lipid peroxidation in rat liver homogenate and subcellular fractions was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that under the action of ethanol the rate of lipid peroxidation was decreased in the whole and "postnuclear" liver homogenates. 3. Ethanol significantly decreased the intensity of lipid peroxidation in microsomes, but did not affect the Bu'OOH-dependent process in mitochondria. 4. The level of lipid peroxidation was reduced after incubation of the total particulate fraction (mitochondria plus microsomes) with the undialysed cytosol from ethanol-treated rat liver. Dialysis of the cytosol prevented depressive effect of ethanol treatment on lipid peroxidation. 5. Reduced glutathione (0.1-1.0 mM) was shown to decrease the rate of lipid peroxidation in rat liver microsomes, but did not affect its level in mitochondria. 6. Pyrazole injections to rats reduced and phenobarbital treatment increased the level of the Bu'OOH-dependent lipid peroxidation in liver microsomes. 7. The data obtained indicate that the Bu'OOH-dependent lipid peroxidation is not an appropriate marker of the ethanol-induced oxidative stress in rat liver cells.
Collapse
Affiliation(s)
- V D Antonenkov
- All-Union Research Center for Medico-Biological Problems of Narcology, Moscow, U.S.S.R
| | | |
Collapse
|
14
|
Tomita M, Okuyama T, Kawai S. Determination of malonaldehyde in oxidized biological materials by high-performance liquid chromatography. J Chromatogr A 1990; 515:391-7. [PMID: 2283368 DOI: 10.1016/s0021-9673(01)89334-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A high-performance liquid chromatographic (HPLC) method was used to determine the level of malonaldehyde (MA) in materials containing unsaturated fatty acids and rat liver microsomes peroxidized in vitro. The detection limit was 8.3 pmol for fatty acid samples and 25 pmol for microsomal samples. The method was specific to MA and the relative standard deviation was 4.34-5.14%. The recovery of MA was about 100%. In general, the MA values in oxidized materials obtained by the proposed HPLC method were lower than those obtained by the thiobarbituric acid method, although similar results were obtained with both methods for microsomal samples oxidized by NADPH. The effect of temperature on the HPLC results was investigated and it was found that the MA values obtained by derivatization at 25 degrees C, followed by separation using HPLC, reflected the situation of the peroxidation more accurately.
Collapse
Affiliation(s)
- M Tomita
- Department of Legal Medicine, Kawasaki Medical School, Okayama, Japan
| | | | | |
Collapse
|
15
|
Abstract
Ethanol is hepatotoxic through redox changes produced by the NADH generated in its oxidation via the alcohol dehydrogenase pathway, which in turn affects the metabolism of lipids, carbohydrates, proteins and purines. Ethanol is also oxidized in liver microsomes by an ethanol-inducible cytochrome P-450 (P-450IIE1) which contributes to ethanol metabolism and tolerance, and activates xenobiotics to toxic radicals thereby explaining increased vulnerability of the heavy drinker to industrial solvents, anesthetic agents, commonly prescribed drugs, over-the-counter analgesics, chemical carcinogens and even nutritional factors such as vitamin A. Induction also results in energy wastage and increased production of acetaldehyde. Acetaldehyde, in turn, causes injury through the formation of protein adducts, resulting in antibody production, enzyme inactivation, decreased DNA repair, and alterations in microtubules, plasma membranes and mitochondria with a striking impairment of oxygen utilization. Acetaldehyde also causes glutathione depletion and lipid peroxidation, and stimulates hepatic collagen synthesis, thereby promoting fibrosis.
Collapse
Affiliation(s)
- C S Lieber
- Alcohol Research and Treatment Center, Bronx VA Medical Center, New York
| |
Collapse
|
16
|
Abstract
Chronic ethanol ingestion leads to hepatocellular injury and alcoholic liver disease (ALD) only if multiple factors combine to favor centrilobular hepatocellular hypoxia. It is hypothesized that these factors include a shift in the redox state, the induction of the microsomal ethanol oxidizing system (MEOS), a high blood alcohol level (BAL), a high polyunsaturated fat diet and episodic decreased O2 supply to the liver. The shift in the redox state favors a low cellular pH, decreased fatty acid oxidation and increased triglyceride formation. The increased MEOS activity increases O2 consumption and portal-central O2 gradient as well as favors acetaldehyde toxic effects including retention of hepatic lipids and export proteins causing cell swelling. The resultant increase in the concentration of acetaldehyde and lactate may stimulate fibrosis as they stimulate collagen synthesis in vitro. The resultant fatty liver narrows the sinusoids slowing sinusoid blood flow. The combination of events reduces available O2 leading to decreased levels of ATP and cellular pH making the liver vulnerable to episodes of systemic hypoxia. The role of membrane changes are reviewed, i.e., 1) membrane fluidity as related to changes in the species of phospholipids, 2) mitochondrial function as related to the changes in the lipid environment of the electron transport chain, and 3) linoleic acid-prostaglandin metabolism. Acute ethanol in vitro has been shown to affect liver cell metabolism regulation by triggering and increasing protein phosphorylation through the Ca2+-phospholipase C pathway. A high fat diet enhances the liver injury caused by chronic ethanol ingestion.
Collapse
Affiliation(s)
- S W French
- Department of Pathology, Faculty of Health Sciences, University of Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Antonenkov VD, Pirozhkov SV, Popova SV, Panchenko LF. Effect of chronic ethanol treatment on lipid peroxidation in rat liver homogenate and subcellular fractions. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1989; 21:1191-5. [PMID: 2612721 DOI: 10.1016/0020-711x(89)90002-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. The effect of chronic ethanol treatment on the level of lipid peroxidation in rat liver homogenate and subcellular fractions was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that after chronic ethanol treatment the level of Fe/ADP-ascorbate-induced lipid peroxidation was decreased in the whole and "postnuclear" liver homogenates. Dilution of the homogenates prevented depressive effect of ethanol on lipid peroxidation. 3. Chronic ethanol treatment did not affect the intensity of the Fe/ADP-ascorbate-induced process in rat liver mitochondria and microsomes. 4. Peroxidative alteration of the liver lipids in vivo was evaluated by measurement of conjugated dienes (absorbance at 233 nm). It was shown that ethanol did not increase the level of u.v. absorption of lipids from mitochondria and microsomes. Chronic alcohol treatment did not influence the steady-state concentration of malonic dialdehyde in the whole liver homogenate. 5. The data obtained indicate that cytosol from the ethanol treated rat liver contains a factor(s) which prevents Fe/ADP-ascorbate-dependent lipid peroxidation in biological membranes.
Collapse
|
18
|
Affiliation(s)
- C S Lieber
- Alcohol Research and Treatment Center, Bronx VA Medical Center, NY 10468
| |
Collapse
|
19
|
Shaw S, Jayatilleke E, Lieber CS. Lipid peroxidation as a mechanism of alcoholic liver injury: role of iron mobilization and microsomal induction. Alcohol 1988; 5:135-40. [PMID: 3134909 DOI: 10.1016/0741-8329(88)90010-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipid peroxidation has been invoked as a mechanism of alcoholic liver injury but its role has been controversial and the mechanism by which it occurs is unclear. Catalytic iron is known to play an important role in cellular injury and is produced during mobilization of ferritin iron. In vivo administration of a large acute dose of ethanol (5 g/kg) which produces hepatic lipid peroxidation in chow-fed rats resulted in mobilization of non-heme iron. The generation of NADH from alcohol metabolism via ADH or superoxide from acetaldehyde-xanthine oxidase mobilized iron from horse spleen ferritin in vitro. Chronic feeding of alcohol as 36% of energy for 6 weeks does not itself produce peroxidation in the rat but potentiates acute effects of ethanol. It produced microsomal induction which enhanced iron-stimulated lipid peroxidation and increased hepatic non-heme iron. Carbon monoxide increased rather than decreased accumulation of microsomal peroxidation products in vitro suggesting that cytochrome P-450 reductase mediates peroxidation but cytochrome P-450 may metabolize products. Incubation at lowered oxygen tensions equivalent to those observed in the perivenular zone (pO2 = 24 mmHg) enhanced in vitro iron mobilization but decreased peroxidation. Lipid peroxidation and its stimulation by iron mobilization and microsomal induction may be an important contributory mechanism of alcohol-induced liver injury.
Collapse
Affiliation(s)
- S Shaw
- Section of Liver Disease, VA Medical Center, Bronx, NY 10468
| | | | | |
Collapse
|
20
|
Fainsilber Z, Feinman L, Shaw S, Lieber CS. Biphasic control of polymorphonuclear cell migration by Kupffer cells. Effect of exposure to metabolic products of ethanol. Life Sci 1988; 43:603-8. [PMID: 2840542 DOI: 10.1016/0024-3205(88)90064-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In order to investigate the role of the Kupffer cells in the regulation of the inflammatory reaction seen in alcoholic hepatitis, rat liver Kupffer cells were cultured and exposed to products of ethanol metabolism. The resultant supernatants were tested to study their ability to stimulate or inhibit polymorphonuclear cell chemotaxis. Kupffer cells produced increased chemokinetic activity for human polymorphonuclear leukocytes (84 +/- 6 vs. 61 +/- 4 randomly migrating cells per 5 high power fields; p less than 0.01); when incubated with soluble products of microsomal peroxidation, the Kupffer cells engendered more chemokinetic activity than that produced by untreated Kupffer cells (106 +/- 6 vs. 84 +/- 6 cells per 5 high power fields; p less than 0.05). When Kupffer cells were incubated with acetaldehyde, the chemokinetic activity that appeared in the supernatant did not differ from control (51 +/- 3 vs. 61 +/- 4 randomly migrating cells per 5 high power fields; p = NS). Chemotaxis of polymorphonuclear cells was not observed when the Kupffer cell supernatants were tested by checkerboard analysis. Kupffer cells released a factor which, at different concentrations, inhibited the response of polymorphonuclear cells to the synthetic polypeptide chemotactic factor f-met-leu-phe by 47% (p less than 0.001). This effect was unchanged when the cells were exposed to acetaldehyde or to soluble products of microsomal peroxidation. Our results demonstrate that Kupffer cells are capable of stimulating or inhibiting polymorphonuclear cell chemotaxis and that some of these effects may be influenced by the products of ethanol metabolism, suggesting that Kupffer cells may play an important role in the regulation of the inflammatory reaction seen in alcoholic hepatitis.
Collapse
Affiliation(s)
- Z Fainsilber
- Alcohol Research and Treatment Center, Veterans Administration Medical Center, Bx, NY 10468
| | | | | | | |
Collapse
|
21
|
Reinke LA, Lai EK, DuBose CM, McCay PB. Reactive free radical generation in vivo in heart and liver of ethanol-fed rats: correlation with radical formation in vitro. Proc Natl Acad Sci U S A 1987; 84:9223-7. [PMID: 2827172 PMCID: PMC299725 DOI: 10.1073/pnas.84.24.9223] [Citation(s) in RCA: 166] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rats fed a high-fat ethanol-containing diet for 2 weeks were found to generate free radicals in liver and heart in vivo. The radicals are believed to be carbon-centered radicals, were detected by administering spin-trapping agents to the rats, and were characterized by electron paramagnetic resonance spectroscopy. The radicals in the liver were demonstrated to be localized in the endoplasmic reticulum. Rats fed ethanol in a low-fat diet showed significantly less free radical generation. Control animals given isocaloric diets without ethanol showed no evidence of free radicals in liver and heart. When liver microsomes prepared from rats fed the high-fat ethanol diet were incubated in a system containing ethanol, NADPH, and a spin-trapping agent, the generation of 1-hydroxyethyl radicals was observed. The latter was verified by using 13C-substituted ethanol. Microsomes from animals fed the high-fat ethanol-containing diet had higher levels of cytochrome P-450 than microsomes from rats fed the low-fat ethanol-containing diet. The results suggest that the consumption of ethanol results in the production of free radicals in rat liver and heart in vivo that appear to initiate lipid peroxidation.
Collapse
Affiliation(s)
- L A Reinke
- Molecular Toxicology Research Group, Oklahoma Medical Research Foundation, Oklahoma City
| | | | | | | |
Collapse
|
22
|
Abstract
The effect of iron and other compounds known to be toxic because of the production of oxygen radicals, e.g., paraquat and menadione on the generation of hydroxyl radicals (.OH) by microsomes from chronic ethanol-fed rats and their pair-fed controls was determined. In the absence of any additions, or in the presence of ferric-chloride, -ADP or -EDTA, microsomes from the ethanol-fed rats showed a 2-fold increase in the production of .OH. Paraquat and menadione increased the generation of .OH by microsomes from the ethanol-fed and the pair-fed controls to an identical extent and thus these promoters of oxidative stress were not any more effective in interacting with microsomes after ethanol treatment. Under all conditions, .OH generation was sensitive to inhibition by catalase, implicating H2O2 as the precursor of .OH, whereas superoxide dismutase was without any significant effect. A working scheme to accommodate aspects of the interaction of iron, menadione and paraquat with microsomes with the subsequent production of .OH is described. The fact that .OH generation by microsomes in the presence of several sources of iron such as unchelated iron or ferric-ADP is elevated after chronic ethanol consumption could contribute to the hepatotoxic effects of ethanol. Studies on iron metabolism by liver cells and the effect of ethanol on the disposition of this critical trace metal are needed to further evaluate the role of oxygen radicals in the actions of ethanol.
Collapse
|
23
|
Shaw S, Jayatilleke E. Acetaldehyde-mediated hepatic lipid peroxidation: role of superoxide and ferritin. Biochem Biophys Res Commun 1987; 143:984-90. [PMID: 3032192 DOI: 10.1016/0006-291x(87)90348-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evidence in alcoholics as well as in experimental models support the role of hepatic lipid peroxidation in the pathogenesis of alcohol-induced liver injury, but the mechanism of this injury is not fully delineated. Previous studies of the metabolism of ethanol by alcohol dehydrogenase revealed iron mobilization from ferritin that was markedly stimulated by superoxide radical generation by xanthine oxidase. Peroxidation of hepatic lipid membranes (assessed as malondialdehyde production) was studied during in vitro alcohol metabolism by alcohol dehydrogenase. Peroxidation was initiated by acetaldehyde-xanthine oxidase, stimulated by ferritin, and inhibited by superoxide dismutase or chelation or iron with desferrioxamine. In conclusion, lipid peroxidation may be initiated during the metabolism of ethanol by alcohol dehydrogenase by an iron-dependent acetaldehyde-xanthine oxidase mechanism.
Collapse
|
24
|
Abstract
Aerobic organisms by definition require oxygen, and the importance of iron in aerobic respiration has long been recognized, but despite their beneficial roles, these elements can pose a real threat to the organism. During oxygen reduction, reactive species such as O2-. and H2O2 are formed readily. Iron can combine with these species, or with molecular oxygen itself, to generate free radicals which will attack the polyunsaturated fatty acids of membrane lipids. This oxidative deterioration of membrane lipids is known as lipid peroxidation. To protect itself against this form of attack, the organism possesses several types of defense mechanisms. Under normal conditions, these defenses appear to offer adequate protection for cell membranes, but the possibility exists that certain foreign compounds may interfere with or even overwhelm these defenses, and herein could lie a general mechanism of toxicity. This possible cause of toxicity is discussed in relation to other suggested causes.
Collapse
Affiliation(s)
- A A Horton
- Department of Biochemistry, University of Birmingham, England
| | | |
Collapse
|
25
|
Krikun G, Cederbaum AI. Effect of chronic ethanol consumption on microsomal lipid peroxidation. Role of iron and comparison between controls. FEBS Lett 1986; 208:292-6. [PMID: 3780968 DOI: 10.1016/0014-5793(86)81035-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microsomes isolated from chronic ethanol-fed rats displayed elevated rats of malondialdehyde production when compared to pair-fed controls, but lower rates when compared to chow-fed controls. These differences did not correlate with total content of cytochrome P-450 or activity of NADPH-cytochrome c reductase. Titration curves with the potent iron-chelating agent desferrioxamine revealed that the content of iron was greater in microsomes from the chow-fed and lowest in microsomes from the pair-fed control. However, other variables must also exist since even when excess iron was added to the microsomes, the order of malondialdehyde production remained chow-fed greater than chronic ethanol greater than pair-fed control. The variabilities associated with the different controls and the role and content of transition metals such as iron probably contribute towards the divergent effects of ethanol on lipid peroxidation.
Collapse
|
26
|
|
27
|
Tanaka H, Iwasaki S, Arima M, Nakazawa K. Effects of combinations of maternal agents on the fetal cerebrum in rat--ethanol or caffeine with X-irradiation in utero. Brain Dev 1985; 7:10-20. [PMID: 2408495 DOI: 10.1016/s0387-7604(85)80054-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fetal cerebral development influenced by maternal ethanol or caffeine either singly or in combination with X-irradiation was investigated in rat. Female Wistar rats were given 20% ethanol, 0.04% caffeine and water during the premating period and pregnancy, and 0.03% vitamin E only during pregnancy. Pregnant rats were X-irradiated with 100R or sham-irradiated on gestational day 13. Ethanol-treatment alone much reduced the fetal body and cerebral weights, and X-irradiation alone resulted in great reductions in weight and DNA concentration in the fetal cerebrum. The reduction in body weight with ethanol exceeded that with X-irradiation, therefore, the addition of X-irradiation had no effect on that of ethanol. The reduction in cerebral weight on X-irradiation exceeded that with ethanol, thus the addition of ethanol had only a slight effect on that with X-irradiation. The decrease in body and cerebral weights and the increase in lipid peroxide (LP) formation on caffeine-treatment and the decrease in cerebral weight and the increase in LP on vitamin E-treatment were inhibited by X-irradiation as compared to the combined effects of the other drink treatments. The increase in placental weight and the decrease in cerebral weight on ethanol-treatment and the decrease in placental, body and cerebral weights on caffeine-treatment, which findings were covered by the addition of X-irradiation, became much clearer on single drink treatment. Independently of X-irradiation, ethanol-treatment resulted in increased fetal mortality and LP, and decreased body weight. These results suggest that the combined effects of maternal agents on live fetuses should be investigated as to whether they act independently of or dependently with each other and how the effects appear either singly or mixed.
Collapse
|