1
|
ARAF protein kinase activates RAS by antagonizing its binding to RASGAP NF1. Mol Cell 2022; 82:2443-2457.e7. [PMID: 35613620 DOI: 10.1016/j.molcel.2022.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 03/02/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
RAF protein kinases are effectors of the GTP-bound form of small guanosine triphosphatase RAS and function by phosphorylating MEK. We showed here that the expression of ARAF activated RAS in a kinase-independent manner. Binding of ARAF to RAS displaced the GTPase-activating protein NF1 and antagonized NF1-mediated inhibition of RAS. This reduced ERK-dependent inhibition of RAS and increased RAS-GTP. By this mechanism, ARAF regulated the duration and consequences of RTK-induced RAS activation and supported the RAS output of RTK-dependent tumor cells. In human lung cancers with EGFR mutation, amplification of ARAF was associated with acquired resistance to EGFR inhibitors, which was overcome by combining EGFR inhibitors with an inhibitor of the protein tyrosine phosphatase SHP2 to enhance inhibition of nucleotide exchange and RAS activation.
Collapse
|
2
|
Abstract
The RAF-MAPK signaling pathway regulates several very diverse cellular processes such as proliferation, differentiation, apoptosis, and transformation. While the canonical function of RAF kinases within the MAPK pathway is the activation of MEK, our group could demonstrate an important crosstalk between RAF signaling and the pro-apoptotic mammalian sterile 20-like kinase (MST2) tumor suppressor pathway in several cancer entities, including head and neck, colon, and breast. Here, the RAF kinases CRAF and ARAF sequester and inhibit the pro-apoptotic kinase MST2 independently of their own kinase activity. In our recent study, we showed that the ARAF-MST2 complex is regulated by subcellular compartmentalization during epithelial differentiation. Proliferating cells of the basal cell layer in squamous epithelia and tumor cells express ARAF at the mitochondria thus allowing for efficient sequestration of MST2. In contrast, non-malignant squamous epithelia have ARAF localized at the plasma membrane, where the control of MST2-mediated apoptosis is compromised. This re-distribution is regulated by the scaffold protein kinase suppressor of Ras 2 (KSR2). Here, we summarize how spatial and temporal regulation of RAF signaling complexes affect cellular signaling and functions.
Collapse
Affiliation(s)
- Jens Rauch
- a Systems Biology Ireland, University College Dublin , Ireland
| | - Walter Kolch
- a Systems Biology Ireland, University College Dublin , Ireland.,b School of Medicine and Medical Science, University College Dublin , Belfield, Dublin , Ireland
| |
Collapse
|
3
|
Differential localization of A-Raf regulates MST2-mediated apoptosis during epithelial differentiation. Cell Death Differ 2016; 23:1283-95. [PMID: 26891695 DOI: 10.1038/cdd.2016.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 12/20/2016] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
Abstract
A-Raf belongs to the family of oncogenic Raf kinases that are involved in mitogenic signaling by activating the MEK-ERK pathway. Low kinase activity of A-Raf toward MEK suggested that A-Raf might have alternative functions. We recently identified A-Raf as a potent inhibitor of the proapoptotic mammalian sterile 20-like kinase (MST2) tumor suppressor pathway in several cancer entities including head and neck, colon, and breast. Independent of kinase activity, A-Raf binds to MST2 thereby efficiently inhibiting apoptosis. Here, we show that the interaction of A-Raf with the MST2 pathway is regulated by subcellular compartmentalization. Although in proliferating normal cells and tumor cells A-Raf localizes to the mitochondria, differentiated non-carcinogenic cells of head and neck epithelia, which express A-Raf at the plasma membrane. The constitutive or induced re-localization of A-Raf to the plasma membrane compromises its ability to efficiently sequester and inactivate MST2, thus rendering cells susceptible to apoptosis. Physiologically, A-Raf re-localizes to the plasma membrane upon epithelial differentiation in vivo. This re-distribution is regulated by the scaffold protein kinase suppressor of Ras 2 (KSR2). Downregulation of KSR2 during mammary epithelial cell differentiation or siRNA-mediated knockdown re-localizes A-Raf to the plasma membrane causing the release of MST2. By using the MCF7 cell differentiation system, we could demonstrate that overexpression of A-Raf in MCF7 cells, which induces differentiation. Our findings offer a new paradigm to understand how differential localization of Raf complexes affects diverse signaling functions in normal cells and carcinomas.
Collapse
|
4
|
Hausman GJ, Basu U, Wei S, Hausman DB, Dodson MV. Preadipocyte and adipose tissue differentiation in meat animals: influence of species and anatomical location. Annu Rev Anim Biosci 2015; 2:323-51. [PMID: 25384146 DOI: 10.1146/annurev-animal-022513-114211] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early in porcine adipose tissue development, the stromal-vascular (SV) elements control and dictate the extent of adipogenesis in a depot-dependent manner. The vasculature and collagen matrix differentiate before overt adipocyte differentiation. In the fetal pig, subcutaneous (SQ) layer development is predictive of adipocyte development, as the outer, middle, and inner layers of dorsal SQ adipose tissue develop and maintain layered morphology throughout postnatal growth of SQ adipose tissue. Bovine and ovine fetuses contain brown adipose tissue but SQ white adipose tissue is poorly developed structurally. Fetal adipose tissue differentiation is associated with the precocious expression of several genes encoding secreted factors and key transcription factors like peroxisome proliferator activated receptor (PPAR)γ and CCAAT/-enhancer-binding protein. Identification of adipocyte-associated genes differentially expressed by age, depot, and species in vivo and in vitro has been achieved using single-gene analysis, microarrays, suppressive subtraction hybridization, and next-generation sequencing applications. Gene polymorphisms in PPARγ, cathepsins, and uncoupling protein 3 have been associated with back fat accumulation. Genome scans have mapped several quantitative trait loci (QTL) predictive of adipose tissue-deposition phenotypes in cattle and pigs.
Collapse
|
5
|
Jeyakumar S, Yasmeen R, Reichert B, Ziouzenkova O. Metabolism of Vitamin A in White Adipose Tissue and Obesity. OXIDATIVE STRESS AND DISEASE 2013. [DOI: 10.1201/b14569-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Kalvelyte AV, Pabrezaite LC. Proto-oncogene expression in bovine peripheral blood leukemic lymphocytes during their spontaneous proliferation, differentiation and apoptosis in vitro. Leuk Res 1998; 22:135-43. [PMID: 9593470 DOI: 10.1016/s0145-2126(97)00128-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expression of various proto-oncogenes in primary culture of lymphocytes from peripheral blood of bovine with chronic lymphocytic leukemia (CLL) was studied. Cellular proto-oncogenes encode proteins that propagate growth, differentiation or apoptosis signals from cell membrane to nucleus. The proliferation and differentiation of normal eukaryotic cells are precisely controlled. Tumor cells usually are characterized both by the continuous growth signal and by the block of cell differentiation. We have previously reported that along with spontaneous proliferation, bovine CLL lymphocytes continuously differentiate and enter apoptosis in vitro. CLL cells with an autocrine growth mechanism and at the same time undergoing spontaneous differentiation and apoptosis in vitro provide a new model system to investigate the possible involvement of various proto-oncogenes in the regulation of cellular proliferation, differentiation and apoptosis. Northern blot analysis revealed simultaneous expression of a number of proto-oncogenes in CLL cells. Transcripts of c-fos, c-myc, c-myb, A-raf, c-raf1, hck, IL-2 receptor alpha-chain (IL-2R alpha) were found in lymphocytes at the peak of their proliferative activity in culture. Kinetics studies demonstrated that CLL cells constitutively express transcripts of so-called immediate response nuclear proto-oncogenes c-myc, c-fos as well as cytoplasmic proto-oncogenes hck and c-raf1, i.e., genes coding for tyrosine and serine-threonine protein kinases, respectively. Expression level did not change significantly during all stages of CLL cells in culture. The results show that continuous expression of c-myc mRNA does not prevent CLL cell differentiation and may be associated with apoptotic cell death.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Cattle
- Cell Differentiation/genetics
- Cell Division/genetics
- Gene Expression Regulation, Neoplastic
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/metabolism
- Lymphocytes/pathology
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Tumor Cells, Cultured
Collapse
|
7
|
Brownell HL, Narsimhan RP, Corbley MJ, Mann VM, Whitfield JF, Raptis L. Ras is involved in gap junction closure in proliferating fibroblasts or preadipocytes but not in differentiated adipocytes. DNA Cell Biol 1996; 15:443-51. [PMID: 8672240 DOI: 10.1089/dna.1996.15.443] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A decrease in gap junctional, intercellular communication (GJIC) has been associated with cells neoplastically transformed by a variety of factors. To investigate the role of the Ras oncogene product in gap junction function, a panel of murine C3H10T1/2 (10T1/2) fibroblasts was constructed in which the levels of ras gene expression could be effectively up- or down-regulated. Intercellular communication was measured using a novel technique of in situ electroporation of adherent cells on a partly conductive slide. The introduction of increasing amounts of activated Ras(leu61) in mouse 10T1/2 fibroblasts proportionally reduced GJIC, while the downregulation of endogenous c-ras gene expression increased junctional permeability. These results indicate that Ras plays an important role in the junction closure pathway leading to the proliferation of normal cells. However, differentiation of c-Ras-deficient preadipocytes entirely abolished their initially extensive GJIC, indicating that junction closure in response to adipocytic differentiation is independent of Ras.
Collapse
Affiliation(s)
- H L Brownell
- Department of Microbiology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Kaneko Y, Tanzawa H, Sato K. The proto-oncogene C-raf-1 is highly expressed only in the hypertrophic zone of the growth plate. Calcif Tissue Int 1994; 54:426-30. [PMID: 8062162 DOI: 10.1007/bf00305531] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proto-oncogene c-raf-1, the cellular homologue of the acutely transforming oncogene v-raf, has a central role in the signal transduction pathways. The growth plate, due to its non-overlapping zones of chondrocyte maturation, provides a physiological in situ model for investigating the role of c-raf-1 in proliferation and differentiation of chondrocytes. In this study, Northern blotting was first performed to examine the expression of mRNA for c-raf-1 in the embryonic chick tibial growth plate. It revealed that the normal levels of c-raf-1 mRNA were associated with the whole growth plate. We then investigated the localization of c-raf-1 mRNA and c-raf-1 protein in the growth plate by in situ hybridization and immunohistochemistry in order to determine whether c-raf-1 is involved in chondrocyte maturation. Our results showed that c-raf-1 mRNA and c-raf-1 protein were detected only in the hypertrophic zone. The data suggest involvement of this proto-oncogene in chondrocyte differentiation and/or hypertrophy rather than in proliferation.
Collapse
Affiliation(s)
- Y Kaneko
- Department of Oral Surgery, School of Medicine, Chiba University, Japan
| | | | | |
Collapse
|
9
|
Interleukin-2-triggered Raf-1 expression, phosphorylation, and associated kinase activity increase through G1 and S in CD3-stimulated primary human T cells. Mol Cell Biol 1991. [PMID: 1708096 DOI: 10.1128/mcb.11.5.2794] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To gain further insight into the role of Raf-1 in normal cell growth, c-raf-1 mRNA expression, Raf-1 protein production, and Raf-1-associated kinase activity in normal human T cells were analyzed. In contrast to the constitutive expression of Raf-1 in continuously proliferating cell lines, c-raf-1 mRNA and Raf-1 protein levels were barely detectable in freshly isolated G0 T lymphocytes. Previous work with fibroblasts has suggested that Raf-1 plays a signaling role in the G0-G1 phase transition. In T cells, triggering via the T-cell antigen receptor (TCR)-CD3 complex (TCR/CD3) resulted in an approximately fourfold increase in c-raf-1 mRNA. In addition, the promotion of G1 progression by interleukin 2 (IL-2) was associated with a 5- to 10-fold immediate/early induction of c-raf-1 mRNA, resulting in up to a 12-fold increase in Raf-1 protein expression. TCR/CD3 activation did not alter the phosphorylation state of Raf-1, whereas interleukin 2 receptor stimulation resulted in a rapid increase in the phosphorylation state of a subpopulation of Raf-1 molecules progressively increasing throughout G1. These findings were complemented by assays for Raf-1-associated kinase activity which revealed a gradual accumulation of serine and threonine autokinase activity in Raf-1 immunoprecipitates during G1, which remained elevated throughout DNA replication.
Collapse
|
10
|
Zmuidzinas A, Mamon HJ, Roberts TM, Smith KA. Interleukin-2-triggered Raf-1 expression, phosphorylation, and associated kinase activity increase through G1 and S in CD3-stimulated primary human T cells. Mol Cell Biol 1991; 11:2794-803. [PMID: 1708096 PMCID: PMC360057 DOI: 10.1128/mcb.11.5.2794-2803.1991] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To gain further insight into the role of Raf-1 in normal cell growth, c-raf-1 mRNA expression, Raf-1 protein production, and Raf-1-associated kinase activity in normal human T cells were analyzed. In contrast to the constitutive expression of Raf-1 in continuously proliferating cell lines, c-raf-1 mRNA and Raf-1 protein levels were barely detectable in freshly isolated G0 T lymphocytes. Previous work with fibroblasts has suggested that Raf-1 plays a signaling role in the G0-G1 phase transition. In T cells, triggering via the T-cell antigen receptor (TCR)-CD3 complex (TCR/CD3) resulted in an approximately fourfold increase in c-raf-1 mRNA. In addition, the promotion of G1 progression by interleukin 2 (IL-2) was associated with a 5- to 10-fold immediate/early induction of c-raf-1 mRNA, resulting in up to a 12-fold increase in Raf-1 protein expression. TCR/CD3 activation did not alter the phosphorylation state of Raf-1, whereas interleukin 2 receptor stimulation resulted in a rapid increase in the phosphorylation state of a subpopulation of Raf-1 molecules progressively increasing throughout G1. These findings were complemented by assays for Raf-1-associated kinase activity which revealed a gradual accumulation of serine and threonine autokinase activity in Raf-1 immunoprecipitates during G1, which remained elevated throughout DNA replication.
Collapse
MESH Headings
- Antigens, CD/physiology
- Antigens, Differentiation, T-Lymphocyte/physiology
- Blotting, Northern
- Blotting, Western
- CD3 Complex
- Cell Cycle
- Cells, Cultured
- Cycloheximide/pharmacology
- Cyclosporins/pharmacology
- Gene Expression/drug effects
- Humans
- Interleukin-2/pharmacology
- Phosphorylation
- Plasmids
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-raf
- Proto-Oncogenes
- RNA/genetics
- RNA/isolation & purification
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- Receptors, Antigen, T-Cell/physiology
- Resting Phase, Cell Cycle
- S Phase
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/physiology
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- A Zmuidzinas
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756
| | | | | | | |
Collapse
|