1
|
Coupling factor 6-induced prostacyclin inhibition is enhanced in vascular smooth muscle cells from spontaneously hypertensive rats. J Hypertens 2009; 27:1823-8. [PMID: 19474762 DOI: 10.1097/hjh.0b013e32832d4b05] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Coupling factor 6 (CF6) attenuates the endothelial generation of prostacyclin. However, the role of CF6 in the resistance arteriole that is directly related to vascular tone is not determined yet. We investigated the effect of endogenous and exogenous CF6 on prostacyclin generation in cultured vascular smooth muscle cells (VSMCs). METHODS AND RESULTS We cultured resistance arteriole VSMCs from the mesenteric artery network of spontaneously hypertensive rats (SHRs, n = 8) and Wistar-Kyoto rats (WKY, n = 8) by enzymatic method. The gene expression of CF6 was higher by 76 +/- 24% in SHR-derived VSMCs compared with WKY rat-derived VSMCs (P < 0.05) concomitant with the reduced degradation rate of CF6 mRNA. The release of CF6 in SHRs was higher than that in WKY rats (11.0 +/- 0.8 vs. 3.8 +/- 0.4 pg/microg protein, P < 0.05). Prostacyclin generation was attenuated in mesenteric arteriolar VSMCs from SHRs compared with those from WKY rats, but it was restored by neutralization of CF6 with its antibody. Exogenous administration of CF6 suppressed arachidonic acid release in a dose-dependent manner, and it was greater in SHRs than in WKY rats. Pretreatment with PP1, an inhibitor of tyrosine kinase c-Src, or receptor blockers such as ADP, efrapeptin, and an antibody to beta-subunit of ATP synthase blocked CF6-induced decrease in prostacyclin generation. CONCLUSION These data suggest that CF6 suppresses prostacyclin generation in resistance arteriole VSMCs in an autocrine or paracrine fashion, and it is enhanced in SHRs by the overproduction of CF6 and the hyperresponsiveness to CF6.
Collapse
|
2
|
Osanai T, Tomita H, Kushibiki M, Yamada M, Tanaka M, Ashitate T, Echizen T, Katoh C, Magota K, Okumura K. Coupling factor 6 enhances Src-mediated responsiveness to angiotensin II in resistance arterioles and cells. Cardiovasc Res 2008; 81:780-7. [PMID: 19106112 DOI: 10.1093/cvr/cvn356] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Coupling factor 6 (CF6) induces hypertension by attenuating the endothelial generation of prostacyclin. However, intracellular signalling of CF6 in the resistance arteriole vascular smooth muscle cells (VSMCs) that are directly related to vasoconstriction has not been determined. Here we investigated the direct effect of exogenous CF6 on Ca2+ signalling in cultured VSMCs and the in vivo role of endogenous CF6 in the genesis of hypertension using CF6 transgenic (TG) mice. METHODS AND RESULTS CF6 induced a monophasic increase in the intracellular free Ca2+ concentration ([Ca2+]i) through nifedipine-sensitive Ca2+ channels in A7r5 cells, a cell line of VSMCs, and enhanced the angiotensin II-induced spike phase of [Ca2+]i to a greater degree in VSMCs derived from spontaneously hypertensive rats (SHRs). In the mesenteric arterioles obtained from CF6-TG mice that manifested hypertension, angiotensin II-induced vasoconstriction was enhanced, compared with wild-type mice, and its enhancement was abolished by an anti-CF6 antibody. Pre-treatment with PP1, a tyrosine kinase c-Src inhibitor, blocked CF6-induced increase in Ca2+ signalling in VSMCs and vasoconstriction in TG mice. The receptor of CF6 was F1 motor of adenosine triphosphate (ATP) synthase with a higher affinity in SHRs. CF6 decreased intracellular pH via activation of ATPase activity and led to c-Src activation to a greater degree in SHR-derived VSMCs. CONCLUSION CF6 causes hypertension by directly enhancing Ca2+ signalling in VSMCs and vasoconstriction in the mesenteric arteriolar network via c-Src activation.
Collapse
Affiliation(s)
- Tomohiro Osanai
- Department of Cardiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki 036-8562, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Devenish RJ, Prescott M, Rodgers AJW. The structure and function of mitochondrial F1F0-ATP synthases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:1-58. [PMID: 18544496 DOI: 10.1016/s1937-6448(08)00601-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review recent advances in understanding of the structure of the F(1)F(0)-ATP synthase of the mitochondrial inner membrane (mtATPase). A significant achievement has been the determination of the structure of the principal peripheral or stator stalk components bringing us closer to achieving the Holy Grail of a complete 3D structure for the complex. A major focus of the field in recent years has been to understand the physiological significance of dimers or other oligomer forms of mtATPase recoverable from membranes and their relationship to the structure of the cristae of the inner mitochondrial membrane. In addition, the association of mtATPase with other membrane proteins has been described and suggests that further levels of functional organization need to be considered. Many reports in recent years have concerned the location and function of ATP synthase complexes or its component subunits on the external surface of the plasma membrane. We consider whether the evidence supports complete complexes being located on the cell surface, the biogenesis of such complexes, and aspects of function especially related to the structure of mtATPase.
Collapse
Affiliation(s)
- Rodney J Devenish
- Department of Biochemistry and Molecular Biology, and ARC Centre of Excellence in Microbial Structural and Functional Genomics, Monash University, Clayton Campus, Victoria, 3800, Australia
| | | | | |
Collapse
|
4
|
Stephens AN, Nagley P, Devenish RJ. Each yeast mitochondrial F1F0-ATP synthase complex contains a single copy of subunit 8. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1607:181-9. [PMID: 14670608 DOI: 10.1016/j.bbabio.2003.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The stoichiometry of subunit 8 in yeast mitochondrial F(1)F(0)-ATP synthase (mtATPase) has been evaluated using an immunoprecipitation approach. Single HA or FLAG epitopes were introduced at the N-terminus of subunit 8. Expression of each tagged subunit 8 variant in yeast cells lacking endogenous subunit 8 restored a respiratory phenotype and had little measurable effect on ATP hydrolase activity of the isolated enzyme. Moreover, the two epitope-tagged subunit 8 variants could be stably co-expressed in the same host cells and both of HA-Y8 and FLAG-Y8 could be detected in ATP synthase complexes isolated by native gel electrophoresis. Mitochondria isolated from each yeast strain were solubilized to release ATP synthase complexes in either the monomeric or dimeric forms. In each case, monoclonal antibodies directed against either the FLAG or HA epitope could immunoprecipitate intact ATP synthase complexes. When both HA-Y8 and FLAG-Y8 were co-expressed in cells, monomeric ATP synthases contained only a single subunit 8 variant after immunoprecipitation, corresponding to the particular antibody used (HA or FLAG). By contrast, both subunit 8 variants were recovered in samples of immunoprecipitated dimeric ATP synthase complexes, irrespective of the antibody used. We conclude that each monomeric yeast mitochondrial ATP synthase complex contains a single copy of subunit 8.
Collapse
Affiliation(s)
- Andrew N Stephens
- Department of Biochemistry and Molecular Biology, and ARC Centre for Structural and Functional Microbial Genomics, Monash University, Victoria 3800, Australia
| | | | | |
Collapse
|
5
|
Suenaga M, Arakaki N, Morokami K, Himeda T, Shibata H, Kuwajima M, Higuti T. Functional disorders of the oxidative phosphorylation system in the heart mitochondria of mice with juvenile visceral steatosis. Biol Pharm Bull 2003; 26:289-94. [PMID: 12612434 DOI: 10.1248/bpb.26.289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice with juvenile visceral steatosis (JVS) develop remarkable cardiac hypertrophy and exhibit an increased number of mitochondria in their heart. However, the biochemical characteristics and physiological functions of these mitochondria cardiac are little known. Here we show that the respiratory activities at state 3 with glutamate plus malate or succinate in the heart mitochondria of JVS mice were greatly decreased to 47% or 77%, respectively, compared with those of control mice. The contents of cytochromes a+a(3), b, and c+c(1) in the heart mitochondria of these mice were also decreased, to 51%, 45%, and 79%, respectively, of those of the control mice. Oligomycin-sensitive ATPase activitiy in these mitochondria, however, was increased to about 2 times over that of the control mice. Surprisingly, the ATP-Pi exchange activity of the heart mitochondria of JVS mice was greatly decreased, to 35% of that of control mice. On the other hand, the expression levels of 2 subunits of H(+)-ATP synthase, i.e., coupling factor 6 and alpha subunit, in heart mitochondria from control and JVS mice were almost the same. These results indicate that the coordinate regulation of mitochondrial proliferation and gene expression for components of the oxidative phosphorylation system was markedly defective in the heart of JVS mice. Our current results also suggest the presence of a novel regulatory mechanisms of ATP synthase activities in the heart.
Collapse
Affiliation(s)
- Midori Suenaga
- Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Arakaki N, Ueyama Y, Hirose M, Himeda T, Shibata H, Futaki S, Kitagawa K, Higuti T. Stoichiometry of subunit e in rat liver mitochondrial H(+)-ATP synthase and membrane topology of its putative Ca(2+)-dependent regulatory region. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:220-8. [PMID: 11245786 DOI: 10.1016/s0005-2728(00)00248-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous studies have revealed that residues 34-65 of subunit e of mitochondrial H(+)-ATP synthase are homologous with the Ca(2+)-dependent tropomysin-binding region for troponin T and have suggested that subunit e could be involved in the Ca(2+)-dependent regulation of H(+)-ATP synthase activity. In this study, we determined the content of subunit e in H(+)-ATP synthase purified from rat liver mitochondria, and we also investigated the membrane topology of a putative Ca(2+)-dependent regulatory region of subunit e using an antibody against peptide corresponding to residues 34-65 of subunit e. Quantitative immunoblot analysis of subunit e in the purified H(+)-ATP synthase revealed that 1 mol of H(+)-ATP synthase contained 2 mol of subunit e. The ATPase activity of mitoplasts, in which the C-side of F(0) is present on the outer surface of the inner membrane, was significantly stimulated by the addition of the antibody, while the ATPase activity of submitochondrial particles and purified H(+)-ATP synthase was not stimulated. The antibody bound to mitoplasts but not to submitochondrial particles. These results suggest that the putative Ca(2+)-dependent regulatory region of subunit e is exposed on the surface of the C-side of F(0) and that subunit e is involved in the regulation of mitochondrial H(+)-ATP synthase activity probably via its putative Ca(2+)-dependent regulatory region.
Collapse
Affiliation(s)
- N Arakaki
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Himeda T, Morokami K, Arakaki N, Shibata H, Higuti T. Synchronized transcriptional gene expression of H+-ATP synthase subunits in different tissues of Fischer 344 rats of different ages. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6938-42. [PMID: 11082207 DOI: 10.1046/j.1432-1033.2000.01805.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known about the relationship between the stoichiometry of polypeptides of multisubunit enzyme complexes and the absolute amount of each transcript of the complexes in mammalian tissues. Here we showed that the absolute amounts of the transcripts of most subunits of rat H+-ATP synthase examined greatly differed in the different tissues, showing the following hierarchy of tissue-specificity: heart > kidney > brain approximately liver. However, surprisingly, there was no difference in the expression pattern of these in terms of the molar ratio of each transcript, indicating a nearly similar stoichiometric expression pattern irrespective of tissue or age of the rat. Therefore, the present finding clearly indicates that most of the transcripts of the 16 subunits of rat H+-ATP synthase were concertedly and synchronously expressed, having a constant expression pattern of the transcripts, irrespective of tissue or age of the rats. This is the first report of the absolute amounts of the transcripts of this multisubunit enzyme.
Collapse
Affiliation(s)
- T Himeda
- Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi, Tokushima, Japan
| | | | | | | | | |
Collapse
|
8
|
Sangawa H, Himeda T, Shibata H, Higuti T. Gene expression of subunit c(P1), subunit c(P2), and oligomycin sensitivity-conferring protein may play a key role in biogenesis of H+-ATP synthase in various rat tissues. J Biol Chem 1997; 272:6034-7. [PMID: 9038226 DOI: 10.1074/jbc.272.9.6034] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mammalian H+-ATP synthase is a supramolecule composed of at least 14 subunits that have a constant stoichiometry. Nevertheless the coordinate regulation of the gene expressions of various subunits remains obscure. To clarify the coordinate transcriptional regulatory system of mammalian H+-ATP synthase, we determined the absolute amount of nine species of mRNAs for eight nuclear-encoded subunits of H+-ATP synthase in different tissues of 8-week-old rats by use of the synthetic mRNAs and 32P-labeled DNA probes for each mRNA. Our quantitative analyses of the transcripts of H+-ATP synthase revealed that nine species of the subunits in different tissues of 8-week-old rats were divisible into two groups: a high transcript gene (HTG) group (beta-subunit, subunit b, subunit d, subunit e, and Factor 6) and a low transcript gene (LTG) group (subunit c(P1), subunit c(P2), IF1, and oligomycin sensitivity-conferring protein). The transcription step of LTG could constitute a bottleneck in the biogenesis of H+-ATP synthase. Thus, the transcriptional regulatory system of the LTG may play a key role in the biogenesis of mammalian H+-ATP synthase. The HTG were transcribed in a tissue-specific manner that corresponds with energy demand in the tissues. However, there was no tissue specificity in subunit c(P2). Furthermore, the tissue specificity of the transcript of IF1 differed substantially from that of HTG, suggesting that it could be crucial in the protection of mitochondrial membrane under abnormal conditions.
Collapse
Affiliation(s)
- H Sangawa
- Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi, Tokushima 770, Japan
| | | | | | | |
Collapse
|
9
|
Weeks BS, Burbelo P, Jucker M, Weiner MA, Roque E, Kleinman HK. Laminin stimulates expression of two mitochondrial proteins during neurite outgrowth. Int J Dev Neurosci 1996; 14:365-74. [PMID: 8842810 DOI: 10.1016/0736-5748(96)00019-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Differential hybridization was utilized with mRNA from NG108-15 cells cultured on either tissue culture plastic or laminin for 4 hr to identify genes whose mRNA was increased by laminin, a potent stimulator of neurite outgrowth. Two of the 16 laminin-induced clones, cytochrome b and chargerin II, are mitochondrial proteins. Northern blotting confirmed that laminin increased the mRNA levels of cytochrome b and chargerin II several fold. Antibody to chargerin II stained both processes and cell bodies of the cerebellar Purkinje cells and localized in the mitochondria of NG108-15 cells, which also showed increased protein levels in the presence of laminin. In addition, higher levels of chargerin II protein were detected in the newborn brain compared to the adult. However, inhibitors of mitochondrial protein synthesis did not affect laminin-mediated neurite outgrowth. These data suggest that the increased synthesis of mitochondrial enzymes observed with laminin treatment may not be necessary for the formation of neurites.
Collapse
Affiliation(s)
- B S Weeks
- University of Pennsylvania, Department of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
10
|
Higuti T, Kuroiwa K, Kawamura Y, Morimoto K, Tsujita H. Molecular cloning and sequence of cDNAs for the import precursors of oligomycin sensitivity conferring protein, ATPase inhibitor protein, and subunit c of H(+)-ATP synthase in rat mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1172:311-4. [PMID: 8448208 DOI: 10.1016/0167-4781(93)90219-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Four cDNAs for the import precursors of oligomycin sensitivity conferring protein (OSCP), ATPase inhibitor protein (IF1) and subunit cs (encoded by P1 and P2 genes) of rat mitochondrial H(+)-ATP synthase have been cloned from a rat cDNA library. The import precursors and the mature polypeptides of rat OSCP, IF1, subunit c (P1) and subunit c (P2) consisted of 23/190, 25/82, 61/75 and 66/75 amino acids, respectively.
Collapse
Affiliation(s)
- T Higuti
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | | | |
Collapse
|
11
|
Cox G, Devenish R, Gibson F, Howitt S, Nagley P. Chapter 12 The structure and assembly of ATP synthase. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
12
|
Higuti T, Tsurumi C, Osaka F, Kawamura Y, Tsujita H, Yoshihara Y, Tani I, Tanaka K, Ichihara A. Molecular cloning of cDNA for the import precursor of human subunit B of H(+)-ATP synthase in mitochondria. Biochem Biophys Res Commun 1991; 178:1014-20. [PMID: 1831354 DOI: 10.1016/0006-291x(91)90993-h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nucleotide sequence of the import precursor of subunit b of human H(+)-ATP synthase has been determined from a recombinant cDNA clone isolated by screening a human kidney cDNA library with a cDNA for rat subunit b as a probe. The sequence was composed of 1,134 nucleotides including a coding region for the import precursor of subunit b and noncoding regions on the 5'- and 3'-sides. The import precursor of subunit b and its mature polypeptide deduced from the open reading frame were found to consist of 256 and 214 amino acid residues with molecular weights of 28,893 and 24,610, respectively. The presequence of 42 amino acids could be the import signal peptide for directing the protein into the mitochondrial matrix.
Collapse
Affiliation(s)
- T Higuti
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Higuti T, Tsurumi C, Kawamura Y, Tsujita H, Osaka F, Yoshihara Y, Tani I, Tanaka K, Ichihara A. Molecular cloning of cDNA for the import precursor of human coupling factor 6 of H(+)-ATP synthase in mitochondria. Biochem Biophys Res Commun 1991; 178:793-9. [PMID: 1830479 DOI: 10.1016/0006-291x(91)90178-a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nucleotide sequence of the import precursor of coupling factor 6 (factor 6) of human H(+)-ATP synthase has been determined from a recombinant cDNA clone isolated by screening a human kidney cDNA library with a cDNA for rat factor 6 as a probe. The sequence was composed of 466 nucleotides including a coding region for the import precursor of factor 6 and noncoding regions on the 5'- and 3'-sides. The import precursor of factor 6 and its mature polypeptide deduced from the open reading frame were found to consist of 108 and 76 amino acid residues with molecular weights of 12,596 and 8,969, respectively. The presequence of 32 amino acids could be the import signal peptide for directing the protein into the mitochondrial matrix.
Collapse
Affiliation(s)
- T Higuti
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yoshihara Y, Nagase H, Yamane T, Oka H, Tani I, Higuti T. H(+)-ATP synthase from rat liver mitochondria. A simple, rapid purification method of the functional complex and its characterization. Biochemistry 1991; 30:6854-60. [PMID: 1829963 DOI: 10.1021/bi00242a008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel, simple, and rapid preparative method for purification of rat liver H(+)-ATP synthase by anion-exchange HPLC was developed. The H(+)-ATP synthase purified had higher ATPase activity in the absence of added phospholipids than any preparation reported previously, and this activity was completely inhibited by oligomycin. When reconstituted into proteoliposomes, the H(+)-ATP synthase showed an ATP-dependent 8-anilinonaphthalene-1-sulfonate response and ATP-Pi exchange activity, both of which were also completely inhibited by oligomycin and an uncoupler, indicating the intactness of the H(+)-ATP synthase. An immunochemical study and a labeling experiment with N,N'-[14C]dicyclohexylcarbodiimide ([14C]DCCD) demonstrated the presence of chargerin II ( a product of mitochondrial A6L DNA) and DCCD-binding protein (subunit c) in the complex. The subunits of the complex were separated into 11 main fractions by reverse-phase HPLC, and 3 of them and the delta subunit in F1 were partially sequenced. A search for sequence homologies indicated that these components were subunit b, coupling factor 6, subunit delta, and subunit epsilon. This is the first report of the existence of subunit b, factor 6, and chargerin II in H(+)-ATP synthase purified from rat liver mitochondria.
Collapse
Affiliation(s)
- Y Yoshihara
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Cretin F, Baggetto LG, Denoroy L, Godinot C. Identification of F0 subunits in the rat liver mitochondrial F0F1-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1058:141-6. [PMID: 1828697 DOI: 10.1016/s0005-2728(05)80230-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to identify the subunits constituting the rat liver F0F1-ATP synthase, the complex prepared by selective extraction from the mitochondrial membranes with a detergent followed by purification on a sucrose gradient has been compared to that obtained by immunoprecipitation with an anti-F1 serum. The subunits present in both preparations that are assumed to be authentic components of the complex have been identified. The results show that the total rat liver F0F1-ATP synthase contains at least 13 different proteins, seven of which can be attributed to F0. The following F0 subunits have been identified: the subunit b (migrating as a 24 kDa band in SDS-PAGE), the oligomycin-sensitivity-conferring protein (20 kDa), and F6 (9 kDa) that have N-terminal sequences homologous to the beef-heart ones; the mtDNA encoded subunits 6 (20 kDa) and 8 (less than 7 kDa) that can be synthesized in isolated mitochondria; an additional 20 kDa protein that could be equivalent to the beef heart subunit d.
Collapse
Affiliation(s)
- F Cretin
- LBTM-CNRS, Université Cl. Bernard de Lyon I, Villeurbanne, France
| | | | | | | |
Collapse
|
16
|
Higuti T, Osaka F, Yoshihara Y, Tsurumi C, Kawamura Y, Tani I, Toda H, Kakuno T, Sakiyama F, Tanaka K. cDNA cloning and sequencing for the import precursor of coupling factor 6 in H(+)-ATP synthase from rat liver mitochondria. Biochem Biophys Res Commun 1990; 171:1079-86. [PMID: 2145831 DOI: 10.1016/0006-291x(90)90794-n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nucleotide sequence of the import precursor of coupling factor 6 (factor 6) of rat liver H(+)-ATP synthase has been determined from a recombinant cDNA clone isolated by screening a rat liver cDNA library with a probe DNA. The sequence was composed of 458 nucleotides including a coding region for the import precursor of factor 6 and noncoding regions of both the 5'- and 3'-sides. The import precursor of factor 6 and its mature polypeptide deduced from the open reading frame consisted of 108 and 76 amino acid residues with a molecular weight of 12,494 and 8,927, respectively. The presequence of 32 amino acids could be the import signal peptide which serves to direct the protein into the mitochondrial matrix.
Collapse
Affiliation(s)
- T Higuti
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|