1
|
Tolledo C, Stocco MR, Miksys S, Gonzalez FJ, Tyndale RF. Human CYP2D6 Is Functional in Brain In Vivo: Evidence from Humanized CYP2D6 Transgenic Mice. Mol Neurobiol 2020; 57:2509-2520. [PMID: 32189192 DOI: 10.1007/s12035-020-01896-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/02/2020] [Indexed: 01/08/2023]
Abstract
CYP2D metabolizes many drugs that act within the brain, and variable expression of CYP2D in the brain may alter local drug and metabolite levels sufficiently to affect behavioral responses. Transgenic mice that express human CYP2D6 (TG) were compared to wild type mice (WT). Following selective inhibition of human CYP2D6 in TG brain, we demonstrated in vivo that human CYP2D6 in the brain was sufficient to alter a drug-induced behavioral response. After a 4-h pre-treatment with intracerebroventricular (i.c.v.) propranolol, CYP2D activity in vivo and in vitro was reduced in TG brain, whereas CYP2D activity in vivo, but not in vitro, was reduced in WT brain. After a 24-h pre-treatment with i.c.v. propranolol, CYP2D activity in vivo and in vitro was reduced in TG brain, whereas CYP2D activity in vivo and in vitro was not changed in WT brain. These results indicate that i.c.v. propranolol irreversibly inhibited human CYP2D6 in TG brain but not mouse CYP2D in TG and WT brain. Pre-treatments with propranolol did not change liver CYP2D activity in vivo or in vitro. Furthermore, 24-h pre-treatment with i.c.v. propranolol resulted in a significant decrease of the haloperidol-induced catalepsy response in TG, but not in WT, without changing serum haloperidol levels in either mouse line. These studies reveal a new tool to selectively and irreversibly inhibit human CYP2D6 in TG brain and indicate that human CYP2D6 has a functional role within the brain sufficient to impact the central nervous system response from peripherally administered drugs.
Collapse
Affiliation(s)
- Cole Tolledo
- Department of Pharmacology and Toxicology, University of Toronto, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Marlaina R Stocco
- Department of Pharmacology and Toxicology, University of Toronto, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Sharon Miksys
- Department of Pharmacology and Toxicology, University of Toronto, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Tolledo EC, Miksys S, Gonzalez FJ, Tyndale RF. Propranolol is a mechanism-based inhibitor of CYP2D and CYP2D6 in humanized CYP2D6-transgenic mice: Effects on activity and drug responses. Br J Pharmacol 2020; 177:701-712. [PMID: 31648367 PMCID: PMC7012948 DOI: 10.1111/bph.14884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/16/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Genetics and drug interactions contribute to large interindividual variation in human CYP2D6 activity. Here, we have characterized propranolol inhibition of human and mouse CYP2D using transgenic (TG) mice, which express both mouse CYP2D and human CYP2D6, and wild-type (WT) mice. Our purpose was to develop a method for in vivo manipulation of CYP2D6 enzyme activity which could be used to investigate the role of CYP2D6 in drug-induced behaviours. EXPERIMENTAL APPROACH Dextromethorphan metabolism to dextrorphan was used to measure CYP2D activity and to characterize propranolol inhibition in vitro and in vivo. Effects of propranolol pretreatment (24 hr) on serum levels of the CYP2D6 substrate haloperidol and haloperidol-induced catalepsy were also studied. KEY RESULTS Dextrorphan formation velocity in vitro was threefold higher in liver microsomes of TG compared to WT mice. Propranolol acted as a mechanism-based inhibitor (MBI), inactivating CYP2D in liver microsomes from TG and WT mice, and humans. Pretreatment (24 hr) of TG and WT mice with 20 mg·kg-1 intraperitoneal propranolol reduced dextrorphan formation in vivo and by liver microsomes in vitro. Serum haloperidol levels and catalepsy were increased. CONCLUSIONS AND IMPLICATIONS Propranolol was a potent MBI of dextrorphan formation in liver microsomes from TG and WT mice, and humans. The inhibition parameters in TG overlapped with those in WT mice and in humans. Inhibition of CYP2D with propranolol in vivo in TG and WT mice altered drug responses, allowing further investigation of variations in CYP2D6 on drug interactions and drug responses.
Collapse
Affiliation(s)
- Edgor Cole Tolledo
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Department of Pharmacology & Toxicology, Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Sharon Miksys
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Department of Pharmacology & Toxicology, Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Rachel F. Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Department of Pharmacology & Toxicology, Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Narimatsu S, Mochida M, Ueno K, Horie T, Yamamoto S, Suzuki T. Induction of Cytochrome P450 1A1 in Mice by Repeated Oral Administration of Propranolol. Drug Metab Pharmacokinet 2002; 17:54-9. [PMID: 15618653 DOI: 10.2133/dmpk.17.54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pretreatment of adult male C57BL/6 mice with propranolol (PL, 100 mg/kg, p.o., once a day for five days) significantly increased PL N-deisopropylase activity and decreased PL 7-hydroxylase activity in liver microsomes, whereas PL 4- and 5-hydroxylase activities remained unchanged. In the present study, we have examined the mechanism for the elevation of the oxidation of PL side chain. Immunoblot analysis using polyclonal antibodies raised against rat liver CYP enzymes such as CYP1A1, -2B2, -2C11, -2D2, -2E1 and 3A2 showed that, compared with the vehicle-treated control, the levels of two protein bands (54 KD and 52 KD) were increased by the pretreatment. Both proteins immunochemically cross-reacted with the antibodies against rat CYP1A1, and from their molecular weights, the 54 KD and 52 KD proteins were deduced to be CYP1A1 and 1A2, respectively. Computer-assisted scanning analysis revealed that the levels of CYP1A1 and CYP1A2 proteins were increased 1.8 and 1.2 times, respectively, over those of control microsomes. PL N-deisopropylase activity correlated well with ethoxyresorufin O-deethylase (r=0.828) and phenacetin O-deethylase (r=0.851) activities in the same microsomal fractions. These results show that repeated oral administration of PL in mice induces mainly CYP1A1 and also CYP1A2 to some extent, which contrasts from our previous results in rats in which CYP1A2 only was induced with PL pretreatment [Narimatsu et al., Chemico-Biol. Interact., 101, 207-224 (1996)].
Collapse
Affiliation(s)
- Shizuo Narimatsu
- Laboratories Health Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Koleva M, Kastelova A, Staneva-Stoytcheva D, Stoytchev T. Combined effect of propranolol with nifedipine or with diltiazem on rat liver monooxygenase activities. Toxicol Lett 1999; 105:153-61. [PMID: 10221277 DOI: 10.1016/s0378-4274(98)00395-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of two Ca2+ antagonists nifedipine (NF) and diltiazem (DL) and of the nonselective beta-adrenergic blocking agent propranolol (PR) on the hexobarbital (HB) sleeping time and on the activity of some liver drug-metabolizing enzyme systems in male Wistar rats were studied. Two h after single oral administration PR (50 mg/kg) did not change HB sleeping time, while NF (50 mg/kg) and DL (30 mg/kg) prolonged it by 171.2 and 99.6%, respectively. Coadmistration of PR with DL or with NF significantly prolonged HB sleep by 240.7 and 129%, respectively. Only NF increased aniline 4-hidroxylase (AH) activity (by 92%) and the total P-450 content (by 24%). PR and NF increased cytochrome b5 content and this effect was also observed with the combinations PR + NF (by 109%) and PR + DL (by 102%). The NADPH cytochrome P-450 reductase activity was significantly decreased by NF and DL and after their combination with PR. The ethymorphine-N-demethylase (EMND) and amidopyrine-N-demethylase (APND) activities were not changed. The effects of PR, NF and DL administrated alone or in combination on liver oxidative metabolism are considered as possible mechanisms of drug interactions.
Collapse
Affiliation(s)
- M Koleva
- Laboratory of Drug Toxicology, Institute of Physiology, Bulgarian Academy of Sciences, Sofia.
| | | | | | | |
Collapse
|
5
|
Jansen EH, Laan CA, de Fluiter P. Advances in sample preparation, electrophoretic separation and detection methods for rat cytochrome P450 enzymes. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 684:133-45. [PMID: 8906470 DOI: 10.1016/0378-4347(96)00145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A limited overview is given of the separation and detection of specific cytochrome P450 enzymes of the rat. Separation methods include group-specific chromatographic separation and electrophoretic separation in and elution from polyacrylamide gels. Detection methods that are considered include enzymatic analysis with and without chromatographic step using liquid chromatography and immunochemical methods following separation of the cytochrome P450 enzymes by polyacrylamide gel electrophoresis (Western blotting). The advantages and limitations of the various methods have been compared and discussed.
Collapse
Affiliation(s)
- E H Jansen
- Laboratory for Health Effects Research, National Institute of Public Health and the Environment, Bilthoven, Netherlands
| | | | | |
Collapse
|
6
|
Narimatsu S, Mochida M, Matsumoto T, Masubuchi Y, Horie T, Nagata K, Funae Y, Cho AK, Suzuki T. Cytochrome P450 enzymes involved in the enhancement of propranolol N-desisopropylation after repeated administration of propranolol in rats. Chem Biol Interact 1996; 101:207-24. [PMID: 8870689 DOI: 10.1016/0009-2797(96)03726-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Repeated oral administration of propranolol (PL, 100 mg/kg daily, for 5, 10 and 15 days) to male Wistar rats increased PL N-desisopropylase and decreased PL 4-,5- and 7-hydroxylase activities in liver microsomes. The increase was highest at the 10 day time point whereas the decrease was relatively constant over the 15 day treatment period. There were no significant changes in the total content of cytochromes P450 (P450) or cytochrome b5 or in NADPH-cytochrome c reductase activity during the PI, treatment. The enhanced N-desisopropylase activities were markedly inhibited by alpha-naphthoflavone (a P450-1A1/2 inhibitor), and moderately by triacetyloleandomycin (a P450-3A1/2 inhibitor) and diethyldithiocarbamate (a P450-2E1 inhibitor). Phenacetin O-deethylase activity, an index of P450-1A2, was significantly increased on day 5, 10 and 15 of the treatment, whereas p-nitrophenol hydroxylase activity was elevated on day 10 only. The PL N-desisopropylation showed a strong and significant correlation with phenacetin O-deethylation, and a weaker but significant correlation with p-nitrophenol hydroxylation. Immunoblot analysis revealed that a protein band corresponding to P450-1A2 was increased by PL pretreatment, and protein band corresponding to P450-3A tended to be increased slightly, but other protein band corresponding to the subfamily of P450-2B, -2C, or -2E was not changed. Pretreatment of rats with P450 inducers (beta-naphthoflavone, phenobarbital, acetone and dexamethasone) increased PL N-dealkylase activity in liver microsomes. Furthermore, antibodies raised against P450-1A and -3A enzymes suppressed PL N-desisopropylation in a concentration-dependent manner, but P450-2E antibody did not. Reconstitution studies showed that P450-1A1, -1A2, -2E1 and -3A2 exhibited catalytic activities for PL N-dealkylation. These results suggest that P450-1A2 is a major PL N-desisopropylase in the PL-treated rats, and P450-3A related enzyme(s) and P450-2E1 as a moderate or minor enzyme are also involved in PL N-dealkylation in native and PL-treated rats.
Collapse
Affiliation(s)
- S Narimatsu
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba University, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Masubuchi Y, Yamamoto K, Suzuki T, Horie T, Narimatsu S. Characterization of the oxidation reactions catalyzed by CYP2D enzyme in rat renal microsomes. Life Sci 1996; 58:2431-7. [PMID: 8691988 DOI: 10.1016/0024-3205(96)00247-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Monooxygenase activities in rat renal microsomes were determined with the substrates of hepatic CYP2D enzymes. Seven kinds of CYP2D-mediated monooxygenase activities and immunochemically determined CYP2D contents in kidneys corresponded to approximately 3% of those in livers. Debrisoquine 4-hydroxylase and bunitrolol 4-hydroxylase in renal microsomes were inhibited almost completely by the antibody against a CYP2D enzyme purified from rat liver. A marked strain difference (Wistar > Dark Agouti) in these activities was observed in kidney like in liver. The two hydroxylases were inhibited stereoselectively by quinine and quinidine both in renal and hepatic microsomes. Substrate stereoselectivity in (+)- and (-)-bunitrolol 4-hydroxylase activities in kidneys was also consistent with that in livers. These results suggested that the CYP2D enzyme(s) was expressed in the kidney at levels much less than in the liver but had similar functions to those in the liver.
Collapse
Affiliation(s)
- Y Masubuchi
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | |
Collapse
|
8
|
Yoshimoto K, Echizen H, Chiba K, Tani M, Ishizaki T. Identification of human CYP isoforms involved in the metabolism of propranolol enantiomers--N-desisopropylation is mediated mainly by CYP1A2. Br J Clin Pharmacol 1995; 39:421-31. [PMID: 7640150 PMCID: PMC1365131 DOI: 10.1111/j.1365-2125.1995.tb04472.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. Studies using human liver microsomes and six recombinant human CYP isoforms (i.e. CYP1A2, 2A6, 2B6, 2D6, 2E1 and 3A4) were performed to identify the cytochrome P450 (CYP) isoform(s) involved in the ring 4-hydroxylation and side-chain N-desisopropylation of propranolol enantiomers in humans. 2. alpha-Naphthoflavone and 7-ethoxyresorufin (selective inhibitors of CYP1A1/2) inhibited the N-desisopropylation of R- and S-propranolol by human liver microsomes by 20 and 40%, respectively, while quinidine (a selective inhibitor of CYP2D6) abolished the 4-hydroxylation of both propranolol enantiomers almost completely. In contrast, sulphaphenazole (CYP2C8/9 inhibitor), S-mephenytoin (CYP2C19 inhibitor), troleandomycin (CYP3A3/4 inhibitor) and diethyldithiocarbamate (CYP2E1 inhibitor) elicited only weak inhibitory effects on propranolol metabolism via the two measured metabolic pathways. 3. Significant (P < 0.01) correlations were observed between the microsomal N-desisopropylation of both propranolol enantiomers and that for the O-deethylation of phenacetin among the 11 different human liver microsome samples (r = 0.98 and 0.77 for R- and S-propranolol, respectively). A marginally significant (r = 0.60, P congruent to 0.05) correlation was also observed between N-desisopropylation of S-, but not of R-propranolol and the 4'-hydroxylation of S-mephenytoin. No significant correlations were observed between the N-desisopropylation of propranolol enantiomers and the 2-hydroxylation of desipramine, the hydroxylation of tolbutamide or the 6 beta-hydroxylation of testosterone. 4. Significant (P < 0.01) correlations were observed between the microsomal 4-hydroxylation of R- and S-propranolol and the 2-hydroxylation of desipramine (r = 0.85 and 0.98, respectively). A weak (r = 0.66), albeit significant (P < 0.05) correlation was observed between the 4-hydroxylation of R-, but not of S-propranolol and the hydroxylation of tolbutamide. No significant correlations were observed between the 4-hydroxylation of propranolol enantiomers and the oxidation of other substrates for CYP1A2, 2C19, and 3A3/4. 5. Recombinant human CYP1A2 and CYP2D6 exhibited comparable catalytic activity with respect to the N-desisopropylation of both propranolol enantiomers; only expressed CYP2D6 exhibited a marked catalytic activity with respect to the 4-hydroxylation of both propranolol enantiomers.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Yoshimoto
- Department of Clinical Pharmacology, International Medical Center of Japan, Tokyo
| | | | | | | | | |
Collapse
|
9
|
Masubuchi Y, Narimatsu S, Hosokawa S, Suzuki T. Role of the CYP2D subfamily in metabolism-dependent covalent binding of propranolol to liver microsomal protein in rats. Biochem Pharmacol 1994; 48:1891-8. [PMID: 7986200 DOI: 10.1016/0006-2952(94)90587-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vitro covalent binding of a chemically reactive metabolite of propranolol to microsomal macromolecules, which is presumed to cause inhibition of its own metabolism in rats, was diminished in liver microsomes from rats pretreated with propranolol. Covalent binding was suppressed by the addition of an antibody against P450BTL, which is a cytochrome P450 (P450) isozyme belonging to the CYP2D subfamily. SDS-PAGE of microsomal proteins after incubation with [3H]propranolol and NADPH indicated that the binding was non-selective but prominent at the molecular mass of approx. 50 kDa, corresponding to those of the P450 protein. The radioactivity peak was markedly but not completely diminished by the addition of reduced glutathione. In a reconstituted system containing P450BTL, NADPH-cytochrome P450 reductase (fp2) and dilauroylphosphatidylcholine, propranolol 4-, 5- and 7-hydroxylase activities decreased time dependently following preincubation with propranolol in the presence of NADPH, indicating time-dependent inactivation of P450BTL. The covalent binding of a reactive metabolite of [3H]propranolol to the proteins was also observed in this system. SDS-PAGE showed that among the three proteins in the reconstituted system, fp2 and P450BTL consisting of two polypeptides with molecular masses of 49 and 32 kDa, the binding was specific for a polypeptide corresponding to the P450 isozyme with a molecular mass of 49 kDa. In addition, the ratio of the amount of covalently bound radiolabelled materials to that of P450BTL which was estimated from each impaired propranolol hydroxylase activity under the same reconstitutional conditions was calculated to be approx. 1.0. These findings indicate that propranolol is a mechanism-based inactivator of a cytochrome P450 isozyme(s) belonging to the CYP2D subfamily.
Collapse
Affiliation(s)
- Y Masubuchi
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | |
Collapse
|
10
|
Rowland K, Yeo WW, Ellis SW, Chadwick IG, Haq I, Lennard MS, Jackson PR, Ramsay LE, Tucker GT. Inhibition of CYP2D6 activity by treatment with propranolol and the role of 4-hydroxy propranolol. Br J Clin Pharmacol 1994; 38:9-14. [PMID: 7946944 PMCID: PMC1364831 DOI: 10.1111/j.1365-2125.1994.tb04315.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. The 4-hydroxylation of propranolol by rat and human liver microsomes is associated with formation of a chemically reactive species which binds irreversibly to cytochrome P4502D6 (CYP2D6) destroying its catalytic function. Therefore, the effect of propranolol treatment (80 mg twice daily) on debrisoquine phenotype was examined, to see if it resulted in phenocopying in vivo. The role of 4-hydroxypropranolol (4OHP) in the inhibition of CYP2D6 activity was also studied using microsomes from yeast expressing CYP2D6 and from human livers; metoprolol was used as the CYP2D6 substrate. 2. Although a significant effect on apparent oxidation phenotype was demonstrated, the absolute change in the urinary debrisoquine/4-hydroxydebrisoquine ratio (D/4HD) was small, such that no extensive metaboliser who received propranolol treatment was reclassified as a poor metaboliser. The in vitro studies indicated that 4OHP is a potent inhibitor of metoprolol metabolism (Ki approximately 1 microM). This inhibitory effect was enhanced when 4OHP was pre-incubated in the presence of a NADPH generating system and human liver microsomes. The effect was decreased significantly when reduced glutathione was added to the pre-incubation mixture. Metabolism of 4OHP occurred when incubated with human liver microsomes in the presence of a NADPH generating system and irrespective of CYP2D6 phenotype; yeast expressing CYP2D6 did not metabolise 4OHP. 3. We conclude that, although treatment with propranolol 80 mg twice daily significantly decreases the catalytic function of CYP2D6, the inhibition is insufficient to result in phenocopying. The reactive intermediate produced by further metabolism of 4OHP is probably scavenged effectively in vivo by glutathione and other nucleophiles.
Collapse
Affiliation(s)
- K Rowland
- Department of Medicine and Pharmacology, University of Sheffield, Royal Hallamshire Hospital
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ghabrial H, Nand R, Stead CK, Smallwood RA, Morgan DJ. Product inhibition and dose-dependent bioavailability of propranolol in the isolated perfused rat liver preparation. J Pharm Sci 1994; 83:931-6. [PMID: 7965671 DOI: 10.1002/jps.2600830704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We investigated in the isolated perfused rat liver (IPRL) whether product inhibition of metabolism contributes to the dose-dependent bioavailability of propranolol, a drug with a high, but saturable, hepatic first-pass effect. (+/-)-Propranolol was infused in the IPRL, using a recirculating design, for three 36-min periods (n = 9). Mean steady-state reservoir, i.e. hepatic inflow concentrations (Cin), were 4.97, 10.4, and 20.4 microM, respectively. Mean reservoir concentrations of the metabolites 4'-hydroxypropranolol, 5'-hydroxypropranolol, N-desisopropylpropranolol, and naphthoxylactic acid (NLA), a major side-chain-oxidation metabolite, increased disproportionately with propranolol dose, but their production rate did not reach steady state. In separate experiments (n = 4), perfusate containing 7.1, 12.8, and 21.6 microM (+/-)-propranolol, corresponding to administration rates of 114, 205, and 346 nmol/min, respectively, was passed through the liver for 30 min each using a single-pass design. The bioavailability (hepatic outflow concentration/Cin) of propranolol increased with Cin from 0.012 to 0.150 to 0.288 in the recirculating IPRL. In the single-pass IPRL the increase (0.0077 in 0.0669 to 0.136) was significantly less (P < 0.001). The greater bioavailability of propranolol in recirculating experiments was attributed to product inhibition since metabolites do not accumulate with the single-pass design. NLA did not appear to be the inhibiting metabolite because in further single-pass experiments with propranolol Cin of 21.6 microM the presence of NLA (21.6 microM) in perfusate had no effect on propranolol bioavailability (n = 7) compared with control experiments (n = 5).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Ghabrial
- Department of Medicine, Repatriation Hospital, University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
12
|
Kagimoto N, Masubuchi Y, Fujita S, Narimatsu S, Suzuki T. Kinetic analysis of propranolol-induced impairment of its own metabolism in rats. J Pharm Pharmacol 1994; 46:528-30. [PMID: 7932057 DOI: 10.1111/j.2042-7158.1994.tb03846.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of repetitive oral administration of propranolol (100 mg kg-1 day-1, 5 days) on the kinetics of liver microsomal propranolol metabolism was investigated in the rat. Vmax values of the high-affinity phase for biphasic kinetics of propranolol 4- and 5-hydroxylase activities were decreased by propranolol pretreatment, while those of the low-affinity phase were unchanged. The Vmax value of monophasic 7-hydroxylase activity was also decreased. On the other hand, the Vmax value of N-desisopropylase activity in the propranolol-treated rats was increased more than 2-fold compared with non-treated (control) rats, resulting in a change from monophasic in control rats to biphasic kinetics in propranolol-treated rats. These findings indicate that repetitive administration of propranolol selectively impairs a CYP2D isozyme that is involved in the high-affinity phases for propranolol ring-hydroxylations.
Collapse
Affiliation(s)
- N Kagimoto
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | |
Collapse
|
13
|
Masubuchi Y, Yamamoto LA, Uesaka M, Fujita S, Narimatsu S, Suzuki T. Substrate stereoselectivity and enantiomer/enantiomer interaction in propranolol metabolism in rat liver microsomes. Biochem Pharmacol 1993; 46:1759-65. [PMID: 8250961 DOI: 10.1016/0006-2952(93)90580-p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The substrate stereoselectivity and enantiomer/enantiomer interaction of (S)- and (R)- propranolol for the formation of their metabolites were investigated in rat liver microsomal fractions. The enantiomers of primary metabolites of propranolol, 4-, 5-, 7-hydroxy- and N-desisopropyl-propranolol were separated and assayed by an HPLC method employing a chiral ovomucoid column. Regioselective substrate stereoselectivity (R < S for 4- and 5-hydroxylations; R > S for 7-hydroxylation; R = S for N-desisopropylation) was observed in the formation of propranolol metabolites when the individual enantiomers or a racemic mixture of propranolol were used as substrates. Concentration-dependent metabolic inhibition of propranolol enantiomers by their optical isomers was also observed. In addition, the inhibition of propranolol 4-, 5- and 7-hydroxylations between the enantiomers showed a typical competitive nature. These findings suggested that the propranolol enantiomers competed for the same enzyme, probably a cytochrome P450 isozyme in the CYP2D subfamily.
Collapse
Affiliation(s)
- Y Masubuchi
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Suzuki T, Ishida R, Matsui S, Masubuchi Y, Narimatzu S. Kinetic analysis of mutual metabolic inhibition of lidocaine and propranolol in rat liver microsomes. Biochem Pharmacol 1993; 45:1528-30. [PMID: 8471076 DOI: 10.1016/0006-2952(93)90055-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The metabolic interaction between lidocaine (LD) and propranolol (PL) was analysed kinetically in rat liver microsomes. Employing a very short incubation time of 30 sec, we demonstrated that PL competitively inhibited liver microsomal 3-hydroxylation of LD, but did not affect either the formation of monoethylglycinexylidide or methylhydroxylidocaine from LD in PL concentrations up to 1 microM. On the other hand, LD competitively inhibited PL 4-, 5- and 7-hydroxylations, but the inhibition type of LD for PL N-desisopropylation could not be clarified. Comparison of the kinetic data for liver microsomes from Wistar and Dark Agouti rats indicated that among the primary metabolic pathways of LD, the Vmax value for 3-hydroxylation was markedly less in female Dark Agouti rats. The results suggest that LD 3-hydroxylation and PL ring hydroxylations are mediated by the same isozyme(s) belonging to the CYP2D subfamily.
Collapse
Affiliation(s)
- T Suzuki
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | |
Collapse
|
15
|
Elliott SL, Morgan DJ, Angus PW, Ghabrial H, Watson RG, Smallwood RA. The effect of hypoxia on propranolol clearance during antegrade and retrograde flow in the isolated perfused rat liver preparation. Biochem Pharmacol 1993; 45:573-8. [PMID: 8442756 DOI: 10.1016/0006-2952(93)90129-k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We investigated, using the single-pass isolated perfused rat liver preparation, whether the centrilobular location of hepatic oxidative drug metabolism could be a contributing factor to the marked sensitivity of drug oxidation to hypoxia. Livers (N = 7) were each perfused for 130 min with 2 micrograms/mL (+)-propranolol, a drug metabolized almost entirely by oxidation in the rat. The direction of flow was reversed after 60 min, the order of flow direction being randomized. Normal oxygenation was used during the first 30 min of antegrade and of retrograde perfusion, but in the second 30 min perfusate was equilibrated with a N2/O2 mixture designed to reduce hepatic oxygen delivery by half. During normal oxygenation there was no significant difference between antegrade and retrograde perfusion in hepatic oxygen delivery and physiological parameters such as oxygen consumption and extraction, perfusion pressure and bile flow. During hypoxia, mean oxygen delivery was slightly lower with retrograde perfusion (retrograde: mean = 2.37 mumol/min/g liver, range = 1.56-3.17; antegrade: mean = 2.90 mumol/min/g liver, range = 1.96-4.08; P = 0.04), but there was no significant difference in physiological parameters within each liver (P > 0.05). Propranolol clearance during normal oxygenation was similar to the perfusion rate (10 mL/min) and was the same for both directions of perfusion (antegrade 9.88 +/- 0.07 mL/min, retrograde 9.88 +/- 0.13 mL/min, P > 0.05). Hypoxia reduced propranolol clearance substantially, but the decrease was significantly greater with antegrade perfusion (5.65 +/- 1.89 mL/min) than with retrograde perfusion (6.76 +/- 1.95 mL/min, P = 0.014). Oxidative drug metabolism is located primarily in the centrilobular zone and sinusoidal oxygen concentration is lowest in the "downstream" zone with both antegrade and retrograde perfusion. These findings suggest that the centrilobular location of propranolol metabolism may influence the effect of hypoxia on propranolol elimination, but is not a major contributor to the marked sensitivity of propranolol elimination to hypoxia antegrade perfusion.
Collapse
Affiliation(s)
- S L Elliott
- University of Melbourne, Department of Medicine, Heidelberg Repatriation Hospital, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Ishida R, Suzuki K, Masubuchi Y, Narimatsu S, Fujita S, Suzuki T. Enzymatic basis for the non-linearity of hepatic elimination of propranolol in the isolated perfused rat liver. Biochem Pharmacol 1992; 44:2281-8. [PMID: 1472093 DOI: 10.1016/0006-2952(92)90670-e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Propranolol (PL) metabolism was studied in the isolated perfused rat liver under single-pass and steady-state conditions. An attempt was made to predict the data observed in the isolated rat liver perfusion at PL infusion rates of 89-1317 nmol/min using the microsomal kinetic parameters obtained in our previous paper (Ishida et al., Biochem Pharmacol 43: 2489-2492, 1992) and the unbound PL fractions in rat liver microsomes and the perfusion medium. The values of kinetic parameters obtained in rat liver microsomes were corrected for the whole liver. Two groups of cytochrome P450 isozymes having high (Km < 0.5 microM)- and low (Km > 20 microM)-affinities participate in the metabolism of PL and sudan III pretreatment induces the low-affinity enzymes rather than the high-affinity enzymes in control rats. Of high-affinity isozyme(s) PL 4-hydroxylase and 7-hydroxylase made a major contribution to the overall activity, while for low-affinity isozymes PL 4-hydroxylase and N-desisopropylase did. A nonlinear relationship between the PL concentrations entering and leaving the liver was predicted from these corrected kinetic parameters using the venous equilibrium model. The outflow concentrations and the metabolic rates of PL for the predicted curves were over-estimated at higher inflow PL concentrations and under-estimated at higher substrate concentrations, respectively. On the other hand, the prediction for them was successfully carried out for the livers whose intrinsic clearance was altered due to the induction of low-affinity enzymes in PL metabolism by sudan III pretreatment. The outflow rates of 4-hydroxypropranolol showed a downward curvature at lower substrate concentrations, followed a linear rise in the livers from control rats, while the outflow rates of 5- and 7-hydroxypropranolol exhibited their respective limiting values. The outflow rates of 4-hydroxypropranolol and N-desisopropylpropranolol were enhanced markedly with increasing the outflow unbound concentration of PL by sudan III pretreatment. These results indicate that non-linear PL first-pass metabolism is due to the saturation of the reactions for the high-affinity enzymes among enzymes engaging in PL ring hydroxylations.
Collapse
Affiliation(s)
- R Ishida
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Ishida R, Obara S, Masubuchi Y, Narimatsu S, Fujita S, Suzuki T. Induction of propranolol metabolism by the azo dye sudan III in rats. Biochem Pharmacol 1992; 43:2489-92. [PMID: 1376995 DOI: 10.1016/0006-2952(92)90332-d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Effects of the azo dye sudan III, an inducer of cytochrome P450 isozymes belonging to the CYP1A subfamily, on propranolol (PL) in vitro and in vivo metabolism were investigated in rats. The kinetic parameters of the activity for each metabolic pathway were determined in liver microsomes from control and sudan III-treated rats. Sudan III pretreatment increased extensively PL 4-hydroxylase, 5-hydroxylase and N-desisopropylase activities at high but not at low PL concentrations. On the other hand, kinetic parameters of 7-hydroxylase activity were not affected by sudan III pretreatment. Sudan III pretreatment decreased blood concentrations of PL after intraportal infusion of PL at high doses (12.5 and 20 mg/kg), but not at a low dose (5 mg/kg). These observations were consistent with data obtained from the in intro studies showing that sudan III pretreatment induced low-affinity but not high-affinity cytochrome P450 isozymes involved in PL metabolism in rat liver microsomes.
Collapse
Affiliation(s)
- R Ishida
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Masubuchi Y, Suzuki K, Fujita S, Suzuki T. A possible mechanism of the impairment of hepatic microsomal monooxygenase activities after multiple administration of propranolol in rats. Biochem Pharmacol 1992; 43:757-62. [PMID: 1540229 DOI: 10.1016/0006-2952(92)90240-j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanism of selective inhibition of propranolol hydroxylations after multiple administration of the drug was investigated by metabolic inhibition studies in rat liver microsomes. The time course of irreversible binding of a reactive metabolic intermediate(s) of propranolol to liver microsomal protein, which was proposed as the cause of the impairment of enzymatic activities, had a delayed phase followed by a rapid linear rise, while the unmetabolized propranolol remaining in the reaction mixture showed a rapid linear decrease immediately after the onset of incubation. Thus, it was conceivable that the reactive intermediate(s) was not always formed directly from the parent drug, propranolol. Among four primary metabolites of propranolol, 4-hydroxypropranolol was the most potent inhibitor of propranolol hydroxylase activities, and this inhibition was much enhanced by preincubation of 4-hydroxypropranolol with NADPH. The type of inhibition kinetics of propranolol 5- and 7-hydroxylase activities by 4-hydroxypropranolol was changed from a competitive type to a non-competitive type by the preincubation. These results suggest that a reactive metabolite(s) of propranolol which impaired propranolol hydroxylase activities is a further metabolite(s) of 4-hydroxypropranolol.
Collapse
Affiliation(s)
- Y Masubuchi
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | |
Collapse
|
19
|
Masubuchi Y, Narimatsu S, Suzuki T. Activation of propranolol and irreversible binding to rat liver microsomes: strain differences and effects of inhibitors. Biochem Pharmacol 1992; 43:635-7. [PMID: 1540217 DOI: 10.1016/0006-2952(92)90587-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In summary, strain difference and inhibition studies showed that an enzyme(s) converting propranolol to a reactive metabolite capable of irreversible binding to microsomal macromolecules appeared to be a P450 isozyme(s) which catalyses debrisoquine 4-hydroxylation in rats. It seems likely that cytochrome P450 isozymes responsible for debrisoquine 4-hydroxylation activate propranolol and may be impaired after chronic use of propranolol also in human subjects. The findings obtained in the present study provide a clue for the elucidation of the mechanism of propranolol-induced impairment of the drug metabolizing enzyme system. Further studies using purified debrisoquine 4-hydroxylase are required to identify a P450 isozyme(s) responsible for the metabolic activation of propranolol. We are now performing experiments along this line.
Collapse
Affiliation(s)
- Y Masubuchi
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | |
Collapse
|
20
|
Suzuki T, Narimatsu S, Fujita S, Masubuchi Y, Umeda S. Impairment of bunitrolol 4-hydroxylase activity in liver microsomes of dark agouti rats. Biochem Pharmacol 1991; 42:2241-4. [PMID: 1958240 DOI: 10.1016/0006-2952(91)90362-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- T Suzuki
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | |
Collapse
|