1
|
Kudo Y, Nakamura K, Tsuzuki H, Hirota K, Kawai M, Takaya D, Fukuzawa K, Honma T, Yoshino Y, Nakamura M, Shiota M, Fujimoto N, Ikari A, Endo S. Docosahexaenoic acid enhances the treatment efficacy for castration-resistant prostate cancer by inhibiting autophagy through Atg4B inhibition. Arch Biochem Biophys 2024; 760:110135. [PMID: 39181384 DOI: 10.1016/j.abb.2024.110135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Autophagy induction in cancer is involved in cancer progression and the acquisition of resistance to anticancer agents. Therefore, autophagy is considered a potential therapeutic target in cancer therapy. In this study, we found that long-chain fatty acids (LCFAs) have inhibitory effects on Atg4B, which is essential for autophagosome formation, through screening based on the pharmacophore of 21f, a recently developed Atg4B inhibitor. Among these fatty acids, docosahexaenoic acid (DHA), a polyunsaturated fatty acid, exhibited the most potent Atg4B inhibitory activity. DHA inhibited autophagy induced by androgen receptor signaling inhibitors (ARSI) in LNCaP and 22Rv1 prostate cancer cells and significantly increased apoptotic cell death. Furthermore, we investigated the effect of DHA on resistance to ARSI by establishing darolutamide-resistant prostate cancer 22Rv1 (22Rv1/Dar) cells, which had developed resistance to darolutamide, a novel ARSI. At baseline, 22Rv1/Dar cells showed a higher autophagy level than parental 22Rv1 cells. DHA significantly suppressed Dar-induced autophagy and sensitized 22Rv1/Dar cells by inducing apoptotic cell death through mitochondrial dysfunction. These results suggest that DHA supplementation may improve prostate cancer therapy with ARSI.
Collapse
Affiliation(s)
- Yudai Kudo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Kana Nakamura
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Honoka Tsuzuki
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Kotaro Hirota
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Daisuke Takaya
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Kaori Fukuzawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Teruki Honma
- Center for Biosystems Dynamics Research, RIKEN, Kanagawa, 230-0045, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Mitsuhiro Nakamura
- Laboratories of Drug Informatics, Department of Pharmacy Practice and Science, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Fukuoka, 807-8555, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Satoshi Endo
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, 501-1194, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
2
|
Kudo Y, Endo S, Fujita M, Ota A, Kamatari YO, Tanaka Y, Ishikawa T, Ikeda H, Okada T, Toyooka N, Fujimoto N, Matsunaga T, Ikari A. Discovery and Structure-Based Optimization of Novel Atg4B Inhibitors for the Treatment of Castration-Resistant Prostate Cancer. J Med Chem 2022; 65:4878-4892. [PMID: 35244402 DOI: 10.1021/acs.jmedchem.1c02113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autophagy inhibition is an attractive target for cancer therapy. In this study, we discovered inhibitors of Atg4B essential for autophagosome formation and evaluated their potential as therapeutics for prostate cancer. Seventeen compounds were identified as candidates after in silico screening and a thermal shift assay. Among them, compound 17 showed the most potent Atg4B inhibitory activity, inhibited autophagy induced by anti-castration-resistant prostate cancer (CRPC) drugs, and significantly enhanced apoptosis. Although 17 has been known as a phospholipase A2 (PLA2) inhibitor, other PLA2 inhibitors had no effect on Atg4B and autophagy. We then performed structural optimization based on molecular modeling and succeeded in developing 21f (by shortening the alkyl chain of 17), which was a potent competitive inhibitor for Atg4B (Ki = 3.1 μM) with declining PLA2 inhibitory potency. Compound 21f enhanced the anticancer activity of anti-CRPC drugs via autophagy inhibition. These findings suggest that 21f can be used as an adjuvant drug for therapy with anti-CRPC drugs.
Collapse
Affiliation(s)
- Yudai Kudo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Mei Fujita
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Atsumi Ota
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuji O Kamatari
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Takeshi Ishikawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Hayato Ikeda
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
3
|
Sivaramakrishnan V, Ilamathi M, Ghosh KS, Sathish S, Gowda TV, Vishwanath BS, Rangappa KS, Dhananjaya BL. Virtual analysis of structurally diverse synthetic analogs as inhibitors of snake venom secretory phospholipase A2. J Mol Recognit 2015. [PMID: 26218369 DOI: 10.1002/jmr.2492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Due to the toxic pathophysiological role of snake venom phospholipase A2 (PLA2 ), its compelling limitations to anti-venom therapy in humans and the need for alternative therapy foster considerable pharmacological interest towards search of PLA2 specific inhibitors. In this study, an integrated approach involving homology modeling, molecular dynamics and molecular docking studies on VRV-PL-V (Vipera russellii venom phospholipase A2 fraction-V) belonging to Group II-B secretory PLA2 from Daboia russelli pulchella is carried out in order to study the structure-based inhibitor design. The accuracy of the model was validated using multiple computational approaches. The molecular docking study of this protein was undertaken using different classes of experimentally proven, structurally diverse synthetic inhibitors of secretory PLA2 whose selection is based on IC50 value that ranges from 25 μM to 100 μM. Estimation of protein-ligand contacts by docking analysis sheds light on the importance of His 47 and Asp 48 within the VRV-PL-V binding pocket as key residue for hydrogen bond interaction with ligands. Our virtual analysis revealed that compounds with different scaffold binds to the same active site region. ADME analysis was also further performed to filter and identify the best potential specific inhibitor against VRV-PL-V. Additionally, the e-pharmacophore was generated for the best potential specific inhibitor against VRV-PL-V and reported here. The present study should therefore play a guiding role in the experimental design of VRV-PL-V inhibitors that may provide better therapeutic molecular models for PLA2 recognition and anti-ophidian activity.
Collapse
Affiliation(s)
- V Sivaramakrishnan
- Cardiomyocyte Toxicity and Oncology Research Lab, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401, India
| | - M Ilamathi
- Cardiomyocyte Toxicity and Oncology Research Lab, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401, India
| | - K S Ghosh
- Department of Chemistry, National Institute of Technology (NIT), Hamirpur, 177 005, India
| | - S Sathish
- Department of Studies in Biochemistry, University of Mysore, Mysore, 570006, India
| | - T V Gowda
- Department of Studies in Biochemistry, University of Mysore, Mysore, 570006, India
| | - B S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Mysore, 570006, India
| | - K S Rangappa
- Department of Chemistry, University of Mysore, Mysore, 570006, India
| | - B L Dhananjaya
- Toxinology/Toxicology and Drug Discovery Unit, Center for Emerging Technologies, Jain University, Jakkasandra post, Ramanagara, 562112, India
| |
Collapse
|
4
|
El-Hashash MA, Soliman AY, Bakeer HM, Mohammed FK, Hassan H. Synthesis of Novel Heterocyclic Compounds with Expected Antibacterial Activities from 4-(4-Bromophenyl)-4-oxobut-2-enoic Acid. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Ahmed Y. Soliman
- Chemistry Department, College of Science; King Khalid University; Abha Saudi Arabia
| | - Hadeer M. Bakeer
- Chemistry Department, Faculty of Science; Fayoum University; Fayoum Egypt
| | | | - Haitham Hassan
- Chemistry Department, Faculty of Science; Fayoum University; Fayoum Egypt
| |
Collapse
|
5
|
Eissa AMF. Utility of β-(4-Chlorobenzoyl)acrylic Acid in Heterocyclic Synthesis. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200500173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Mironova GD, Belosludtsev KN, Surin AM, Trudovishnikov AS, Belosludtseva NV, Pinelis VG, Krasilnikova IA, Khodorov BI. Mitochondrial lipid pore in the mechanism of glutamate-induced calcium deregulation of brain neurons. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2012; 6:45-55. [DOI: 10.1134/s1990747811060080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
|
7
|
Haggerty TJ, Dunn IS, Rose LB, Newton EE, Kurnick JT. A screening assay to identify agents that enhance T-cell recognition of human melanomas. Assay Drug Dev Technol 2011; 10:187-201. [PMID: 22085019 DOI: 10.1089/adt.2011.0379] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although a series of melanoma differentiation antigens for immunotherapeutic targeting has been described, heterogeneous expression of antigens such as Melan-A/MART-1 and gp100 results from a loss of antigenic expression in many late stage tumors. Antigen loss can represent a means for tumor escape from immune recognition, and a barrier to immunotherapy. However, since antigen-negative tumor phenotypes frequently result from reversible gene regulatory events, antigen enhancement represents a potential therapeutic opportunity. Accordingly, we have developed a cell-based assay to screen for compounds with the ability to enhance T-cell recognition of melanoma cells. This assay is dependent on augmentation of MelanA/MART-1 antigen presentation by a melanoma cell line (MU89). T-cell recognition is detected as interleukin-2 production by a Jurkat T cell transduced to express a T-cell receptor specific for an HLA-A2 restricted epitope of the Melan-A/MART-1 protein. This cellular assay was used to perform a pilot screen by using 480 compounds of known biological activity. From the initial proof-of-principle primary screen, eight compounds were identified as positive hits. A panel of secondary screens, including orthogonal assays, was used to validate the primary hits and eliminate false positives, and also to measure the comparative efficacy of the identified compounds. This cell-based assay, thus, yields consistent results applicable to the screening of larger libraries of compounds that can potentially reveal novel molecules which allow better recognition of treated tumors by T cells.
Collapse
|
8
|
β-Adrenergic-induced CD40 overexpression on gingival fibroblasts: role of PGE2. Cell Biol Int 2010; 34:365-72. [DOI: 10.1042/cbi20090028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Tanaka K, Augustine GJ. A positive feedback signal transduction loop determines timing of cerebellar long-term depression. Neuron 2008; 59:608-20. [PMID: 18760697 DOI: 10.1016/j.neuron.2008.06.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 06/24/2008] [Accepted: 06/27/2008] [Indexed: 11/30/2022]
Abstract
Synaptic activity produces short-lived second messengers that ultimately yield a long-term depression (LTD) of cerebellar Purkinje cells. Here, we test the hypothesis that these brief second messenger signals are translated into long-lasting biochemical signals by a positive feedback loop that includes protein kinase C (PKC) and mitogen-activated protein kinase. Histochemical "epistasis" experiments demonstrate the reciprocal activation of these kinases, and physiological experiments--including the use of a light-activated protein kinase--demonstrate that such reciprocal activation is required for LTD. Timed application of enzyme inhibitors reveals that this positive feedback loop causes PKC to be active for more than 20 min, allowing sufficient time for LTD expression. Such regenerative mechanisms may sustain other long-lasting forms of synaptic plasticity and could be a general mechanism for prolonging signal transduction networks.
Collapse
Affiliation(s)
- Keiko Tanaka
- Department of Neurobiology, Duke University Medical Center, Box 3209, Durham, NC 27710, USA
| | | |
Collapse
|
10
|
Tanaka K, Khiroug L, Santamaria F, Doi T, Ogasawara H, Ellis-Davies GCR, Kawato M, Augustine GJ. Ca2+ requirements for cerebellar long-term synaptic depression: role for a postsynaptic leaky integrator. Neuron 2007; 54:787-800. [PMID: 17553426 DOI: 10.1016/j.neuron.2007.05.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/30/2007] [Accepted: 05/16/2007] [Indexed: 11/23/2022]
Abstract
Photolysis of a caged Ca(2+) compound was used to characterize the dependence of cerebellar long-term synaptic depression (LTD) on postsynaptic Ca(2+) concentration ([Ca(2+)](i)). Elevating [Ca(2+)](i) was sufficient to induce LTD without requiring any of the other signals produced by synaptic activity. A sigmoidal relationship between [Ca(2+)](i) and LTD indicated a highly cooperative triggering of LTD by Ca(2+). The duration of the rise in [Ca(2+)](i) influenced the apparent Ca(2+) affinity of LTD, and this time-dependent behavior could be described by a leaky integrator process with a time constant of 0.6 s. A computational model, based on a positive-feedback cycle that includes protein kinase C and MAP kinase, was capable of simulating these properties of Ca(2+)-triggered LTD. Disrupting this cycle experimentally also produced the predicted changes in the Ca(2+) dependence of LTD. We conclude that LTD arises from a mechanism that integrates postsynaptic Ca(2+) signals and that this integration may be produced by the positive-feedback cycle.
Collapse
Affiliation(s)
- Keiko Tanaka
- Department of Neurobiology, Duke University Medical Center, Box 3209, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hampson LJ, Agius L. Acetylcholine exerts additive and permissive but not synergistic effects with insulin on glycogen synthesis in hepatocytes. FEBS Lett 2007; 581:3955-60. [PMID: 17662981 DOI: 10.1016/j.febslet.2007.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/03/2007] [Accepted: 07/12/2007] [Indexed: 12/12/2022]
Abstract
Parasympathetic (cholinergic) innervation is implicated in the stimulation of hepatic glucose uptake by portal vein hyperglycaemia. We determined the direct effects of acetylcholine on hepatocytes. Acute exposure to acetylcholine mimicked insulin action on inactivation of phosphorylase, stimulation of glycogen synthesis and suppression of phosphoenolpyruvate carboxykinase mRNA levels but with lower efficacy and without synergy. Pre-exposure to acetylcholine had a permissive effect on insulin action similar to glucocorticoids and associated with increased glucokinase activity. It is concluded that acetylcholine has a permissive effect on insulin action but cannot fully account for the rapid stimulation of glucose uptake by the portal signal.
Collapse
Affiliation(s)
- Laura J Hampson
- Institute of Cellular Medicine, Division of Diabetes, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
12
|
Andresen BT, Shome K, Jackson EK, Romero GG. AT2 receptors cross talk with AT1 receptors through a nitric oxide- and RhoA-dependent mechanism resulting in decreased phospholipase D activity. Am J Physiol Renal Physiol 2004; 288:F763-70. [PMID: 15572519 DOI: 10.1152/ajprenal.00323.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ANG II activation of phospholipase D (PLD) is required for ERK and NAD(P)H oxidase activation, both of which are involved in hypertension. Previous findings demonstrate that ANG II stimulates PLD activity through AT(1) receptors in a RhoA-dependent mechanism. Additionally, endogenous AT(2) receptors in preglomerular smooth muscle cells attenuate ANG II-mediated PLD activity. In the present study, we examined the signal transduction mechanisms used by endogenous AT(2) receptors to modulate ANG II-induced PLD activity through either PLA(2) generation of lysophosphatidylethanolamine or Galpha(i)-mediated generation of nitric oxide (NO) and interaction with RhoA. Blockade of AT(2) receptors, Galpha(i) and NO synthase, but not PLA(2), enhanced ANG II-mediated PLD activity in cells rich in, but not poor in, AT(2) receptors. Moreover, NO donors, a direct activator of guanylyl cyclase and a cGMP analog, but not lysophosphatidylethanolamine, inhibited ANG II-mediated PLD activity, whereas an inhibitor of guanylyl cyclase augmented ANG II-induced PLD activity. AT(2) receptor- and NO-mediated attenuation of ANG II-induced PLD activity was completely lost in cells transfected with S188A RhoA, which cannot be phosphorylated on serine 188. Therefore, our data indicate that AT(2) receptors activate Galpha(i), subsequently stimulating NO synthase and leading to increased soluble guanylyl cyclase activity, generation of cGMP, and activation of a protein kinase, resulting in phosphorylation of RhoA on serine 188. Furthermore, because AT(2) receptors inhibit AT(1) receptor signaling to PLD via modulating RhoA activity, AT(2) receptor signaling can potentially regulate multiple vasoconstrictive signaling systems through inactivating RhoA.
Collapse
Affiliation(s)
- Bradley T Andresen
- Dept. of Pharmacology, W1345 Biomedical Science Tower, Univ. of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
13
|
de Castro RC, Landucci EC, Toyama MH, Giglio JR, Marangoni S, De Nucci G, Antunes E. Leucocyte recruitment induced by type II phospholipases A(2) into the rat pleural cavity. Toxicon 2000; 38:1773-85. [PMID: 10858516 DOI: 10.1016/s0041-0101(00)00107-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bothropstoxin-I (BthTX-I) and bothropstoxin-II (BthTX-II) are Lys-49 and Asp-49 phospholipases A(2) (PLA(2)s), respectively, isolated from Bothrops jararacussu venom. Piratoxin-I (PrTX-I) is a Lys-49 PLA(2) isolated from Bothrops pirajai venom. In this study, the ability of BthTX-I, BthTX-II and PrTX-I to recruit leucocytes into the rat pleural cavity and potential mechanisms underlying this effect were investigated. Intrapleural injection of either BthTX-I or PrTX-I (10-100 microg/cavity each) caused a significant leucocyte infiltration at 12 h after injection. The maximal cell migration was observed with the dose of 30 microg/cavity (14.9+/-15.5 and 17.6+/-1. 6x10(6) cells/cavity, respectively). Leucocyte counts consisted mainly of mononuclear cells, but significant amounts of neutrophils and eosinophils were also observed. Intrapleural injection of BthTX-II (10-100 microg/cavity) caused a marked leucocyte infiltration at 6 and 12 h after injection. The maximal response was observed with the dose of 100 microg/cavity (57.3+/-3.4x10(6) cells/cavity, 6 h). The leucocyte counts were mainly composed of neutrophils and mononuclear cells. The treatment of either BthTX-I (30 microg/cavity, 12 h) or BthTX-II (30 microg/cavity, 6 h) with the PLA(2) inhibitor p-bromophenacyl bromide (p-BPB) had no effect on the total and differential leucocyte counts induced by these proteins. The same treatment partially reduced the PrTX-I-induced pleural leucocyte infiltration. In rats depleted of the histamine and 5-hydroxytryptamine (5-HT) stores by chronic treatment with compound 48/80, the total leucocyte counts in response to BthTX-I, BthTX-II and PrTX-I was not significantly affected compared to control animals. In addition, BthTX-I, BthTX-II and PrTX-I (100 microg/ml each) significantly degranulated pleural mast cells in vitro leading to the release of [(14)C]5-hydroxytryptamine ([(14)C]5-HT). p-BPB and heparin (50 IU/ml) significantly reduced the [(14)C]5-HT release induced by these PLA(2)s. Our results demonstrate that BthTX-I, BthTX-II and PrTX-I recruit leucocyte into the pleural cavity of the rat by mechanisms unrelated to enzymatic activity and pleural mast cell degranulation.
Collapse
Affiliation(s)
- R C de Castro
- Department of Pharmacology, Faculty of Medical Sciences, UNICAMP, PO Box 6111, 13081-970, (SP), Campinas, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Springer DM, Luh BY, Bronson JJ, McElhone KE, Mansuri MM, Gregor KR, Nettleton DO, Stanley PL, Tramposch KM. Biaryl diacid inhibitors of human s-PLA2 with anti-inflammatory activity. Bioorg Med Chem 2000; 8:1087-109. [PMID: 10882020 DOI: 10.1016/s0968-0896(00)00047-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Twenty-four hydrophobic dicarboxylic acids are described which were evaluated as inhibitors of 14 kDa human platelet phospholipase A2 (HP-PLA2). In general, biarylacetic acid derivatives were found to be more active than biaryl acids or biarylpropanoic acids. More potent inhibitors were obtained when hydrophobic groups were attached to the biaryl acid nucleus using an olefin linkage as compared to an ether linkage. Compounds with larger hydrophobic groups were usually more potent inhibitors of HP-PLA2. Five of the compounds disclosed in this report (2, 4, 28, 36b and 36i) were found to possess significant anti-inflammatory activity in a phorbol ester induced mouse ear edema model of chronic inflammation.
Collapse
Affiliation(s)
- D M Springer
- Central Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Eintracht J, Maathai R, Mellors A, Ruben L. Calcium entry in Trypanosoma brucei is regulated by phospholipase A2 and arachidonic acid. Biochem J 1998; 336 ( Pt 3):659-66. [PMID: 9841878 PMCID: PMC1219917 DOI: 10.1042/bj3360659] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In contrast with mammalian cells, little is known about the control of Ca2+ entry into primitive protozoans. Here we report that Ca2+ influx in pathogenic Trypanosoma brucei can be regulated by phospholipase A2 (PLA2) and the subsequent release of arachidonic acid (AA). Several PLA2 inhibitors blocked Ca2+ entry; 3-(4-octadecyl)-benzoylacrylic acid (OBAA; IC50 0.4+/-0.1 microM) was the most potent. We identified in live trypanosomes PLA2 activity that was sensitive to OBAA and could be stimulated by Ca2+, suggesting the presence of positive feedback control. The cell-associated PLA2 activity was able to release [14C]AA from labelled phospholipid substrates. Exogenous AA (5-50 microM) also initiated Ca2+ entry in a manner that was inhibited by the Ca2+ antagonist La3+ (100 microM). Ca2+ entry did not depend on AA metabolism or protein kinase activation. The cell response was specific for AA, and fatty acids with greater saturation than tetraeicosanoic acid (AA) or with chain lengths less than C20 exhibited greatly diminished ability to initiate Ca2+ influx. Myristate and palmitate inhibited PLA2 activity and also inhibited Ca2+ influx. Overall, these results demonstrate that Ca2+ entry into T. brucei can result from phospholipid hydrolysis and the release of eicosanoic acids.
Collapse
Affiliation(s)
- J Eintracht
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | | | | | | |
Collapse
|
16
|
Chen M, Xiao CY, Hashizume H, Abiko Y. Phospholipase A2 is not responsible for lysophosphatidylcholine-induced damage in cardiomyocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H1782-7. [PMID: 9815086 DOI: 10.1152/ajpheart.1998.275.5.h1782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lysophosphatidylcholine (LPC) is known to increase the intracellular concentration of Ca2+ ([Ca2+]i), leading to cell damage. In the present study we examined whether LPC activates phospholipase A2 (PLA2) and whether the activation of PLA2 is responsible for the LPC-induced cell damage in isolated rat cardiomyocytes. LPC (15 microM) produced an increase in [Ca2+]i, a change in cell shape from rod to round, and the release of creatine kinase (CK) accompanied by a significant elevation of the cellular level of nonesterified fatty acids (NEFA), especially arachidonic acid. Three PLA2 inhibitors, 7, 7-dimethyl-(5Z,8Z)-eicosadienoic acid (DEDA), 3-(4-octadecylbenzoyl)acrylic acid (OBAA), and manoalide, attenuated the LPC-induced accumulation of unsaturated NEFA to a similar degree. Nevertheless, whereas both DEDA and OBAA attenuated the LPC-induced increase in [Ca2+]i, change in cell shape, and release of CK, manoalide attenuated none of them. In the Ca2+-free solution, LPC did not increase [Ca2+]i with significantly less accumulation of NEFA, but it changed the cell shape from rod to round and increased the release of CK. These results suggest that exogenous LPC increases the PLA2 activity, which, however, may not be responsible for the LPC-induced damage in cardiomyocytes.
Collapse
Affiliation(s)
- M Chen
- Department of Pharmacology, Asahikawa Medical College, Nishikagura 4-5, Asahikawa 078-8510, Japan
| | | | | | | |
Collapse
|
17
|
Lee SY, Yeo EJ, Choi MU. Phospholipase D activity in L1210 cells: a model for oleate-activated phospholipase D in intact mammalian cells. Biochem Biophys Res Commun 1998; 244:825-31. [PMID: 9535751 DOI: 10.1006/bbrc.1998.8348] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase D (PLD) in lymphocytic mouse leukemic L1210 cells has been found to be activated by oleate both in vitro and in intact cells. The PLD activity was measured by phosphatidylethanol produced from radiolabeled phosphatidylcholine or myristic acid in the presence of ethanol. This oleate-activated PLD was further characterized in intact cells and compared with that in HL60 cells. Unlike PLD in HL60 cells, the PLD in L1210 cells was activated by unsaturated fatty acids, stimulated by melittin, insensitive to guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), ADP-ribosylation factor (ARF) and phosphatidylinositol 4,5-bisphosphate (PIP2), independent of phorbol 12-myristate 13-acetate (PMA) and staurosporine, and inhibited by pervanadate. These observations indicate that the PLD present in L1210 cells is distinct from that in HL60 cells. Key PLD properties of L1210 cells such as insensitivity to GTP gamma S, ARF, PIP2, or PMA were in good agreement with currently known in vitro properties of the oleate-activated PLD found in mammalian sources. Therefore, the L1210 cells could be used as an intact-cell source for an oleate-activated PLD.
Collapse
Affiliation(s)
- S Y Lee
- Department of Chemistry, Seoul National University, Korea
| | | | | |
Collapse
|
18
|
|
19
|
Springer DM, Bronson JJ, Mansuri MM, Nettleton DO, Tramposch KM. A simple synthesis of biaryl phospholipase A2 inhibitors: Probing hydrophobic effects. Bioorg Med Chem Lett 1996. [DOI: 10.1016/s0960-894x(96)00499-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Inhibition of free radical production or free radical scavenging protects from the excitotoxic cell death mediated by glutamate in cultures of cerebellar granule neurons. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00382-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Aitdafoun M, Mounier C, Heymans F, Binisti C, Bon C, Godfroid JJ. 4-Alkoxybenzamidines as new potent phospholipase A2 inhibitors. Biochem Pharmacol 1996; 51:737-42. [PMID: 8602868 DOI: 10.1016/0006-2952(95)02172-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A series of 4-alkoxybenzamidines was synthesized, varying the number of carbons of the alkyl chain, and their potency as phospholipase A2 (PLA2) inhibitors was evaluated. The relationship between their capacity to inhibit PLA2 activity and their lipophilicity was examined. The optimum of the inhibitory effect against two extracellular PLA2S from rabbit platelets and bovine pancreas was observed with compounds bearing an alkyl chain of 12 and 14 carbons. These 4-dodecyl and tetradecyloxbenzamidines inhibited bovine pancreatic and rabbit platelet lysate PLA2S with IC50 values of 3 microM and 5-5.8 microM, respectively. The mechanism of inhibition was of the competitive type. In addition, 4-tetradecyloxbenzamidine was shown to exert an antiinflammatory effect in vivo on the carrageenan-induced rat paw oedema. These results show that 4-tetradecyloxybenzamidine will serve as an interesting tool to investigate the physiological role of mammalian-secreted PLA2, both in vitro and in vivo.
Collapse
Affiliation(s)
- M Aitdafoun
- Laboratorire De Pharacochimie Moléculaire, Universite Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Lewis AJ, Keft AF. A review on the strategies for the development and application of new anti-arthritic agents. Immunopharmacol Immunotoxicol 1995; 17:607-63. [PMID: 8537604 DOI: 10.3109/08923979509037187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A J Lewis
- Wyeth Ayerst Research, Princeton, New Jersey, USA
| | | |
Collapse
|
23
|
Frohberg P, Kupfer C, Stenger P, Baumeister U, Nuhn P. [Lipoxygenase inhibitors. IV. Synthesis and cyclization reactions of open-chain N1-aryl-substituted amidrazones]. Arch Pharm (Weinheim) 1995; 328:505-16. [PMID: 7677567 DOI: 10.1002/ardp.19953280607] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
alpha-Carbonyl carboxylic acid arylhydrazonochlorides obtained by Japp-Klingemann reaction are the starting substances for the synthesis of alpha-carbonyl carboxylic acid arylhydrazonoamides, -esters and -thioesters. The inhibiting activity of these compounds against 15- and 5-lipoxygenase is described. Reactions of derivatives of amidrazones with formaldehyde give triazole, triazoline and unexpected benzotriazepine derivatives.
Collapse
Affiliation(s)
- P Frohberg
- Institut für Phamrazeutische Chemie der Martin-Luther-Universität Halle-Wittenberg, Halle
| | | | | | | | | |
Collapse
|
24
|
Abstract
Low-frequency synaptic stimulation evokes long-term depression of synaptic strength. One hypothesis is that modification of AMPA receptors by phospholipase A2 causes long-term depression. A previous study reported bromophenacylbromide, a completely nonselective phospholipase A2 inhibitor, blocked long-term depression at Schaffer collateral-CA1 synapses in hippocampus. In contrast, I show here that 3-(4-octadecyl)-benzoylacrylic acid (OBAA), a much more potent and selective inhibitor of low and high molecular weight phospholipase A2, does not block long-term depression at these same synapses, indicating that phospholipase A2 is not necessary for modifications causing long-term depression.
Collapse
Affiliation(s)
- P K Stanton
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461-1602, USA
| |
Collapse
|