1
|
de Bruin N, Ferreirós N, Schmidt M, Hofmann M, Angioni C, Geisslinger G, Parnham MJ. Mutual inversion of flurbiprofen enantiomers in various rat and mouse strains. Chirality 2018; 30:632-641. [DOI: 10.1002/chir.22826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Natasja de Bruin
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Research Center for Translational Medicine and Pharmacology TMP; Industriepark Höchst; Frankfurt am Main Germany
| | - Nerea Ferreirós
- Pharmazentrum Frankfurt/ZAFES; Institute of Clinical Pharmacology, Goethe-University Frankfurt; Frankfurt am Main Germany
| | - Mike Schmidt
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Research Center for Translational Medicine and Pharmacology TMP; Industriepark Höchst; Frankfurt am Main Germany
| | - Martine Hofmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Research Center for Translational Medicine and Pharmacology TMP; Industriepark Höchst; Frankfurt am Main Germany
| | - Carlo Angioni
- Pharmazentrum Frankfurt/ZAFES; Institute of Clinical Pharmacology, Goethe-University Frankfurt; Frankfurt am Main Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Research Center for Translational Medicine and Pharmacology TMP; Industriepark Höchst; Frankfurt am Main Germany
- Pharmazentrum Frankfurt/ZAFES; Institute of Clinical Pharmacology, Goethe-University Frankfurt; Frankfurt am Main Germany
| | - Michael John Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Research Center for Translational Medicine and Pharmacology TMP; Industriepark Höchst; Frankfurt am Main Germany
| |
Collapse
|
2
|
Uraki M, Kawase A, Iwaki M. Stereoselective hepatic disposition of ibuprofen in the perfused liver of rat with adjuvant-induced arthritis. Xenobiotica 2016; 47:943-950. [DOI: 10.1080/00498254.2016.1252869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Misato Uraki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| |
Collapse
|
3
|
Lloyd MD, Yevglevskis M, Lee GL, Wood PJ, Threadgill MD, Woodman TJ. α-Methylacyl-CoA racemase (AMACR): Metabolic enzyme, drug metabolizer and cancer marker P504S. Prog Lipid Res 2013; 52:220-30. [DOI: 10.1016/j.plipres.2013.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
|
4
|
Habibi Z, Mohammadi M, Yousefi M. Enzymatic hydrolysis of racemic ibuprofen esters using Rhizomucor miehei lipase immobilized on different supports. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.02.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Galletti P, Emer E, Gucciardo G, Quintavalla A, Pori M, Giacomini D. Chemoenzymatic synthesis of (2S)-2-arylpropanols through a dynamic kinetic resolution of 2-arylpropanals with alcohol dehydrogenases. Org Biomol Chem 2010; 8:4117-23. [PMID: 20625608 DOI: 10.1039/c005098a] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We applied Horse Liver Alcohol Dehydrogenase (HLADH) to the enantioselective synthesis of six (2S)-2-arylpropanols, useful intermediates in the synthesis of Profens. The influence of substrate structure and reaction conditions on yields and enantioselectivity were investigated. The high yields and high enantioselectivity towards the (S)-enantiomer obtained in the bioreduction of 2-arylpropionic aldehydes, clearly indicate the achievement of a DKR process through a combination of an enzyme-catalyzed kinetic reduction with a chemical base-catalyzed racemization of the unreacted aldehydes. The racemization step is represented by the keto-enol equilibrium of the aldehyde and can be controlled by modulating pH and reaction conditions.
Collapse
Affiliation(s)
- Paola Galletti
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, Bologna, I-40126, Italy.
| | | | | | | | | | | |
Collapse
|
6
|
Liu Y, Wang F, Tan T. Cyclic resolution of racemic ibuprofen via coupled efficient lipase and acid-base catalysis. Chirality 2009; 21:349-53. [DOI: 10.1002/chir.20578] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Darley DJ, Butler DS, Prideaux SJ, Thornton TW, Wilson AD, Woodman TJ, Threadgill MD, Lloyd MD. Synthesis and use of isotope-labelled substrates for a mechanistic study on human alpha-methylacyl-CoA racemase 1A (AMACR; P504S). Org Biomol Chem 2008; 7:543-52. [PMID: 19156321 DOI: 10.1039/b815396e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alpha-Methylacyl-CoA racemase (AMACR) is an important enzyme for the metabolism of branched-chain lipids and drugs. The enzyme is over-expressed in prostate and other cancers. AMACR 1A, the major splice variant, was purified from recombinant E. coli cells as a His-tag protein. Purified enzyme catalysed chiral inversion of both S- and R-2-methyldecanoyl-CoA, with an equilibrium constant of 1.09 +/- 0.14 (2S/2R). Reactions with (2)H-labelled substrate showed that loss of the alpha-proton was a prerequisite for chiral inversion. Reactions conducted in (2)H(2)O indicated that reprotonation was not stereospecific. These results are the first mechanistic study on any recombinant mammalian alpha-methylacyl-CoA racemase.
Collapse
Affiliation(s)
- Daniel J Darley
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Uno S, Uraki M, Komura H, Ikuta H, Kawase A, Iwaki M. Impaired intrinsic chiral inversion activity of ibuprofen in rats with adjuvant-induced arthritis. Xenobiotica 2008; 38:1410-21. [DOI: 10.1080/00498250802483768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Hao H, Wang G, Sun J. Enantioselective Pharmacokinetics of Ibuprofen and Involved Mechanisms. Drug Metab Rev 2008; 37:215-34. [PMID: 15747501 DOI: 10.1081/dmr-200047999] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although dexibuprofen (S-ibuprofen) was marketed in Austria and Switzerland, the racemate at various formulations is still extensively used worldwide, and there are no indications that the racemate will be replaced by the single enantiomer. Thus, elucidation of the characteristics and involved mechanisms of the chiral pharmacokinetics of racemic ibuprofen is of special importance for the understanding of the pharmacological and toxicological consequences, and for prediction of the clinically potential drug interactions and influence of the pathological states. Stereoselective pharmacokinetics and metabolism are common features for chiral nonsteroidal antiinflammatory drugs (NSAIDs) and especially for 2-arylpropionic acid derivatives characterized with a chiral center adjacent to the carboxyl group. Although the enantioselective pharmacokinetic characteristics of different NSAIDs should be treated case by case, they share similar mechanisms underlying the protein binding, metabolism and chiral inversion. Ibuprofen was the most extensively researched drug in terms of chiral characteristics and mechanisms. Therefore, elucidation of the mechanisms derived from research on ibuprofen may provide better understanding and prediction of other chiral drugs. This article attempts to elucidate the chiral pharmacokinetics and involved mechanisms of ibuprofen in comparison with other NSAIDs based on recent developments. Topics on history of ibuprofen, enantioselective analysis method, absorption, protein binding, conventional metabolism, metabolic chiral inversion, gene polymorphism, and biochemical developments were included. It is worth mentioning that some underlying biochemical mechanisms, especially for the metabolic chiral inversion and ethnic differences still remain to be seen. Further research is required to develop human-resourced researching model and to provide more evidence concerning the site of inversion, species variation, CYP450 gene polymorphisms, and biochemical mechanisms.
Collapse
Affiliation(s)
- Haiping Hao
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | |
Collapse
|
10
|
Lloyd MD, Darley DJ, Wierzbicki AS, Threadgill MD. Alpha-methylacyl-CoA racemase--an 'obscure' metabolic enzyme takes centre stage. FEBS J 2008; 275:1089-102. [PMID: 18279392 DOI: 10.1111/j.1742-4658.2008.06290.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Branched-chain lipids are important components of the human diet and are used as drug molecules, e.g. ibuprofen. Owing to the presence of methyl groups on their carbon chains, they cannot be metabolized in mitochondria, and instead are processed and degraded in peroxisomes. Several different oxidative degradation pathways for these lipids are known, including alpha-oxidation, beta-oxidation, and omega-oxidation. Dietary branched-chain lipids (especially phytanic acid) have attracted much attention in recent years, due to their link with prostate, breast, colon and other cancers as well as their role in neurological disease. A central role in all the metabolic pathways is played by alpha-methylacyl-CoA racemase (AMACR), which regulates metabolism of these lipids and drugs. AMACR catalyses the chiral inversion of a diverse number of 2-methyl acids (as their CoA esters), and regulates the entry of branched-chain lipids into the peroxisomal and mitochondrial beta-oxidation pathways. This review brings together advances in the different disciplines, and considers new research in both the metabolism of branched-chain lipids and their role in cancer, with particular emphasis on the crucial role played by AMACR. These recent advances enable new preventative and treatment strategies for cancer.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Department of Pharmacy & Pharmacology, Medicinal Chemistry, University of Bath, Claverton Down, Bath, UK.
| | | | | | | |
Collapse
|
11
|
Xin YF, Zhou XJ, Cheng X, Wang YX. Renal D-amino acid oxidase mediates chiral inversion of N(G)-nitro-D-arginine. J Pharmacol Exp Ther 2005; 312:1090-6. [PMID: 15496613 DOI: 10.1124/jpet.104.077123] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N(G)-nitro-d-arginine (d-NNA), i.v. injected into rats, produced a pressor response, and was presumed to act via chiral inversion into N(G)-nitro-l-arginine (l-NNA), an inhibitor of nitric oxide synthase. We examined the possible role of renal d-amino acid oxidase (DAAO) in the chiral inversion of d-NNA to l-NNA. In pentobarbital-anesthetized rats, l-NNA was detected via capillary electrochromatography in the blood immediately after i.v. injection of d-NNA. The time course of appearance of l-NNA paralleled the increase in blood pressure elicited by d-NNA. Unilateral renal ligation partially, and bilateral ligation completely, blocked the pressor response as well as the conversion of d-NNA to l-NNA. Furthermore, injection into conscious rats of sodium benzoate, a selective DAAO inhibitor, completely blocked the pressor response to naive d-NNA, but not pressor response to d-NNA preincubated with homogenates of the kidney. Homogenates of the kidneys, liver (lesser degree), and brain (much lesser degree) converted d-NNA to l-NNA, and the chiral inversion was blocked by the addition of benzoate. Moreover, d-NNA chiral inversion correlates with the activity of DAAO. Our results reveal a novel pathway of chiral inversion of d-amino acids where the renal DAAO plays an essential role that accounts for the biological activity of d-NNA.
Collapse
Affiliation(s)
- Yan-Fei Xin
- Laboratory of Pharmacology, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200030, China.
| | | | | | | |
Collapse
|
12
|
Savolainen K, Kotti TJ, Schmitz W, Savolainen TI, Sormunen RT, Ilves M, Vainio SJ, Conzelmann E, Hiltunen JK. A mouse model for α-methylacyl-CoA racemase deficiency: adjustment of bile acid synthesis and intolerance to dietary methyl-branched lipids. Hum Mol Genet 2004; 13:955-65. [PMID: 15016763 DOI: 10.1093/hmg/ddh107] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
alpha-Methylacyl-CoA racemase (Amacr) deficiency in humans leads to sensory motor neuronal and liver abnormalities. The disorder is recessively inherited and caused by mutations in the AMACR gene, which encodes Amacr, an enzyme presumed to be essential for bile acid synthesis and to participate in the degradation of methyl-branched fatty acids. To generate a model to study the pathophysiology in Amacr deficiency we inactivated the mouse Amacr gene. As per human Amacr deficiency, the Amacr(-/-) mice showed accumulation (44-fold) of C27 bile acid precursors and decreased (over 50%) primary (C24) bile acids in bile, serum and liver, however the Amacr(-/-) mice were clinically symptomless. Real-time quantitative PCR analysis showed that, among other responses, the level of mRNA for peroxisomal multifunctional enzyme type 1 (pMFE-1) was increased 3-fold in Amacr(-/-) mice. This enzyme can be placed, together with CYP3A11 and CYP46A1, to make an Amacr-independent pathway for the generation of C24 bile acids. Exposure of Amacr(-/-) mice to a diet supplemented with phytol, a source for branched-chain fatty acids, triggered the development of a disease state with liver manifestations, redefining the physiological significance of Amacr. Amacr is indispensable for the detoxification of dietary methyl-branched lipids and, although it contributes normally to bile acid synthesis from cholesterol, the putative pMFE-1-mediated cholesterol degradation can provide for generation of bile acids, allowing survival without Amacr. Based upon our mouse model, we propose elimination of phytol from the diet of patients suffering from Amacr deficiency.
Collapse
Affiliation(s)
- Kalle Savolainen
- Department of Biochemistry, Biocenter Oulu, University of Oulu, FIN-90014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Skálová L, Szotáková B, Lamka J, Král R, Vanková I, Baliharová V, Wsól V. Biotransformation of flobufen enantiomers in ruminant hepatocytes and subcellular fractions. Chirality 2002; 13:760-4. [PMID: 11746816 DOI: 10.1002/chir.10014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Flobufen (F), a new antiinflammatory drug, has one chiral and one prochiral center in its structure. Reduction of rac-F, the principal biotransformation pathway, leads to the formation of four diastereoisomers of 4-dihydroflobufen (DHF). F was chosen as a model substrate for interspecies comparison of activity, stereospecificity, and stereoselectivity of biotransformation enzymes in fallow bucks, red deer stags, and roe bucks in vitro. Formation of F metabolites was examined in hepatocyte suspension and in subcellular fractions of liver homogenate. (+)-R-F, (-)-S-F and rac-F were used as substrates. After incubation of substrates, the amounts and ratios of DHF diastereoisomers and F enantiomers were assessed by HPLC, with (R,R)-ULMO and terguride-bonded columns. Considerable interspecies differences in stereoselectivity and stereospecificity of F reductases were found at the cellular and subcellular levels, although these ruminants are closely related. Chiral inversion of F enantiomers to their antipodes was detected in vitro in all ruminants tested, but individual species also differed in the direction and rate of this inversion.
Collapse
Affiliation(s)
- L Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Research Centre LN 00B125, Charles University, Hradec Králové, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Dexketoprofen trometamol is a water-soluble salt of the dextrorotatory enantiomer of the nonsteroidal anti-inflammatory drug (NSAID) ketoprofen. Racemic ketoprofen is used as an analgesic and an anti-inflammatory agent, and is one of the most potent in vitro inhibitors of prostaglandin synthesis. This effect is due to the (S)-(+)-enantiomer (dexketoprofen), while the (R)-(-)-enantiomer is devoid of such activity. The racemic ketoprofen exhibits little stereoselectivity in its pharmacokinetics. Relative bioavailability of oral dexketoprofen (12.5 and 25mg, respectively) is similar to that of oral racemic ketoprofen (25 and 50mg, respectively), as measured in all cases by the area under the concentration-time curve values for (S)-(+)-ketoprofen. Dexketoprofen trometamol, given as a tablet, is rapidly absorbed, with a time to maximum plasma concentration (tmax) of between 0.25 and 0.75 hours, whereas the tmax for the (S)-(+)-enantiomer after the racemic drug, administered as tablets or capsules prepared with the free acid, is between 0.5 and 3 hours. The drug does not accumulate significantly when administered as 25mg of free acid 3 times daily. The profile of absorption is changed when dexketoprofen is ingested with food, reducing both the rate of absorption (tmax) and the maximal plasma concentration. Dexketoprofen is strongly bound to plasma proteins, particularly albumin. The disposition of ketoprofen in synovial fluid does not appear to be stereoselective. Dexketoprofen trometamol is not involved in the accumulation of xenobiotics in fat tissues. It is eliminated following extensive biotransformation to inactive glucuroconjugated metabolites. No (R)-(-)-ketoprofen is found in the urine after administration of dexketoprofen, confirming the absence of bioinversion of the (S)-(+)-enantiomer in humans. Conjugates are excreted in urine, and virtually no drug is eliminated unchanged. The analgesic efficacy of the oral pure (S)-(+)-enantiomer is roughly similar to that observed after double dosages of the racemic compound. At doses above 7mg, dexketoprofen was significantly superior to placebo in patients with moderate to severe pain. A dose-response relationship between 12.5 and 25mg could be seen in the time-effects curves, the superiority of the 25mg dose being more a result of an extended duration of action than of an increase in peak analgesic effect. A plateau in the analgesic activity of dexketoprofen trometamol at the 25mg dose is suggested. The time to onset of pain relief appeared to be shorter in patients treated with dexketoprofen trometamol. The drug was well tolerated.
Collapse
Affiliation(s)
- M J Barbanoj
- Pharmacological Research Area, Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | | | | |
Collapse
|
15
|
Abstract
The pharmacokinetics and metabolic chiral inversion of the S(+)- and R(-)-enantiomers of tiaprofenic acid (S-TIA, R-TIA) were assessed in vivo in rats, and in addition the biochemistry of inversion was investigated in vitro in rat liver homogenates. Drug enantiomer concentrations in plasma were investigated following administration of S-TIA and R-TIA (i.p. 3 and 9 mg/kg) over 24 hr. Plasma concentrations of TIA enantiomers were determined by stereospecific HPLC analysis. After administration of R-TIA it was found that 1) there was a time delay of peak S-TIA plasma concentrations, 2) S-TIA concentrations exceeded R-TIA concentrations from approximately 2 hr after dosing, 3) Cmax and AUC(0-infinity) for S-TIA were greater than for R-TIA following administration of S-TIA, and 4) inversion was bidirectional but favored inversion of R-TIA to S-TIA. Bidirectional inversion was also observed when TIA enantiomers were incubated with liver homogenates up to 24 hr. However, the rate of inversion favored transformation of the R-enantiomer to the S-enantiomer. In conclusion, stereoselective pharmacokinetics of R- and S-TIA were observed in rats and bidirectional inversion in rat liver homogenates has been demonstrated for the first time. Chiral inversion of TIA may involve metabolic routes different from those associated with inversion of other 2-arylpropionic acids such as ibuprofen.
Collapse
Affiliation(s)
- K Erb
- Department of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, Germany
| | | | | | | |
Collapse
|
16
|
Neupert W, Brugger R, Euchenhofer C, Brune K, Geisslinger G. Effects of ibuprofen enantiomers and its coenzyme A thioesters on human prostaglandin endoperoxide synthases. Br J Pharmacol 1997; 122:487-92. [PMID: 9351505 PMCID: PMC1564971 DOI: 10.1038/sj.bjp.0701415] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Ibuprofen enantiomers and their respective coenzyme A thioesters were tested in human platelets and blood monocytes to determine their selectivity and potency as inhibitors of cyclo-oxygenase activity of prostaglandin endoperoxide synthase-1 (PGHS-1) and PGHS-2. 2. Human blood from volunteers was drawn and allowed to clot at 37 degrees C for 1 h in the presence of increasing concentrations of the test compounds (R-ibuprofen, S-ibuprofen, R-ibuprofenoyl-CoA, S-ibuprofenoyl-CoA, NS-398). Immunoreactive (ir) thromboxane B2 (TXB2) concentrations in serum were determined by a specific EIA assay as an index of the cyclo-oxygenase activity of platelet PGHS-1. 3. Heparin-treated blood from the same donors was incubated at 37 degrees C for 24 h with the same concentrations of the test compounds in the presence of lipopolysaccharide (LPS, 10 microg ml[-1]). The contribution of PGHS-1 was suppressed by pretreatment of the volunteers with aspirin (500 mg; 48 h before venepuncture). As a measure of LPS induced PGHS-2 activity immunoreactive prostaglandin E2 (irPGE2) plasma concentrations were determined by a specific EIA assay. 4. S-ibuprofen inhibited the activity of PGHS-1 (IC50 2.1 microM) and PGHS-2 (IC50 1.6 microM) equally. R-ibuprofen inhibited PGHS-1 (IC50 34.9) less potently than S-ibuprofen and showed no inhibition of PGHS-2 up to 250 microM. By contrast R-ibuprofenoyl-CoA thioester inhibited PGE2 production from LPS-stimulated monocytes almost two orders of magnitude more potently than the generation of TXB2 (IC50 5.6 vs 219 microM). 5. Western blotting of PGHS-2 after LPS induction of blood monocytes showed a concentration-dependent inhibition of PGHS-2 protein expression by ibuprofenoyl-CoA thioesters. 6. These data confirm that S-ibuprofen represents the active entity in the racemate with respect to cyclo-oxygenase activity. More importantly the data suggest a contribution of the R-enantiomer to therapeutic effects not only by chiral inversion to S-ibuprofen but also via inhibition of induction of PGHS-2 mediated by R-ibuprofenoyl-CoA thioester. 7. The data may explain why racemic ibuprofen is ranked as one of the safest non-steroidal anti-inflammatory drugs (NSAIDs) so far determined in epidemiological studies.
Collapse
Affiliation(s)
- W Neupert
- Department of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
17
|
Reichel C, Brugger R, Bang H, Geisslinger G, Brune K. Molecular cloning and expression of a 2-arylpropionyl-coenzyme A epimerase: a key enzyme in the inversion metabolism of ibuprofen. Mol Pharmacol 1997; 51:576-82. [PMID: 9106621 DOI: 10.1124/mol.51.4.576] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The 2-arylpropionic acid derivatives, including ibuprofen, are the most widely used anti-inflammatory analgesic cyclooxygenase inhibitors. The (-)-R-enantiomer, which is inactive in terms of cyclooxygenase inhibition, is epimerized in vivo via the 2-arylpropionyl-coenzyme A (CoA) epimerase to the cyclooxygenase-inhibiting (+)-S-enantiomer. The molecular biology of the epimerization pathway is largely unknown. To clarify this mechanism, the sequence of the 2-arylpropionyl-CoA epimerase was identified, and the enzyme cloned and expressed. A cDNA clone encoding the 2-arylpropionyl-CoA epimerase was isolated from a rat liver cDNA library. The nucleotide and the deduced amino acid sequence of this enzyme was determined. Significant amino acid sequence similarity was found between the rat epimerase and carnitine dehydratases from Caenorhabditis elegans (41%) and Escherichia coli (27%). A bacterial expression system (E. coli strain M15[pREP4]) was used to express the epimerase protein, representing up to 20-30% of the total cellular E. coli protein. The expression of the epimerase was confirmed with Western blots using specific anti-epimerase antibodies and by measuring the rate of inversion of (R)-ibuprofenoyl-CoA. Northern blot analysis revealed a prominent 1.9-kb mRNA transcript in different rat tissues. In addition to its obvious importance in drug metabolism, the homology of the epimerase with carnitine dehydratases from several species suggests that this protein, which up to now has only been characterized as having a role in drug transformation, has a function in lipid metabolism.
Collapse
Affiliation(s)
- C Reichel
- Department of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen/Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
18
|
Brugger R, García Alía B, Reichel C, Waibel R, Menzel S, Brune K, Geisslinger G. Isolation and characterization of rat liver microsomal R-ibuprofenoyl-CoA synthetase. Biochem Pharmacol 1996; 52:1007-13. [PMID: 8831719 DOI: 10.1016/0006-2952(96)00415-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microsomal long-chain acyl-CoA synthetase (EC 6.1.2.3.) has been suggested to be involved in the stereoselective formation of the CoA thioester of ibuprofen. In this study, we demonstrated that the microsomal enzyme from rat liver responsible for palmitoyl-CoA synthesis also catalyzes the formation of R-ibuprofenoyl-CoA in a Mg(2+)- and ATP-dependent process. Long-chain acyl-CoA synthetase from rat liver microsomes was purified to homogeneity as evidenced by SDS-gel electrophoresis. Simultaneous measurements of palmitoyl-CoA and R-ibuprofenoyl-CoA formation with HPLC in various fractions and purification steps during protein isolation revealed a high correlation between both activities. The purification procedure included solubilization of the microsomes obtained from rat livers with Triton X-100 and subsequent chromatography of the 100,000 x g supernatant on blue-sepharose, hydroxyapatite, and phosphocellulose. The purified enzyme exhibited an apparent molecular weight of 72 kDa as estimated by SDS gel electrophoresis, with specific activities of 71 nmol.min-1.mg-1 protein and 901 nmol.min-1.mg-1 protein for formation of R-ibuprofenoyl-CoA and palmitoyl-CoA, respectively. Palmitoyl-CoA formation catalyzed by the purified enzyme exhibited biphasic kinetics indicative of two isoforms, a high-affinity (KM 0.13 +/- 0.11 microM), low-capacity form and a low-affinity (KM 81 +/- 11.5 microM), high-capacity form. In contrast, measurement of R-ibuprofenoyl-CoA synthesis over a concentration range from 5 to 3000 microM showed the participation of a single CoA ligase with a KM of 184 +/- 19 microM, corresponding to the low-affinity isoform of palmitoyl-CoA synthesis with a marked enantioselectivity towards the R-form of ibuprofen. R-ibuprofenoyl-CoA formation of the enzyme preparation was inhibited by palmitic acid (KI 13.5 +/- 0.5 microM) and S-ibuprofen (KI 405 +/- 10 microM). In summary, these data give strong evidence for the identity of R-ibuprofenoyl-CoA and long-chain acyl-CoA synthetase.
Collapse
Affiliation(s)
- R Brugger
- Department of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Geisslinger G, Schaible HG. New insights into the site and mode of antinociceptive action of flurbiprofen enantiomers. J Clin Pharmacol 1996; 36:513-20. [PMID: 8809636 DOI: 10.1002/j.1552-4604.1996.tb05041.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The S-enantiomer of flurbiprofen has been shown to have both antiinflammatory and antinociceptive effects, whereas R-flurbiprofen is antinociceptive but not antiinflammatory. Importantly, only S-flurbiprofen inhibited prostaglandin biosynthesis in vitro at therapeutic concentrations. R-flurbiprofen did not undergo significant chiral inversion to S-flurbiprofen in rats and humans. A study was conducted to gain new insight into the possible sites and modes of action of flurbiprofen enantiomers. In a modified Randall Selitto assay, both enantiomers were antinociceptive in a dose-dependent manner after systemic administration. After local administration into the inflamed paw, only S-flurbiprofen produced significant dose-related antinociception. In a physiologic study, we recorded extracellularly from nociceptive spinal cord neurons that were rendered hyperexcitable. Intravenous administration of R- and S-flurbiprofen reduced responses of neurons to pressure applied to the inflamed knee and the noninflamed ankle and paw in a dose-dependent manner. When injected directly into the knee joint, only S-flurbiprofen but not R-flurbiprofen reduced responses to pressure. These results suggest a central site of antinociceptive action for R- and S-flurbiprofen and an additional peripheral site for S-flurbiprofen. The findings may be of clinical relevance, as it was demonstrated that both enantiomers also were antinociceptive in humans. Because R-flurbiprofen caused less toxicity in rats than the S-enantiomer or the racemic compound, a reduction in the quantitatively most important side effects in the gastrointestinal tract might be achieved with the use of R-flurbiprofen for pain therapy.
Collapse
Affiliation(s)
- G Geisslinger
- Department of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, Germany
| | | |
Collapse
|
20
|
Mauleón D, Artigas R, García ML, Carganico G. Preclinical and clinical development of dexketoprofen. Drugs 1996; 52 Suppl 5:24-45; discussion 45-6. [PMID: 8922555 DOI: 10.2165/00003495-199600525-00005] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dexketoprofen trometamol is a water-soluble salt of the dextrorotatory enantiomer of the nonsteroidal anti-inflammatory drug (NSAID) ketoprofen. Racemic ketoprofen is used as an analgesic and an anti-inflammatory agent, and is one of the most potent in vitro inhibitors of prostaglandin synthesis. This effect is due to the S(+)-enantiomer (dexketoprofen), while the R(-)-enantiomer is devoid of such activity. The pharmacokinetic profile of ketoprofen and its enantiomers was assessed in several animals species and in human volunteers. In humans, the relative bioavailability of oral dexketoprofen trometamol (12.5 and 25 mg, respectively) is similar to that of oral racemic ketoprofen (25 and 50 mg, respectively), as measured in all cases by the area under the concentration-time curve values for S(+)-ketoprofen. Dexketoprofen trometamol, given as a tablet, is rapidly absorbed, with a time to maximum plasma concentration (tmax) of between 0.25 and 0.75 hours, whereas the tmax for the S-enantiomer after the racemic drug, administered as tablets or capsules prepared with the free acid, is between 0.5 and 3 hours. Peak plasma concentrations of 1.4 and 3.1 mg/L are reached after administration of dexketoprofen trometamol 12.5 and 25 mg, respectively. From 70 to 80% of the administered dose is recovered in the urine during the first 12 hours, mainly as the acyl-glucuronoconjugated parent drug. No R(-)-ketoprofen is found in the urine after administration of dexketoprofen [S(+)-ketoprofen], confirming the absence of bioinversion of the S(+)-enantiomer in humans. in animal studies, the anti-inflammatory potency of dexketoprofen was always equivalent to that demonstrated by twice the dose of ketoprofen. Similarly, animal studies showed a high analgesic potency for dexketoprofen trometamol. The R(-)-enantiomer demonstrated a much lower potency, its analgesic action being apparent only in conditions where the metabolic bioinversion to the S(+)-enantiomer was significant. The gastric ulcerogenic effect of dexketoprofen at various oral doses (1.5 to 6 mg/kg) in the rat do not differ from those of the corresponding double doses (3 to 12 mg/kg) of racemic ketoprofen. Repeated (5-day) oral administration of dexketoprofen as the trometamol salt causes less gastric ulceration than was observed after the acid form of both dexketoprofen and the racemate. In addition, single dose dexketoprofen as the free acid at 10 to 20 mg/kg does not show a significant intestinal ulcerogenic effect in rats, while racemic ketoprofen 20 or 40 mg/kg is clearly ulcerogenic to the small intestine. The analgesic efficacy of oral dexketoprofen trometamol 10 to 20 mg is superior to that of placebo and similar to that of ibuprofen 400 mg in patients with moderate to serve pain after third molar extraction. The time to onset of pain relief appeared to be shorter in patients treated with dexketoprofen trometamol than in those treated with ibuprofen 400 mg. Dexketoprofen trometamol was well tolerated, with a reported incidence of adverse events similar to that of placebo.
Collapse
Affiliation(s)
- D Mauleón
- Research and Development Department, Laboratories Menarini SA, Barcelona, Spain
| | | | | | | |
Collapse
|