1
|
Bassareo V, Maccioni R, Talani G, Zuffa S, El Abiead Y, Lorrai I, Kawamura T, Pantis S, Puliga R, Vargiu R, Lecca D, Enrico P, Peana A, Dazzi L, Dorrestein PC, Sanna PP, Sanna E, Acquas E. Receptor and metabolic insights on the ability of caffeine to prevent alcohol-induced stimulation of mesolimbic dopamine transmission. Transl Psychiatry 2024; 14:391. [PMID: 39341817 PMCID: PMC11438888 DOI: 10.1038/s41398-024-03112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
The consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh). Here we show that caffeine, via antagonistic activity on A2A adenosine receptors (A2AR), prevents alcohol-dependent activation of mesolimbic DA function as assessed, in-vivo, by brain microdialysis of AcbSh DA and, in-vitro, by electrophysiological recordings of pVTA DA neuronal firing. Accordingly, while the A1R antagonist DPCPX fails to prevent the effects of alcohol on DA function, both caffeine and the A2AR antagonist SCH 58261 prevent alcohol-dependent pVTA generation of salsolinol and increase in AcbSh DA in-vivo, as well as alcohol-dependent excitation of pVTA DA neurons in-vitro. However, caffeine also prevents direct salsolinol- and morphine-stimulated DA function, suggesting that it can exert these inhibitory effects also independently from affecting alcohol-induced salsolinol formation or bioavailability. Finally, untargeted metabolomics of the pVTA showcases that caffeine antagonizes alcohol-mediated effects on molecules (e.g. phosphatidylcholines, fatty amides, carnitines) involved in lipid signaling and energy metabolism, which could represent an additional salsolinol-independent mechanism of caffeine in impairing alcohol-mediated stimulation of mesolimbic DA transmission. In conclusion, the outcomes of this study strengthen the potential of caffeine, as well as of A2AR antagonists, for future development of preventive/therapeutic strategies for alcohol use disorder.
Collapse
Affiliation(s)
- Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Riccardo Maccioni
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Giuseppe Talani
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sofia Pantis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Roberta Puliga
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Romina Vargiu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Daniele Lecca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandra Peana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Laura Dazzi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Enrico Sanna
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| |
Collapse
|
2
|
Dazzi L, Sanna F, Talani G, Bassareo V, Biggio F, Follesa P, Pisu MG, Porcu P, Puliga R, Quartu M, Serra M, Serra MP, Sanna E, Acquas E. Binge-like administration of alcohol mixed to energy drinks to male adolescent rats severely impacts on mesocortical dopaminergic function in adulthood: A behavioral, neurochemical and electrophysiological study. Neuropharmacology 2024; 243:109786. [PMID: 37952712 DOI: 10.1016/j.neuropharm.2023.109786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
A growing body of evidence indicates that the practice of consuming alcohol mixed with energy drinks (ED) (AMED) in a binge drinking pattern is significantly diffusing among the adolescent population. This behavior, aimed at increasing the intake of alcohol, raises serious concerns about its long-term effects. Epidemiological studies suggest that AMED consumption might increase vulnerability to alcohol abuse and have a gating effect on the use of illicit drugs. The medial prefrontal cortex (mPFC) is involved in the modulation of the reinforcing effects of alcohol and of impulsive behavior and plays a key role in the development of addiction. In our study, we used a binge-like protocol of administration of alcohol, ED, or AMED in male adolescent rats, to mimic the binge-like intake behavior observed in humans, in order to evaluate whether these treatments could differentially affect the function of mesocortical dopaminergic neurons in adulthood. We did so by measuring: i) physiological sensorimotor gating; ii) voluntary alcohol consumption and dopamine transmission before, during, and after presentation of alcohol; iii) electrophysiological activity of VTA dopaminergic neurons and their sensitivity to a challenge with alcohol. Our results indicate that exposure to alcohol, ED, or AMED during adolescence induces differential adaptive changes in the function of mesocortical dopaminergic neurons and, in particular, that AMED exposure decreases their sensitivity to external stimuli, possibly laying the foundation for the altered behaviors observed in adulthood.
Collapse
Affiliation(s)
- Laura Dazzi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, SS 554 - bivio per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, SS 554 - bivio per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Giuseppe Talani
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, SS 554 - bivio per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Francesca Biggio
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, SS 554 - bivio per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, SS 554 - bivio per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Maria Giuseppina Pisu
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
| | - Patrizia Porcu
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
| | - Roberta Puliga
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, SS 554 - bivio per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, SS 554 - bivio per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, SS 554 - bivio per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, SS 554 - bivio per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Enrico Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, SS 554 - bivio per Sestu, 09042, Monserrato, Cagliari, Italy; Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy.
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, SS 554 - bivio per Sestu, 09042, Monserrato, Cagliari, Italy
| |
Collapse
|
3
|
Valenti O, Zambon A, Boehm S. Orchestration of Dopamine Neuron Population Activity in the Ventral Tegmental Area by Caffeine: Comparison With Amphetamine. Int J Neuropsychopharmacol 2021; 24:832-841. [PMID: 34278424 PMCID: PMC8538898 DOI: 10.1093/ijnp/pyab049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Among psychostimulants, the dopamine transporter ligands amphetamine and cocaine display the highest addictive potential; the adenosine receptor antagonist caffeine is most widely consumed but less addictive. Psychostimulant actions of amphetamine were correlated with its ability to orchestrate ventral tegmental dopamine neuron activity with contrasting shifts in firing after single vs repeated administration. Whether caffeine might impinge on dopamine neuron activity has remained elusive. METHODS Population activity of ventral tegmental area dopamine neurons was determined by single-unit extracellular recordings and set in relation to mouse behavior in locomotion and conditioned place preference experiments, respectively. RESULTS A single dose of caffeine reduced population activity as did amphetamine and the selective adenosine A2A antagonist KW-6002, but not the A1 antagonist DPCPX. Repeated administration of KW-6002 or amphetamine led to drug-conditioned place preference and to unaltered or even enhanced population activity. Recurrent injection of caffeine or DPCPX, in contrast, failed to cause conditioned place preference and persistently reduced population activity. Subsequent to repetitive drug administration, re-exposure to amphetamine or KW-6002, but not to caffeine or DPCPX, was able to reduce population activity. CONCLUSIONS Behavioral sensitization to amphetamine is attributed to persistent activation of ventral tegmental area dopamine neurons via the ventral hippocampus. Accordingly, a switch from acute A2A receptor-mediated reduction of dopamine neuron population activity to enduring A1 receptor-mediated suppression is correlated with tolerance rather than sensitization in response to repeated caffeine intake.
Collapse
Affiliation(s)
- Ornella Valenti
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria,Correspondence: Assoc. Prof. Ornella Valenti, Schwarzspanierstrasse 17, 1090 Vienna, Austria ()
| | - Alice Zambon
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Stefan Boehm
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| |
Collapse
|
4
|
Caffeine - treat or trigger? Disparate behavioral and long-term dopaminergic changes in control and schizophrenia-like Wisket rats. Physiol Behav 2021; 236:113410. [PMID: 33819453 DOI: 10.1016/j.physbeh.2021.113410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022]
Abstract
The influence of caffeine on behavioral functions in both healthy and schizophrenic subjects is controversial. Here we aimed to reveal the effects of repeated caffeine pre- and post-training treatments on motor and exploratory activities and cognitive functions in a reward-based test (Ambitus) along with a brain region-specific dopamine D2 receptor profile in control and schizophrenia-like WISKET model rats. In the control animals, pre-treatment caused temporary enhancement in motor activity, while permanent improvement in learning function was detected in the WISKET animals. Post-treatment produced significant impairments in both groups. Caffeine caused short-lasting hyperactivity followed by a rebound in the inactive phase determined in undisturbed circumstance. Caffeine treatment substantially enhanced the dopamine D2 receptor mediated G-protein activation in the prefrontal cortex and olfactory bulb of both groups, while it increased in the dorsal striatum and cerebral cortex only in the WISKET animals. Caffeine enhanced the maximal binding capacity in the hippocampus and cerebral cortex of WISKET animals, but it decreased in the prefrontal cortex of the control animals. Regarding the dopamine D2 receptor mRNA expression, caffeine treatment caused significant enhancement in the prefrontal cortex of WISKET animals, while it increased the hippocampal dopamine D2 receptor protein amount in both groups. This study highlights the disparate effects of caffeine pre- versus post-training treatments on behavioral parameters in both control and schizophrenia-like animals and the prolonged changes in the dopaminergic system. It is supposed that the delayed depressive effects of caffeine might be compensated by frequent coffee intake, as observed in schizophrenic patients.
Collapse
|
5
|
Dos Santos MKF, Gavioli EC, Rosa LS, de Paula Soares-Rachetti V, Lobão-Soares B. Craving espresso: the dialetics in classifying caffeine as an abuse drug. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:1301-1318. [PMID: 30338342 DOI: 10.1007/s00210-018-1570-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022]
Abstract
Caffeine is the most consumed psychoactive substance in the world; in general, it is not associated to potentially harmful effects. Nevertheless, few studies were performed attempting to investigate the caffeine addiction. The present review was mainly aimed to answer the following question: is caffeine an abuse drug? To adress this point, the effects of caffeine in preclinical and clinical studies were summarized and critically analyzed taking account the abuse disorders described in the Diagnostic and Statistical Manual of Mental Disorders (DSM-V). We concluded that the diagnostic criteria evidenced on DSM-V to intoxication-continued use and abstinence are not well supported by clinical studies. The fact that diagnostic criteria is not widely supported by preclinical or clinical studies may be due specially to a controversy in its exactly mechanism of action: recent literature point to an indirect, rather than direct modulation of dopamine receptors, and auto-limitant consumption due to adverse sensations in high doses. On the other hand, it reports clear withdrawal-related symptoms. Thus, based on a classical action on reward system, caffeine only partially fits its mechanism of action as an abuse drug, especially because previous research does not report a clear effect of dopaminergic activity enhance on nucleus accumbens; despite this, there are reports concerning dopaminergic modulation by caffeine on the striatum. However, based on human and animal research, caffeine withdrawal evokes signals and symptoms, which are relevant enough to include this substance among the drugs of abuse.
Collapse
Affiliation(s)
- Max Kenedy Felix Dos Santos
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000 Lagoa Nova, Natal, RN, 59078-970, Brazil
| | - Elaine C Gavioli
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000 Lagoa Nova, Natal, RN, 59078-970, Brazil
| | - Lorena Santa Rosa
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000 Lagoa Nova, Natal, RN, 59078-970, Brazil
| | - Vanessa de Paula Soares-Rachetti
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000 Lagoa Nova, Natal, RN, 59078-970, Brazil
| | - Bruno Lobão-Soares
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000 Lagoa Nova, Natal, RN, 59078-970, Brazil.
| |
Collapse
|
6
|
Yin YQ, Zhang C, Wang JX, Hou J, Yang X, Qin J. Chronic caffeine treatment enhances the resilience to social defeat stress in mice. Food Funct 2016; 6:479-91. [PMID: 25474697 DOI: 10.1039/c4fo00702f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Strong evidence has shown that caffeine exerts antidepressant-like effects in chronic stress situations by increasing dopamine levels. However, whether caffeine mediates the dopaminergic system and interferes with the resilience to social defeat stress in mice is unknown. The aim of this study is to investigate the role of caffeine in the behavioral responses to social defeat stress and the possible regulatory role of the dopaminergic system. Mice experienced chronic social defeat stress for 10 days. Caffeine was administered intraperitoneally before, during and after social defeat stress. The time spent in interaction zone, social interaction ratio and sucrose preference test was used to measure the social avoidance and anhedonia in mice. The results showed that chronic pretreatment with caffeine for 14 days and for 10 days during stress reversed the avoidance of social behavior and anhedonia induced by social defeat stress in mice, suggesting the enhancement of the resilience to social defeat stress induced by caffeine. However, neither the treatment with caffeine only during the social defeat stress for 10 days nor the treatment with acute caffeine after defeat stress altered the resilience to stress. Furthermore, chronic caffeine treatment did not affect the normal locomotor activity and the desperate behavior in naïve mice. Moreover, the antagonism of dopamine D1 receptor and not D2 receptor reversed the effect of caffeine on the social avoidance and depressive-like behavior. Finally, pretreatment with higher doses of caffeine did not affect the behavioral response to social defeat stress. Taken together, our findings provide new insight into the effects of caffeine on social avoidance and anhedonia in mice. In addition, our results illustrated the value of measuring changes in depressive-like behavior before and after social defeat stress to determine the potential treatment of caffeine on depression through the regulation of dopaminergic system.
Collapse
Affiliation(s)
- Yong-Qin Yin
- Department of Traditional Chinese Medicinal Chemistry, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | | | | | | | | | | |
Collapse
|
7
|
Franklin KM, Hauser SR, Bell RL, Engleman EA. Caffeinated Alcoholic Beverages - An Emerging Trend in Alcohol Abuse. JOURNAL OF ADDICTION RESEARCH & THERAPY 2013; Suppl 4. [PMID: 25419478 PMCID: PMC4238293 DOI: 10.4172/2155-6105.s4-012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alcohol use disorders are pervasive in society and their impact affects quality of life, morbidity and mortality, as well as individual productivity. Alcohol has detrimental effects on an individual’s physiology and nervous system, and is associated with disorders of many organ and endocrine systems impacting an individual’s health, behavior, and ability to interact with others. Youth are particularly affected. Unfortunately, adolescent usage also increases the probability for a progression to dependence. Several areas of research indicate that the deleterious effects of alcohol abuse may be exacerbated by mixing caffeine with alcohol. Some behavioral evidence suggests that caffeine increases alcohol drinking and binge drinking episodes, which in turn can foster the development of alcohol dependence. As a relatively new public health concern, the epidemiological focus has been to establish a need for investigating the effects of caffeinated alcohol. While the trend of co-consuming these substances is growing, knowledge of the central mechanisms associated with caffeinated ethanol has been lacking. Research suggests that caffeine and ethanol can have additive or synergistic pharmacological actions and neuroadaptations, with the adenosine and dopamine systems in particular implicated. However, the limited literature on the central effects of caffeinated ethanol provides an impetus to increase our knowledge of the neuroadaptive effects of this combination and their impact on cognition and behavior. Research from our laboratories indicates that an established rodent animal model of alcoholism can be extended to investigate the acute and chronic effects of caffeinated ethanol.
Collapse
Affiliation(s)
- Kelle M Franklin
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheketha R Hauser
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Richard L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric A Engleman
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Caffeine and clinical change in a patient with schizophrenia on a long-stay ward. Ir J Psychol Med 2011; 28:42-44. [PMID: 30200000 DOI: 10.1017/s0790966700011988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report a case of a 33-year-old male patient with schizophrenia, who showed significant and persistent changes in psychotic and mood symptoms relating to his caffeine intake.
Collapse
|
9
|
Lara DR, Dall'Igna OP, Ghisolfi ES, Brunstein MG. Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:617-29. [PMID: 16580767 DOI: 10.1016/j.pnpbp.2006.02.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Based on the neuromodulatory and homeostatic actions of adenosine, adenosine dysfunction may contribute to the neurobiological and clinical features of schizophrenia. The present model of adenosine dysfunction in schizophrenia takes into consideration the dopamine and glutamate hypotheses, since adenosine exerts neuromodulatory roles on these systems, and proposes that adenosine plays a role in the inhibitory deficit found in schizophrenia. Given the role of adenosine activation of adenosine A1 receptor (A1R) in mediating neurotoxicity in early stages of brain development, pre- and peri-natal complications leading to excessive adenosine release could induce primary brain changes (i.e., first hit). These events would lead to an adenosine inhibitory deficit through a partial loss of A1R that may emerge as reduced control of dopamine activity and increased vulnerability to excitotoxic glutamate action in the mature brain (i.e., second hit). Adenosine dysfunction is reasonably compatible with symptoms, gray and white matter abnormalities, progressive brain loss, pre- and peri-natal risk factors, age of onset, response to current treatments, impaired sensory gating and increased smoking in schizophrenia. Pharmacological treatments enhancing adenosine activity could be effective for symptom control and for alleviating deterioration in the course of the illness. Accordingly, allopurinol, which may indirectly increase adenosine, has been effective and well tolerated in the treatment of schizophrenia. Since much of the evidence for the adenosine hypothesis is preliminary and theoretical, further investigation in the field is warranted.
Collapse
Affiliation(s)
- Diogo R Lara
- Departamento de Ciências Fisiológicas, Faculdade de Biociências, PUCRS, Porto Alegre, Brazil.
| | | | | | | |
Collapse
|
10
|
Deurveilher S, Lo H, Murphy JA, Burns J, Semba K. Differential c-Fos immunoreactivity in arousal-promoting cell groups following systemic administration of caffeine in rats. J Comp Neurol 2006; 498:667-89. [PMID: 16917819 DOI: 10.1002/cne.21084] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Despite the widespread use of caffeine, the neuronal mechanisms underlying its stimulatory effects are not completely understood. By using c-Fos immunohistochemistry as a marker of neuronal activation, we recently showed that stimulant doses of caffeine activate arousal-promoting hypothalamic orexin (hypocretin) neurons. In the present study, we investigated whether other key neurons of the arousal system are also activated by caffeine, via dual immunostaining for c-Fos and transmitter markers. Rats were administered three doses of caffeine or saline vehicle during the light phase. Caffeine at 10 and 30 mg/kg, i.p., increased motor activities, including locomotion, compared with after saline or a higher dose, 75 mg/kg. The three doses of caffeine induced distinct dose-related patterns of c-Fos immunoreactivity in several arousal-promoting areas, including orexin neurons and adjacent neurons containing neither orexin nor melanin-concentrating hormone; tuberomammillary histaminergic neurons; locus coeruleus noradrenergic neurons; noncholinergic basal forebrain neurons that do not contain parvalbumin; and nondopaminergic neurons in the ventral tegmental area. At any dose used, caffeine induced little or no c-Fos expression in cholinergic neurons of the basal forebrain and mesopontine tegmentum; dopaminergic neurons of the ventral tegmental area, central gray, and substantia nigra pars compacta; and serotonergic neurons in the dorsal raphe nucleus. Saline controls exhibited only few c-Fos-positive cells in most of the cell groups examined. These results indicate that motor-stimulatory doses of caffeine induce a remarkably restricted pattern of c-Fos expression in the arousal-promoting system and suggest that this specific neuronal activation may be involved in the behavioral arousal by caffeine.
Collapse
Affiliation(s)
- Samüel Deurveilher
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | | | |
Collapse
|
11
|
Gatzke-Kopp LM, Raine A, Loeber R, Stouthamer-Loeber M, Steinhauer SR. Serious delinquent behavior, sensation seeking, and electrodermal arousal. JOURNAL OF ABNORMAL CHILD PSYCHOLOGY 2002; 30:477-86. [PMID: 12403151 DOI: 10.1023/a:1019816930615] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Low tonic skin conductance level (SCL) has been related, inconsistently, to both delinquency and sensation-seeking. This study tests the hypothesis that there is an interaction such that high sensation seeking delinquents, in particular, have low SCLs. Participants consisted of 335 boys from the Pittsburgh Youth Study classified as serious delinquents or controls based upon 10 years of prospectively collected self-report delinquency data. Participants' skin conductance was evaluated at age 16 along with several personality and neuropsychological measures. Both delinquency and sensation seeking were characterized by low SCL. However, there was no evidence to suggest that the presence of both of these factors together lead to especially low skin conductance levels. This finding is not explained by differences between the groups on measures of negative emotionality, IQ, socioeconomic status, or impulsivity.
Collapse
Affiliation(s)
- Lisa M Gatzke-Kopp
- Department of Psychology, University of Southern California, Los Angeles 90089-1061, USA.
| | | | | | | | | |
Collapse
|
12
|
Powell KR, Iuvone PM, Holtzman SG. The role of dopamine in the locomotor stimulant effects and tolerance to these effects of caffeine. Pharmacol Biochem Behav 2001; 69:59-70. [PMID: 11420069 DOI: 10.1016/s0091-3057(01)00497-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Current evidence indicates that the acute locomotor stimulant effects of caffeine involve dopamine (DA) receptor activation; however, few studies have investigated the role of DA receptors in mediating the development of tolerance to caffeine. Therefore, the present study was designed to determine the degree to which DA receptors mediate the development of tolerance to the locomotor stimulant effects of caffeine. Caffeine was examined alone and in combination with haloperidol (HAL), GBR 12909, nisoxetine and fluoxetine. HAL dose-dependently and completely blocked the acute effects of caffeine on locomotor activity, and the highest dose of GBR 12909 enhanced the effects of caffeine. Neither nisoxetine nor fluoxetine altered the effects of caffeine. HAL was infused via osmotic pumps (0.1 mg/kg/day) during a 14-day regimen of chronic caffeine administered in a caffeinated drinking solution ( approximately 136 mg/kg/day). HAL did not block the development of tolerance to the locomotor stimulant effects of caffeine, but did impair the recovery from tolerance following withdrawal of caffeine. [3H]SCH 23390 (DA D(1)) binding sites were downregulated in the nucleus accumbens and striatum and were upregulated in the prefrontal cortex of caffeine-treated vs. control rats; however, the affinity of [3H]SCH 23390 for these binding sites was unaltered. There were no differences between the caffeine-treated and control rats in number or affinity of [3H]spiperone (DA D(2)) binding sites. These results suggest that, although HAL did not alter the development of tolerance to caffeine, changes in DA D(1) receptors could be one component of the mechanism underlying caffeine-induced tolerance.
Collapse
Affiliation(s)
- K R Powell
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
13
|
Functional uncoupling of adenosine A(2A) receptors and reduced responseto caffeine in mice lacking dopamine D2 receptors. J Neurosci 2000. [PMID: 10934242 DOI: 10.1523/jneurosci.20-16-05949.2000] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine D(2) receptors (Rs) and adenosine A(2A)Rs are coexpressed on striatopallidal neurons, where they mediate opposing actions. In agreement with the idea that D(2)Rs tonically inhibit GABA release from these neurons, stimulation-evoked GABA release was significantly greater from striatal/pallidal slices from D(2)R null mutant (D(2)R(-/-)) than from wild-type (D(2)R(+/+)) mice. Release from heterozygous (D(2)R(+/-)) slices was intermediate. However, contrary to predictions that A(2A)R effects would be enhanced in D(2)R-deficient mice, the A(2A)R agonist CGS 21680 significantly increased GABA release only from D(2)R(+/+) slices. CGS 21680 modulation was observed when D(2)Rs were antagonized by raclopride, suggesting that an acute absence of D(2)Rs cannot explain the results. The lack of CGS 21680 modulation in the D(2)R-deficient mice was also not caused by a compensatory downregulation of A(2A)Rs in the striatum or globus pallidus. However, CGS 21680 significantly stimulated cAMP production only in D(2)R(+/+) striatal/pallidal slices. This functional uncoupling of A(2A)Rs in the D(2)R-deficient mice was not explained by reduced expression of G(s), G(olf), or type VI adenylyl cyclase. Locomotor activity induced by the adenosine receptor antagonist caffeine was significantly less pronounced in D(2)R(-/-) mice than in D(2)R(+/+) and D(2)R(+/-) mice, further supporting the idea that D(2)Rs are required for caffeine activation. Caffeine increased c-fos only in D(2)R(-/-) globus pallidus. The present results show that a targeted disruption of the D(2)R reduces coupling of A(2A)Rs on striatopallidal neurons and thereby responses to drugs that act on adenosine receptors. They also reinforce the ideas that D(2)Rs and A(2A)Rs are functionally opposed and that D(2)R-mediated effects normally predominate.
Collapse
|
14
|
Spealman RD, Barrett-Larimore RL, Rowlett JK, Platt DM, Khroyan TV. Pharmacological and environmental determinants of relapse to cocaine-seeking behavior. Pharmacol Biochem Behav 1999; 64:327-36. [PMID: 10515309 DOI: 10.1016/s0091-3057(99)00049-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Animal models have been developed that simulate relevant features of relapse to cocaine-seeking behavior in humans. These models have provided valuable information about pharmacological and environmental factors that precipitate reinstatement of extinguished cocaine-seeking in rats and monkeys, as well as new insights about potential pharmacotherapies for relapse prevention. Reinstatement of cocaine-seeking behavior in animals can be induced by cocaine priming or by cocaine-paired environmental stimuli: however, maximum reinstatement of drug-seeking appears to be induced when cocaine priming and cocaine-paired stimuli are combined. Drugs that share cocaine's indirect dopamine agonist properties or that act as direct agonists at D2-like dopamine receptors also induce reinstatement of cocaine-seeking behavior, whereas with some exceptions (e.g., caffeine, morphine) drugs from other pharmacological classes do not. D1-like receptor agonists block rather than mimic the priming effects of cocaine, suggesting different roles for D1- and D2-like receptor mechanisms in cocaine relapse. Although considerable overlap exists, drugs that exhibit cocaine-like discriminative stimulus and/ or reinforcing effects in other situations do not invariably induce cocaine-like reinstatement of drug-seeking and vice versa, implying that these effects are not simply different behavioral expressions of a unitary neurobiological process. Finally, recent findings with D1-like receptor agonists, partial agonists, and antagonists suggest that some of these drugs may be viable candidates for development as antirelapse pharmacotherapies.
Collapse
Affiliation(s)
- R D Spealman
- Harvard Medical School, New England Regional Primate Research Center, Southborough, MA 01772-9102, USA
| | | | | | | | | |
Collapse
|
15
|
Weisberg SP, Kaplan GB. Adenosine receptor antagonists inhibit the development of morphine sensitization in the C57BL/6 mouse. Neurosci Lett 1999; 264:89-92. [PMID: 10320021 DOI: 10.1016/s0304-3940(99)00188-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We examined the effects of adenosine antagonists on the development of morphine sensitization in C57BL/6 mice. Adenosine antagonists or vehicle were repeatedly co-administered intraperitoneally with morphine (10 mg/kg, s.c.) to mice once every other day for 9 days. Two days later, a 10 mg/kg morphine-only challenge was administered to each group. Consistent with sensitization, mice receiving morphine alone developed enhanced ambulatory activity responses to subsequent morphine administrations and, upon morphine-only challenge, had a significantly greater response to morphine than vehicle pretreated animals. The nonselective adenosine antagonist, caffeine, at 10 and 20 mg/kg but not at 5 mg/kg, attenuated the development of sensitization during co-administration with morphine and also following morphine-only challenge. The adenosine A1 selective antagonist 1,3-dipropyl-8-(2-amino-4-chlorophenyl)-xanthine (PACPX), at 0.001 and 0.002 mg/kg but not at 0.2 mg/kg, similarly attenuated the development of morphine sensitization. We propose a mechanism which involves an adenosine receptor role in the mesolimbic dopamine system.
Collapse
Affiliation(s)
- S P Weisberg
- Department of Psychiatry and Human Behavior, Veterans Affairs Medical Center, Providence, RI 02908, USA
| | | |
Collapse
|
16
|
Kaplan GB, Coyle TS. Adenosine kinase inhibitors attenuate opiate withdrawal via adenosine receptor activation. Eur J Pharmacol 1998; 362:1-8. [PMID: 9865523 DOI: 10.1016/s0014-2999(98)00724-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies have demonstrated a role for adenosine in mediating opiate effects. This study examines the effects of indirect activation of adenosine receptors, via treatment with adenosine kinase inhibitors, on the expression of opiate withdrawal in mice. Mice receive chronic morphine treatment via implantation of subcutaneous morphine pellets (75 mg) for 72 h. Mice then receive parenteral treatment with adenosine kinase inhibitors, either 5'-amino-5'-deoxyadenosine (2, 5, 20, 40 mg/kg, intraperitoneal or i.p.) or iodotubericidin (1, 2, 5 mg/kg, i.p.), followed by naloxone injection and opiate withdrawal signs are measured over 20 min. Both adenosine kinase inhibitors significantly reduce the following opiate withdrawal signs in a dose-dependent manner compared to vehicle: withdrawal jumps, teeth chattering, forepaw tremors, and forepaw treads. Additionally, 5'-amino-5'-deoxyadenosine significantly reduces withdrawal-induced diarrhea and weight loss. Effects of 5'-amino-5'-deoxyadenosine (40 mg/kg) on opiate withdrawal signs appear to be mediated via adenosine receptor activation as they are reversed by pretreatment by adenosine receptor antagonist caffeine (20 mg, i.p.) but not by selective phosphodiesterase inhibitor Ro 20-1724 (10 mg/kg, i.p.). Adenosine receptor activation via adenosine kinase inhibitor treatment attenuates opiate withdrawal and these agents may be generally useful in the treatment of drug withdrawal syndromes.
Collapse
Affiliation(s)
- G B Kaplan
- Department of Psychiatry and Human Behavior, Veterans Affairs Medical Center and Brown University School of Medicine, Providence, RI 02908, USA.
| | | |
Collapse
|
17
|
Abstract
Caffeine, a popular CNS stimulant, is the most widely used neuroactive drug. Present in coffee, tea, chocolate, and soft drinks as well as over-the-counter and prescription medications, it influences millions of users. This agent has achieved recent notoriety because its dependency consequences and addictive potential have been re-examined and emphasized. Caffeine's central actions are thought to be mediated through adenosine (A) receptors and monoamine neurotransmitters. The present article suggests that the olfactory bulb (OB) may be an important site in the brain that is responsible for caffeine's central actions in several species. This conclusion is based on the extraordinarily robust and selective effects of caffeine on norepinephrine (NE), dopamine (DA), and particularly serotonin (5HT) utilization in the OB of mice. We believe that these phenomena should be given appropriate consideration as a basis for caffeine's central actions, even in primates. Concurrently, we review a rich rodent literature concerned with A, 5HT, NE, and DA receptors in the OB and related structures along with other monoamine parameters. We also review a more limited literature concerned with the primate OB. Finally, we cite the literature that treats the dependency and addictive effects of caffeine in humans, and relate the findings to possible olfactory mechanisms.
Collapse
Affiliation(s)
- M G Hadfield
- Department of Pathology, Medical College of Virginia/Virginia Commonwealth University, Richmond 23298, USA
| |
Collapse
|
18
|
Svenningsson P, Johansson B, Fredholm BB. Caffeine-induced expression of c-fos mRNA and NGFI-A mRNA in caudate putamen and in nucleus accumbens are differentially affected by the N-methyl-D-aspartate receptor antagonist MK-801. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 35:183-9. [PMID: 8717354 DOI: 10.1016/0169-328x(95)00202-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Caffeine (100 mg/kg, i.p.) induces a rapid increase in the expression of mRNA for the immediate early genes (IEGs) c-fos and NGFI-A in rat striatum. We have examined how this response is affected by pretreatment with either the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (1 and 3 mg/kg, i.p.), the competitive NMDA receptor antagonist D-CPP (6 mg/kg, i.p.), or the non-selective excitatory amino acid receptor antagonist kynurenic acid (300 mg/kg, i.p). The two NMDA receptor antagonists significantly reduced the caffeine-induced expression of both c-fos mRNA and NGFI-A mRNA in the medial part of the caudate putamen. The effect was less pronounced in the lateral part of the caudate putamen. MK-801 caused an enhancement of c-fos and NGFI-A mRNA expression in nucleus accumbens. Pretreatment with kynurenic acid caused no marked alterations in the caffeine-induced expression of c-fos mRNA and NGFI-A mRNA in any brain region. These findings suggest that glutamatergic transmission via NMDA receptors contributes to the induction of c-fos mRNA and NGFI-A mRNA by caffeine in striatum. In addition we show that MK-801 can either increase or decrease the caffeine effect on IEGs depending on the region studied.
Collapse
Affiliation(s)
- P Svenningsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Fredholm BB. Astra Award Lecture. Adenosine, adenosine receptors and the actions of caffeine. PHARMACOLOGY & TOXICOLOGY 1995; 76:93-101. [PMID: 7746802 DOI: 10.1111/j.1600-0773.1995.tb00111.x] [Citation(s) in RCA: 409] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Of the known biochemical actions of caffeine, only inhibition of adenosine receptors occurs at concentrations achieved during normal human consumption of the drug. Under normal physiological conditions, adenosine is present in sufficient concentrations to activate A1 and A2a receptors. Via actions on A1 receptors, adenosine decreases neuronal firing and the release of neurotransmitters. The exact mechanisms are not known, but several possibilities are discussed. Via actions on A2a receptors, adenosine--and hence caffeine--can influence dopaminergic neurotransmission. Caffeine can induce rapid changes in gene expression and, somewhat later, marked adaptive changes. These include antiepileptic and neuroprotective changes. Thus, caffeine has a number of central effects directly or indirectly related to adenosine receptors. Some of these are potentially useful, and drug development based on the actions of caffeine should be interesting.
Collapse
Affiliation(s)
- B B Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Dimpfel W, Schober F, Spüler M. The influence of caffeine on human EEG under resting conditions and during mental loads. THE CLINICAL INVESTIGATOR 1993; 71:197-207. [PMID: 8481621 DOI: 10.1007/bf00180102] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of caffeine (single oral doses of 200 mg and 400 mg) on the CNS was tested under resting conditions and while performing a concentration performance test in a placebo-controlled pilot study on ten healthy males. The EEG was evaluated quantitatively by spectral analysis with a Computer Aided Topographical ElectroEncephaloMetry system. Comparison of the averaged frequency content revealed a clear difference between the change in the functional state of the brain due to the mental arithmetics, on the one hand, and the caffeine effect, on the other. Both states of altered brain activity were reflected in a particular topographical distribution of the frequency change with respect to a frontal-occipital accentuation. Comparison of the two periods of mental arithmetics in the absence or presence of caffeine showed a tendency to concentration-dependent differences from each other. Administration of 200 mg and 400 mg caffeine in the relaxed state effected the decrease in spectral power in the theta and alpha ranges. The concentration performance test without caffeine effected decreases in power in the alpha range in frontal to parietal cortex and enhanced theta power in frontal and occipital regions and the alpha power in occipital cortex. The caffeine-dependent decrease in theta power and the decrease in delta power seen under relaxation conditions after 400 mg are not observed during the concentration performance test in the presence of caffeine.
Collapse
Affiliation(s)
- W Dimpfel
- Pro Science Private Research Institute GmbH, Linden
| | | | | |
Collapse
|
21
|
Penetar D, McCann U, Thorne D, Kamimori G, Galinski C, Sing H, Thomas M, Belenky G. Caffeine reversal of sleep deprivation effects on alertness and mood. Psychopharmacology (Berl) 1993; 112:359-65. [PMID: 7871042 DOI: 10.1007/bf02244933] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study assessed the ability of high doses of caffeine to reverse changes in alertness and mood produced by prolonged sleep deprivation. Fifty healthy, nonsmoking males between the ages of 18 and 32 served as volunteers. Following 49 h without sleep, caffeine (0, 150, 300, or 600 mg/70 kg, PO) was administered in a double-blind fashion. Measures of alertness were obtained with sleep onset tests, the Stanford Sleepiness Scale (SSS), and Visual Analog Scales (VAS). Sleep deprivation decreased onset to sleep from a rested average of 19.9 min to 7 min. Following the highest dose of caffeine tested, sleep onset averaged just over 10 min; sleep onset for the placebo group averaged 5 min. Scores on the SSS increased from a rested mean of 1.6-4.8 after sleep deprivation. Caffeine reduced this score to near rested values. Caffeine reversed sleep deprivation-induced changes in three subscales of the POMS (vigor, fatigue, and confusion) and produced values close to fully rested conditions on several VAS. Serum caffeine concentrations peaked 90 min after ingestion and remained elevated for 12 h. This study showed that caffeine was able to produce significant alerting and long-lasting beneficial mood effects in individuals deprived of sleep for 48 h.
Collapse
Affiliation(s)
- D Penetar
- Department of Behavioral Biology, Walter Reed Army Institute of Research, Washington, DC 20307-5100
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nikodijević O, Jacobson KA, Daly JW. Locomotor activity in mice during chronic treatment with caffeine and withdrawal. Pharmacol Biochem Behav 1993; 44:199-216. [PMID: 7679219 PMCID: PMC3557839 DOI: 10.1016/0091-3057(93)90299-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chronic ingestion of caffeine by mice caused a marked reduction in locomotor exploratory activity. At least 4 days of withdrawal were required to restore activity to normal levels. Stimulatory effects of injected caffeine were lower in chronically treated mice and the biphasic dose-response (stimulatory followed by depressant) curve for injected caffeine was left shifted. Seven days of withdrawal were required before the dose-response curve to caffeine was identical to that of control mice. The depressant effects of a potent xanthine phosphodiesterase inhibitor, 1,3-dipropyl-7-methylxanthine, were blunted in caffeine-treated mice. The depressant effects of A1- and A2-selective adenosine analogs were enhanced after chronic caffeine. There was little or no effect of chronic caffeine on the stimulatory effects of dopaminergic agents (amphetamine, caffeine), while both depressant and stimulatory effects of cholinergic agents (nicotine, oxotremorine, scopolamine) were reduced. The results indicate that chronic caffeine affects functions of adenosine and cholinergic receptors related to regulation of locomotor exploratory activity.
Collapse
Affiliation(s)
- O Nikodijević
- Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
23
|
Nehlig A, Daval JL, Debry G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. ACTA ACUST UNITED AC 1992; 17:139-70. [PMID: 1356551 DOI: 10.1016/0165-0173(92)90012-b] [Citation(s) in RCA: 848] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Caffeine is the most widely consumed central-nervous-system stimulant. Three main mechanisms of action of caffeine on the central nervous system have been described. Mobilization of intracellular calcium and inhibition of specific phosphodiesterases only occur at high non-physiological concentrations of caffeine. The only likely mechanism of action of the methylxanthine is the antagonism at the level of adenosine receptors. Caffeine increases energy metabolism throughout the brain but decreases at the same time cerebral blood flow, inducing a relative brain hypoperfusion. Caffeine activates noradrenaline neurons and seems to affect the local release of dopamine. Many of the alerting effects of caffeine may be related to the action of the methylxanthine on serotonin neurons. The methylxanthine induces dose-response increases in locomotor activity in animals. Its psychostimulant action on man is, however, often subtle and not very easy to detect. The effects of caffeine on learning, memory, performance and coordination are rather related to the methylxanthine action on arousal, vigilance and fatigue. Caffeine exerts obvious effects on anxiety and sleep which vary according to individual sensitivity to the methylxanthine. However, children in general do not appear more sensitive to methylxanthine effects than adults. The central nervous system does not seem to develop a great tolerance to the effects of caffeine although dependence and withdrawal symptoms are reported.
Collapse
Affiliation(s)
- A Nehlig
- INSERM U 272 Université de Nancy I, France
| | | | | |
Collapse
|
24
|
Abstract
Psychotic in-patients who consume caffeine may present complications in the course of their illness. Two cases are described which illustrate the clinical profile of such patients, whose caffeine-associated complications are often misdiagnosed.
Collapse
Affiliation(s)
- M O Zaslove
- Department of Professional Education, Napa State Hospital, California 94558-6293
| | | | | |
Collapse
|
25
|
Lucas PB, Pickar D, Kelsoe J, Rapaport M, Pato C, Hommer D. Effects of the acute administration of caffeine in patients with schizophrenia. Biol Psychiatry 1990; 28:35-40. [PMID: 2375945 DOI: 10.1016/0006-3223(90)90429-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Caffeine, 10 mg/kg, was administered to 13 schizophrenic patients in a double-blind placebo-controlled study of its behavioral effects. Some measures of psychopathology were significantly increased: Brief Psychiatric Rating Scale (BPRS) total, BPRS subscales thought disorder, unusual thought content, and euphoria-activation, and several individual BPRS items. Nurses' Bunney-Hamberg ratings of psychosis and mania, comparing the day before with the day after pharmacological challenge, increased significantly. Compared to placebo, caffeine also produced significant increases of diastolic blood pressure and cortisol. Thus, these findings indicate that caffeine increases arousal and has a psychotogenic effect when administered to schizophrenic patients. The possible roles of various neurotransmitters is discussed with special emphasis on caffeine's actions on dopaminergic and adenosinergic systems.
Collapse
Affiliation(s)
- P B Lucas
- Section of Clinical Studies, National Institute of Mental Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|