1
|
Eugenin E, Camporesi E, Peracchia C. Direct Cell-Cell Communication via Membrane Pores, Gap Junction Channels, and Tunneling Nanotubes: Medical Relevance of Mitochondrial Exchange. Int J Mol Sci 2022; 23:6133. [PMID: 35682809 PMCID: PMC9181466 DOI: 10.3390/ijms23116133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023] Open
Abstract
The history of direct cell-cell communication has evolved in several small steps. First discovered in the 1930s in invertebrate nervous systems, it was thought at first to be an exception to the "cell theory", restricted to invertebrates. Surprisingly, however, in the 1950s, electrical cell-cell communication was also reported in vertebrates. Once more, it was thought to be an exception restricted to excitable cells. In contrast, in the mid-1960s, two startling publications proved that virtually all cells freely exchange small neutral and charged molecules. Soon after, cell-cell communication by gap junction channels was reported. While gap junctions are the major means of cell-cell communication, in the early 1980s, evidence surfaced that some cells might also communicate via membrane pores. Questions were raised about the possible artifactual nature of the pores. However, early in this century, we learned that communication via membrane pores exists and plays a major role in medicine, as the structures involved, "tunneling nanotubes", can rescue diseased cells by directly transferring healthy mitochondria into compromised cells and tissues. On the other hand, pathogens/cancer could also use these communication systems to amplify pathogenesis. Here, we describe the evolution of the discovery of these new communication systems and the potential therapeutic impact on several uncurable diseases.
Collapse
Affiliation(s)
- Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), 105 11th Street, Galveston, TX 77555, USA
| | - Enrico Camporesi
- Department of Surgery and TEAM Health Anesthesia, University of South Florida, 2 Tampa General Circle, Tampa, FL 33606, USA;
| | - Camillo Peracchia
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| |
Collapse
|
2
|
Bittner GD, Schallert T, Peduzzi JD. Degeneration, Trophic Interactions, and Repair of Severed Axons: A Reconsideration of Some Common Assumptions. Neuroscientist 2016. [DOI: 10.1177/107385840000600207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We suggest that several interrelated properties of severed axons (degeneration, trophic dependencies, initial repair, and eventual repair) differ in important ways from commonly held assumptions about those properties. Specifically, (1) axotomy does not necessarily produce rapid degeneration of distal axonal segments because (2) the trophic maintenance of nerve axons does not necessarily depend entirely on proteins transported from the perikaryon—but instead axonal proteins can be trophically maintained by slowing their degradation and/or by acquiring new proteins via axonal synthesis or transfer from adjacent cells (e.g., glia). (3) The initial repair of severed distal or proximal segments occurs by barriers (seals) formed amid accumulations of vesicles and/or myelin delaminations induced by calcium influx at cut axonal ends—rather than by collapse and fusion of cut axolemmal leaflets. (4) The eventual repair of severed mammalian CNS axons does not necessarily have to occur by neuritic outgrowths, which slowly extend from cut proximal ends to possibly reestablish lost functions weeks to years after axotomy—but instead complete repair can be induced within minutes by polyethylene glycol to rejoin (fuse) the cut ends of surviving proximal and distal stumps. Strategies to repair CNS lesions based on fusion techniques combined with rehabilitative training and induced axonal outgrowth may soon provide therapies that can at least partially restore lost CNS functions.
Collapse
Affiliation(s)
- George D. Bittner
- School of Biological Sciences (Neurobiology Section) and Institute of Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Timothy Schallert
- School of Biological Sciences (Neurobiology Section) and Institute of Neuroscience, Department of Pyschology, The University of Texas at Austin, Austin, Texas
| | - Jean D. Peduzzi
- School of Optometry, Department of Physiological Optics, Injury Control and Vision Science Research Centers, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
3
|
Abstract
Of all cellular specializations, the axon is especially distinctive because it is a narrow cylinder of specialized cytoplasm called axoplasm with a length that may be orders of magnitude greater than the diameter of the cell body from which it originates. Thus, the volume of axoplasm can be much greater than the cytoplasm in the cell body. This fact raises a logistical problem with regard to axonal maintenance. Many of the components of axoplasm, such as soluble proteins and cytoskeleton, are slowly transported, taking weeks to months to travel the length of axons longer than a few millimeters after being synthesized in the cell body. Furthermore, this slow rate of supply suggests that the axon itself might not have the capacity to respond fast enough to compensate for damage to transported macromolecules. Such damage is likely in view of the mechanical fragility of an axon, especially those innervating the limbs, as rapid limb motion with high impact, like running, subjects the axons in the limbs to considerable mechanical force. Some researchers have suggested that local, intra-axonal protein synthesis is the answer to this problem. However, the translational state of axonal RNAs remains controversial. We suggest that glial cells, which envelop all axons, whether myelinated or not, are the local sources of replacement and repair macromolecules for long axons. The plausibility of this hypothesis is reinforced by reviewing several decades of work on glia-axon macromolecular transfer, together with recent investigations of exosomes and other extracellular vesicles, as vehicles for the transmission of membrane and cytoplasmic components from one cell to another.
Collapse
Affiliation(s)
- Michael Tytell
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA; Marine Biological Laboratory, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Raymond J Lasek
- Department of Anatomy, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Harold Gainer
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, 20892, USA; Marine Biological Laboratory, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| |
Collapse
|
4
|
Pearce J, Lnenicka GA, Govind CK. Regenerating crayfish motor axons assimilate glial cells and sprout in cultured explants. J Comp Neurol 2003; 464:449-62. [PMID: 12900916 DOI: 10.1002/cne.10828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Phasic and tonic motor nerves originating from crayfish abdominal ganglia, in 2-3-day-old cultured explants, display at their transected distal ends growth zones from which axonal sprouts arise. The subcellular morphology of this regenerative response was examined with thin serial-section electron microscopy and reveals two major remodeling features. First, the external sprouts that exit the nerve are a very small part of a much more massive sprouting response by individual axons comprising several orders of internal sprouts confined to the nerve. Both internal and external sprouts have a simple construction: a cytoskeleton of microtubules and populations of mitochondria, clear synaptic vesicles, membranous sacs, and extrasynaptic active zone dense bars, features reminiscent of motor nerve terminals. Close intermingling of the sprouts of several axons give rise to a neuropil-like arbor within the nerve. Thus, extensive sprouting is an intrinsic response of crayfish motor axons to transection. Second, an equally dramatic remodeling feature is the appearance of nuclei, which resemble those of adjacent glial cells, within the motor axons. These nuclei often appear where the adjoining membranes of the axon and glial cell are disrupted and where free-standing lengths of the double membrane are present. These images signify a breakdown of the dividing membranes and assimilation of the glial cell by the axon, the nucleus being the most visible sign of such assimilation. Thus, crayfish motor axons respond to transection by assimilating glial cells that may provide regulatory and trophic support for the sprouting response.
Collapse
Affiliation(s)
- Joanne Pearce
- Life Sciences Division, University of Toronto at Scarborough, Scarborough, Ontario M1C 1A4, Canada
| | | | | |
Collapse
|
5
|
Pearce J, Govind CK. Remodeling of the proximal segment of crayfish motor nerves following transection. J Comp Neurol 2002; 450:61-72. [PMID: 12124767 DOI: 10.1002/cne.10299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transected crustacean motor axons consist of a soma-endowed proximal segment that regenerates and a soma-less distal segment that survives for up to a year. We report on the anatomical remodeling of the proximal segment of phasic motor nerves innervating the deep flexor muscles in the abdomen of adult crayfish following transection. The intact nerve with 10 phasic axons and its two branches with subsets of 6 and 7 of these 10 axons undergo several remodeling changes. First, the transected nerve displays many more and smaller axon profiles than the 6 and 7 axons of the intact nerve, approximately 100 and 300 profiles in the two branches of a preparation transected 8 weeks previously. Serial images of the transected nerve denote that the proliferation of profiles is due to several orders of axon sprouting primary, secondary, and tertiary branches. The greater proliferation of axon sprouts, their smaller size, and the absence of intervening glia in the one nerve branch compared with the other branch denote that sprouting is more advanced in this branch. Second, the axon sprouts are regionally differentiated; thus, although in most regions the sprouts are basically axon-like, with a cytoskeleton of microtubules and peripheral mitochondria, in some regions they appear nerve terminal-like and are characterized by numerous clear synaptic vesicles, a few dense-core vesicles, and dispersed mitochondria. Both regions possess active zone dense bars with clustered synaptic vesicles found opposite other sprouts, glia, hemocytes, and connective tissue, but because the opposing membranes are not differentiated into a synaptic contact, the active zones are extrasynaptic. Third, some of the transected axons display a glial cell nucleus denoting assimilation of an adaxonal glial cell by the transected axons. Fourth, within the nerve trunk are a few myocytes and muscle fibers. These most likely originate from adjoining and intimately connected hemocytes, because such transformation occurs during muscle repair. In a crustacean nerve, however, where muscle is clearly misplaced, its presence implies an instructive role for motor nerves in muscle formation.
Collapse
Affiliation(s)
- Joanne Pearce
- Life Sciences Division, University of Toronto at Scarborough, Scarborough, M1C 1A4 Ontario, Canada
| | | |
Collapse
|
6
|
Sonetti D, Ottaviani E, Stefano GB. Opiate signaling regulates microglia activities in the invertebrate nervous system. GENERAL PHARMACOLOGY 1997; 29:39-47. [PMID: 9195191 DOI: 10.1016/s0306-3623(96)00523-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Evidence supporting the presence in the invertebrate nervous system of a class of glial cells resembling vertebrate microglia was obtained in the freshwater snail Planorbarius corneus. These cells are easily identified by their immunopositivity to anti-pro-opiomelanocortin (POMC)-derived peptide antibodies. 2. Invertebrate microglia, as in vertebrates, exhibit macrophage-like activity in vivo and in cell cultures. These cells respond to the trauma of ganglionic excision and their organotypic culture by leaving their location around neurons and moving to the lesion site from which they migrate in the culture dish. 3. In vitro, these microglia undergo conformational changes and show phagocytic properties in the presence of bacteria or lipopolysaccharide. The activated cells also express tumor necrosis factor-alpha-like material and an increase in nitric oxide synthase, as shown by immunocytochemistry. 4. The inhibitory effect of morphine on the mobility and phagocytic activity of invertebrate microglia provide additional functional evidence for a possible role of opiate-like compounds in downregulating immunoregulatory processes, as also observed in the circulating immunocytes.
Collapse
Affiliation(s)
- D Sonetti
- Dipartimento di Biologia Animale, Università di Modena, Italy.
| | | | | |
Collapse
|
7
|
Lieberman EM, Hargittai PT, Grossfeld RM. Electrophysiological and metabolic interactions between axons and glia in crayfish and squid. Prog Neurobiol 1994; 44:333-76. [PMID: 7886230 DOI: 10.1016/0301-0082(94)90032-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- E M Lieberman
- Department of Physiology, School of Medicine, East Carolina University, Greenville, NC 27858
| | | | | |
Collapse
|
8
|
Abstract
We have examined the hypothesis, for the case of mouse axons, that isolating an axon from its cell body will lead to a rapid failure of fast axonal transport as anterogradely moving organelles vacate the axon in a proximo-distal direction, and retrogradely moving organelles vacate it in the opposite direction. We used CD1 and BALB/c mice and the Wallerian degeneration-resistant mutant C57BL/Ola. Sciatic nerves were cut high in the thigh; at various times up to 8 days later nerves were removed from the animal and individual myelinated axons from the segment distal to the cut were examined by video light microscopy to detect rapid organelle transport. Bidirectional fast organelle transport did decrease in amount with time but not nearly as rapidly as predicted, and anterograde and retrograde organelle velocities remained normal through time. In the C57BL/Ola mouse some structurally preserved axons contained organelles that transported at normal velocities in the anterograde and retrograde directions for as long as 8 days after axotomy. To test one of the possible origins of transported organelles in long-surviving axons we examined organelle transport very close to narrow lesions in axons bathed in a medium compatible with intracellular function. No organelles crossed the lesion but bidirectional organelle transport took place proximal and distal to the lesion; the amounts were compatible with the interpretation that approximately 30% of organelles reversed transport direction on either side of the lesion. We propose that at least some of the organelles that undergo persistent transport in axons isolated from their cell bodies shuttle back and forth between the ends of the isolated segment.
Collapse
Affiliation(s)
- R S Smith
- Department of Anatomy and Cell Biology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
9
|
Sheller RA, Bittner GD. Whole intact tissue electrophoresis of nerve proteins. J Neurosci Methods 1993; 49:185-91. [PMID: 8271838 DOI: 10.1016/0165-0270(93)90123-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We describe a rapid and simple method for analyzing proteins along the length of a nerve tissue using sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). A long length of nerve tissue is placed on a slab gel, layered with SDS-buffer, and electrophoresed. In this whole-intact-tissue procedure, the in situ differences in location and/or concentration of protein along the length of a nerve tissue are not disturbed by homogenization and dilution prior to electrophoresis.
Collapse
Affiliation(s)
- R A Sheller
- Department of Zoology, University of Texas at Austin 78712
| | | |
Collapse
|
10
|
Abstract
The anucleate (distal) segment of a crayfish medial giant axon (MGA) remains intact for months in vivo after severing the axon from its cell body, a phenomenon referred to as long-term survival (LTS). We collected axoplasm from chronic anucleate MGAs by perfusing 2-cm lengths of axons with an intracellular saline. This axoperfusate was analyzed by SDS-PAGE and silver stained. Axoperfusate proteins from intact MGAs and from chronic anucleate MGAs exhibiting LTS for up to 6 months were the same. Furthermore, immunoreactive levels of actin and beta-tubulin were similar in axoperfusates from intact and chronic anucleate MGAs. This maintenance of proteins in chronic anucleate MGAs must be due to a lack of protein degradation and/or to local protein synthesis by a source other than the cell body. To investigate local protein synthesis in vitro, we added [35S]-methionine to the extracellular saline surrounding intact and chronic anucleate MGAs. After 4- to 6-h incubations, radiolabelled proteins were detected in axoperfusates analyzed by SDS-PAGE and fluorography. The similarity between radiolabelled proteins in axoperfusates and MGA glial sheaths indicated a glial origin for the radiolabelled axoperfusate proteins. Various observations and control experiments suggested that glial-axonal protein transfer occurred by a physiological process. Glial-axonal protein transfer may contribute to the maintenance of proteins during LTS of chronic anucleate MGAs.
Collapse
Affiliation(s)
- R A Sheller
- Department of Zoology, University of Texas, Austin 78712
| | | |
Collapse
|
11
|
Buchheit TE, Tytell M. Transfer of molecules from glia to axon in the squid may be mediated by glial vesicles. JOURNAL OF NEUROBIOLOGY 1992; 23:217-30. [PMID: 1378083 DOI: 10.1002/neu.480230303] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although the transfer of glial proteins into the squid giant axon is well documented, the mechanism of the transfer remains unknown. We examined the possibility that the transfer involved membrane-bound vesicles, by taking advantage of the fact that the fluorescent compound, 3,6-acridinediamine, N,N,N,',N'-tetramethylmonohydride [acridine orange (AO)], rapidly and selectively stains vesicular structures in glial cells surrounding the giant axon. We labeled cleaned axons (1-3 cm long) by incubation for 1 min in filtered seawater (FSW) containing AO. Because the AO was concentrated in glial vesicular organelles, these fluoresced bright orange when the axon was examined by epifluorescence microscopy. To look for vesicle transfer, axoplasm was extruded from such AO-treated axons at various times after labeling. During the initial 15 min, an increasing number of fluorescent vesicles were observed. No further increases were observed between 15 and 60 min post AO. The transfer of the fluorescent vesicles into the axoplasm seemed to be energy dependent, as it was inhibited in axons treated with 2 mM KCN. These results suggest that a special mode of exchange exists between the adaxonal glia and the axon, perhaps involving phagocytosis by the axon of small portions of the glial cells.
Collapse
Affiliation(s)
- T E Buchheit
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | |
Collapse
|
12
|
Abstract
The periaxonal and perineurial glia of crayfish and squid are strategically situated to regulate the neuronal microenvironment. Diverse molecules rapidly traverse the periaxonal sheath and a fraction of them enters the axons from glia or the glia from axons. The significance of these intercellular exchanges has not been tested directly. However, recent reports suggest that stress proteins, which probably are synthesized by both types of glia and transferred to axons, may be essential components by which the glia directly and indirectly assist neurons in tolerating ambient stress.
Collapse
Affiliation(s)
- R M Grossfeld
- Zoology Department, North Carolina State University, Raleigh 27695-7617
| |
Collapse
|
13
|
Abstract
Severed distal segments of nerve axons (anucleate axons) have now been reported to survive for weeks to years in representative organisms from most phyla, including the vertebrates. Among invertebrates (especially crustaceans), such long-term survival might involve transfer of proteins from adjacent intact cells to anucleate axons. In lower vertebrates and mammals, long-term survival of anucleate axons is more likely attributed to a slow turnover of axonal proteins and/or a lack of phagocytosis by macrophages or other cell types. Invertebrate anucleate axons that exhibit long-term survival are often reactivated by neurites that have grown from proximal nucleate segments. In mammals, induction of long-term survival in anucleate axons might allow more time to use artificial mechanisms to repair nerve axons by fusing the two severed halves with polyethylene glycol, a technique recently developed to fuse severed halves of myelinated axons in earthworms.
Collapse
Affiliation(s)
- G D Bittner
- Dept of Zoology, College of Pharmacy, University of Texas, Austin 78712
| |
Collapse
|
14
|
Abstract
The flux of organelles moving by fast axonal transport in distal segments of severed crayfish medial giant axons (MGAs) and lateral giant axons (LGAs) was measured for survival times of up to 35 days (MGAs) or 60 days (LGAs). The response to transection occurred in 4 phases: (1) Organelle fluxes remained nearly normal for the first 24 h. (2) Fluxes then declined continuously until day 6 or 7. (3) A rebound toward normal levels lasted until day 21 (MGAs) or longer (LGAs). (4) During the final phase, fluxes declined either to zero (MGAs) or plateaued at a level which was a significant percentage of normal flux (LGAs). Changes in anterograde and retrograde flux were identical. The distribution of various size classes of translocating vesicles in distal segments of these axons was normal until day 4, with small and medium size, rapidly moving vesicles predominating. Afterwards, larger, slower vesicles predominated. During long-term survival, the axons remained physiologically intact, and cytoskeletons appeared to be normal, retaining intact microtubules which remained normally oriented with positive ends pointing distally. The evidence suggests that the two initial phases of the response to transection represent clearance from distal segments of organelle traffic which normally moves between axon and cell body. The rebound phase may be trauma induced, possibly a transient phase of cytoplasmic degeneration resulting from the loss of trophic support from the cell body. Differences between LGAs and MGAs with respect to organelle flux during prolonged survival, i.e. during the 4th phase of the response to transection, are consistent with different mechanisms of long-term survival which have been proposed for these axons.
Collapse
Affiliation(s)
- T A Viancour
- Department of Biological Sciences, University of Maryland, Baltimore 21228
| |
Collapse
|
15
|
Blundon JA, Sheller RA, Moehlenbruck JW, Bittner GD. Effect of temperature on long-term survival of anucleate giant axons in crayfish and goldfish. J Comp Neurol 1990; 297:377-91. [PMID: 2398138 DOI: 10.1002/cne.902970305] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of temperature on the electrophysiology and morphology of anucleate axons was examined following severance of crayfish medial giant axons and goldfish Mauthner axons from their respective cell bodies. Although anucleate segments of each giant axon exhibited long-term survival for weeks to months at 5-25 degrees C in crayfish and 10-30 degrees C in goldfish, the two axons differed in their survival characteristics. All measures of long-term survival in crayfish medial giant axons were independent of animal holding temperature, whereas all measures in Mauthner axons were dependent on holding temperature. Medial giant axons survived for at least 90 days in crayfish maintained at 5-25 degrees C in this and previous studies. Mauthner axons survived for over 5 months in goldfish maintained at 10 degrees C but survived for 1 month at 30 degrees C. Postoperative time had different effects on many single measures of long-term survival (axonal diameter, amplitude of action or resting potentials) in medial giant axons compared to Mauthner axons. For example, resting and action potentials in crayfish medial giant axons remained remarkably constant at all holding temperatures for 0-90 postoperative days. In contrast, resting and action potentials in goldfish Mauthner axons declined abruptly in the first 10-20 postoperative days followed by a slower decline at each holding temperature. We suggest that the mechanism of long-term survival is not necessarily the same in all anucleate axons.
Collapse
Affiliation(s)
- J A Blundon
- Department of Zoology, University of Texas, Austin 78712
| | | | | | | |
Collapse
|
16
|
Berdan RC, Hauser G, Bulloch AG. Ultrastructure of an identified molluscan neuron in organ culture and cell culture following axotomy. J Comp Neurol 1990; 296:437-46. [PMID: 2358546 DOI: 10.1002/cne.902960309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We examined the ultrastructure of neuron 5 from the buccal ganglion of the mollusc Helisoma trivolvis after axotomy and organ culture, and after isolation of the same neuron in culture. Buccal ganglia containing axotomized neurons 5 were cultured either in host snails or in Leibovitz medium conditioned with ganglia. In addition, some neurons 5 were isolated from buccal ganglia by micro-dissection and plated into culture. Neuron 5 and its processes were identified in both whole mounts and plastic sections of buccal ganglia after intracellular injection with Lucifer Yellow or horseradish peroxidase. Five days after axotomy of neuron 5, thick sections of buccal ganglia stained with toluidine blue revealed that densely staining basophilic bodies (Nissl bodies) within the cytoplasm had dispersed, i.e., they had undergone chromatolysis. Coincident with chromatolysis was an overall increase in diffuse basophilic staining within the cytoplasm of neuron 5 when maintained in organ culture. The dispersion of Nissl bodies viewed by light microscopy correlated with a more freely arranged rough endoplasmic reticulum and associated polysomes within neuron 5 as seen by electron microscopy. Isolated neurons 5 did not possess densely staining Nissl bodies when examined after 2 days in vitro, thus indicating that chromatolysis occurred earlier in isolated neurons. Furthermore, no increase in diffuse cytoplasmic basophilia was observed within isolated neurons 5 cultured in vitro. However, isolated neurons 5 exhibited a marked increase in the number of lipid-like bodies (0.5-1.5 micron in diameter) that were particularly evident in scanning electron micrographs. Scanning and transmission electron micrographs revealed that the isolated neurons were free of associated glia, but non-neuronal cells (hemocytes) would attach themselves to the somata and neurites. Glia surrounding neuron 5 within buccal ganglia exhibited a marked hypertrophy following axotomy and organ culture. Hypertrophy of glia was absent, however, if ganglia were axotomized and left within the animal or axotomized ganglia were implanted into host animals and examined 5 days later by electron microscopy. These observations indicate that, following axotomy, a molluscan neuron may exhibit different morphological features depending on its microenvironment. In addition, the hypertrophy of glia surrounding neurons in Helisoma was not associated with axotomy per se, but with organ culture.
Collapse
Affiliation(s)
- R C Berdan
- Department of Medical Physiology, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
17
|
Abstract
Segmental lateral giant axons (SLGAs) in crayfish were used to determine whether functionally intact proteins can move between axons under physiological conditions. Horseradish peroxidase (HRP) was chosen as the tracer protein because its localization requires intact enzymatic activity and because it can be localized in living cells using a non-cytotoxic procedure. Following iontophoretic injection of HRP in a single SLGA, HRP often transferred to adjacent SLGAs. HRP transferred from an injected SLGA to a caudal SLGA with greater frequency than HRP transferred to a rostral SLGA. When HRP transferred between SLGAs, it was ultrastructurally associated with vesicles on both sides of septate junctions between adjacent SLGAs and was also seen in the perijunctional extracellular space. There was no difference between the electrical resistance of synapses at which HRP transferred and those synapses where HRP did not transfer. HRP transfer was significantly reduced when axons were bathed in reduced calcium saline. These and other observations indicate that axon-to-axon transport in this system is accomplished by exocytosis of HRP from injected axons followed by its endocytotic uptake by adjacent, non-injected axons. Similar transfer of endogenous proteins may contribute to the long-term survival for months to years of distal stumps of severed SLGAs.
Collapse
Affiliation(s)
- T A Viancour
- University of Maryland, Department of Biological Sciences, Catonsville 21228
| | | | | | | |
Collapse
|
18
|
Seshan KR, Bittner GD. Developmental and other factors affecting regeneration of crayfish CNS axons. J Comp Neurol 1987; 262:535-45. [PMID: 3667963 DOI: 10.1002/cne.902620407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
According to histological and ultrastructural criteria, nongiant CNS axons in newly hatched crayfish regenerate more rapidly and with greater frequency than do similar axons in adult crayfish. Regenerative ability is greater in one species (Procambarus clarkii) than in another species (Procambarus simulans), is greater at 20-25 degrees C than at 15-16 degrees C, and is greater in nongiant axons than in giant axons. In contrast to axonal regeneration, nerve cell bodies do not regenerate in newly hatched or adult crayfish of either species. While the ability to regenerate CNS axons differs between newly hatched and adult crayfish, the ultrastructural appearance of the CNS is very similar at any age it is examined.
Collapse
Affiliation(s)
- K R Seshan
- Department of Zoology, University of Texas, Austin 78712
| | | |
Collapse
|
19
|
Viancour TA, Seshan KR, Bittner GD, Sheller RA. Organization of axoplasm in crayfish giant axons. JOURNAL OF NEUROCYTOLOGY 1987; 16:557-66. [PMID: 3681354 DOI: 10.1007/bf01668508] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Distributions of subcellular organelles in medial giant axons (MGAs) and segmental lateral giant axons (SLGAs) of crayfish were evaluated as part of an ongoing effort to understand and explain differences in distal stump survival following axonotomy. Both axons were able to endocytose tracer proteins placed extracellularly, and horseradish peroxidase injected by cannulation into MGAs could transfer into adaxonal glial cells. Concentrations of tubulovesicular organelles near axonal cell membranes were measured as a possible index of the relative level of axonal endo- and exocytosis, and concentrations in MGAs were found to be twice those in SLGAs. In both axons, microtubule concentrations were highest near the axolemma and lowest in the central core of axoplasm. In thoracic and abdominal regions of MGAs, microtubules and other organelles were located only in a thin layer of subaxolemmal axoplasm. Overall, MGAs contained fewer microtubules per cross-section than did SLGAs, although MGAs are five to ten times as long as SLGAs and support more synapses. Total numbers of microtubules per cross-section varied with distance from the cell body of an MGA, whereas microtubule numbers were similar in proximal and distal cross-sections of SLGAs. In addition to a layer of subaxolemmal mitochondria which was observed in MGAs and SLGAs and which is characteristic of crayfish axons, mitochondria were also concentrated in the central core of SLGA axoplasm.
Collapse
Affiliation(s)
- T A Viancour
- Department of Biological Sciences, University of Maryland, Catonsville 21228
| | | | | | | |
Collapse
|
20
|
Zottoli SJ, Marek LE, Agostini MA, Strittmatter SL. Morphological and physiological survival of goldfish Mauthner axons isolated from their somata by spinal cord crush. J Comp Neurol 1987; 255:272-82. [PMID: 3819017 DOI: 10.1002/cne.902550210] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Axon segments isolated from their somata degenerate within days or months depending on species and neuronal type. To better understand the time course of morphological and physiological changes associated with degeneration of axon segments of vertebrate central neurons, we have studied the goldfish Mauthner axon (M-axon) when it has been separated from its soma by spinal cord crush. M-axon segments survive morphologically for at least 77 days at 14 degrees C. Cross-sectional areas of isolated M-axon segments (measured 25-30 mm caudal to the wound site at postoperative days 64 and 77) were greater than those of control axons at the same level. Sheath areas did not change. Electron microscopic observations at the same spinal cord location indicated no clear changes in the configuration or number of neurofilaments or any other organelle. M-axon segments studied morphologically after 87 postoperative days had all degenerated. Mauthner axon segments were capable of conducting action potentials and eliciting ipsilateral EMG responses. Repetitive firing of the M-axon segments elicited EMG responses that fatigued more easily and remained fatigued over a longer interval than did those of control axons. The long duration of M-axon segment survival is unusual in a vertebrate and may be due to the low temperature at which the experiments were conducted (14 degrees C) and/or temperature-independent factors. The increased susceptibility to synaptic depression, which has not reported previously, may represent an early sign of the degenerative process.
Collapse
|
21
|
Elliott EJ, Muller KJ. Accurate regeneration of an electrical synapse between two leech neurones after destruction of the ensheathing glial cell. J Physiol 1983; 344:243-55. [PMID: 6317851 PMCID: PMC1193838 DOI: 10.1113/jphysiol.1983.sp014937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
An interneurone, the S cell in the central nervous system of the leech, regenerates its severed axon and forms an electrical synapse with its target, another S cell, entirely within the ensheathment of two glial cells. After the two glial cells were killed selectively by intracellular injection of protease, axonal regeneration and synapse formation occurred in a normal fashion during the month following nerve injury. Soon after reconnexion of S cells, the conduction of impulses across the non-rectifying electrical junction between the cells was more reliable from the target than into it from the thinner regenerating axon. The distal segments of severed S-cell axons survived for weeks or months after destruction of their glial cells, indicating that the ensheathing glia is not required for long-term survival of axon segments. The distal axon segment of the S cell remained connected to the target axon at the normal region of synapse midway between ganglia within the nerve cord. In about half the cases in which reconnexion between injured S cell and target S cell occurred between 10 and 25 days following nerve crush, the regenerating neurone had formed an electrical synapse with its severed distal axon and had thereby become reconnected, indirectly, with its target. In the other cases, reconnexion was by direct contact. By 4 weeks, the proportion of injured S cells that were coupled and making direct contact with their targets rose to more than 80% of the total population, indicating that regeneration continued until the two S cells contacted one another directly. This is similar to the course of S-cell regeneration in the presence of the ensheathing glia. Microscopy of the regenerating neurone and both its distal axon segment and its target showed that the site of synapse formation in the absence of the usual glial sheath was normal. Fluorescence microscopy following intracellular injection of Lucifer Yellow dye, which crosses between S cells at the electrical synapse, showed that the regenerated synapse formed specifically between S cells. Moreover, the target did not form alternative synapses when regeneration failed.
Collapse
|
22
|
Trinkaus-Randall V. Regeneration of transplanted chelae in two species of fiddler crabs (Uca pugilator andUca pugnax). ACTA ACUST UNITED AC 1982. [DOI: 10.1002/jez.1402240103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Elliot EJ, Muller KJ. Synapses between neurons regenerate accurately after destruction of ensheathing glial cells in the leech. Science 1982; 215:1260-2. [PMID: 7058345 DOI: 10.1126/science.7058345] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Individual glial cells that ensheathe axons in the central nervous system of the leech were destroyed by intracellular injection of protease. The axons were then severed, and regeneration by particular neurons was studied physiologically and morphologically. Although certain axons sprouted more in the absence of the glial cell, functional synapses were accurately regenerated with normal frequency.
Collapse
|
24
|
Viancour TA, Bittner GD, Ballinger ML. Selective transfer of Lucifer yellow CH from axoplasm to adaxonal glia. Nature 1981; 293:65-7. [PMID: 7266661 DOI: 10.1038/293065a0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Bittner GD, Brown MA. Long term survival of enucleated segments of glial cytoplasm in the leech Macrobdella decora. Brain Res 1981; 218:357-64. [PMID: 7272742 DOI: 10.1016/0006-8993(81)91314-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enucleated cytoplasmic segments of the giant connective glial cell (GCGC) survive morphologically intact for at least 10 weeks in the leech Macrobdella decora. Enucleated GCGC segments isolated from regenerating nerve axons show some degenerative changes after 4 weeks compared to GCGC segments which surround intact or regenerating nerve axons. Survival of GCGC cytoplasm is associated with an increase in the number of microglia. Relatively few (10-30%) nerve axons degenerate after severance from their cell body.
Collapse
|
26
|
Abstract
Nerve injury that severs axons also disrupts ensheathing glial cells. Specifically, crushing or cutting the leech nerve cord separates the glial cell's nucleated portion from an anucleate recording, by intracellular injection of Lucifer Yellow dye and horseradish peroxidase (HRP) as tracers, and by electron microscopy. The nucleated portion of the glial cell did not divide, degenerate, or grow appreciably. The severed glial stump remained isolated from the nucleated portion but maintained its resting potential and normal morphology for months. Stumps typically began to deteriorate after 3 months. Small macrophage-like cells, or 'microglia' increased in number after injury and ensheathed axons, thus partially replacing the atrophying glial stump. Some axons in the nerve cord degenerated; the remainder appeared morphologically and physiologically normal. Thus, both nucleated and anucleate glial segments persisted throughout the one to two months required for axons to regenerate functional connections. Glial cells in the leech are therefore available to guide physically the growing axons or to contribute in other ways to nerve regeneration.
Collapse
|
27
|
Kuwada JY, Wine JJ. Transient, axotomy-induced changes in the membrane properties of crayfish central neurones. J Physiol 1981; 317:435-61. [PMID: 6273548 PMCID: PMC1246799 DOI: 10.1113/jphysiol.1981.sp013835] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
1. In crayfish, the normally passive, non-spiking somata of certain unipolar, efferent neurones became spiking within 36 hr of axotomy. 2. The changes persisted for approximately 2 weeks and then waned. The decline in excitability occurred independently of regeneration, and excitability was not restored by recutting the axon stump. 3. The neuropilar processes also became capable of supporting spikes, but synaptic transmission onto the cells and the spike threshold for orthodromic activation were unchanged, as was the gross structure of the neurone. 4. In somata which normally spike, electrogenicity was nevertheless increased, as evidenced by soma spikes that were larger, faster rising, and easier to evoke. 5. We tested for post-axotomy excitability changes in a variety of identified neurones. Every type (n = 5) of phasically active efferent we tested responded as above, as did all three phasic interneurones. One class of spontaneously active interneurones and one spontaneously active efferent did not respond to axotomy. 6. Extensive damage to afferents did not initiate changes in efferents of the same ganglion, nor did it interfere with changes induced by axotomy of the efferents. 7. Transection of the larger of the two main branches of the phasic flexor inhibitor induced soma excitability, but cutting the smaller branch did not. However, after the excitability caused by cutting the larger branch waned, transection of the smaller branch then induced excitability. 8. Neurones with longer axon stumps took longer to develop soma excitability.
Collapse
|
28
|
|
29
|
Scott SA, Muller KJ. Synapse regeneration and signals for directed axonal growth in the central nervous system of the leech. Dev Biol 1980; 80:345-63. [PMID: 6161047 DOI: 10.1016/0012-1606(80)90410-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Ballinger ML, Bittner GD. Ultrastructural studies of severed medial giant and other CNS axons in crayfish. Cell Tissue Res 1980; 208:123-33. [PMID: 7388925 DOI: 10.1007/bf00234178] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The distal stumps of severed medial giant axons (MGAs) and of nongiant axons (NGAs) in the CNS of the crayfish Procambarus clarkii show long-term (5--9 months) survival associated with disorientation of mitochondria and thickening of the glial sheath. However, the morphological responses of the two axonal types differ in that neither the proximal nor the distal stump of severed MGAs ever fills with mitochondria as is observed in some severed NGAs. Furthermore, the adaxonal glial layer never completely encircles portions of MGA axoplasm as occurs in many severed NGAs; in fact, ultrastructural changes in the adaxonal layer around severed MGAs are often difficult to detect. No multiple axonal profiles are ever seen within the glial sheath of the proximal or distal stumps of severed MGAs whereas these structures are easily located within severed NGAs.
Collapse
|
31
|
|
32
|
Muller KJ, Carbonetto S. The morphological and physiological properties of a regenerating synapse in the C.N.S. of the leech. J Comp Neurol 1979; 185:485-516. [PMID: 438368 DOI: 10.1002/cne.901850305] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regeneration of an electrical synapse between particular interneurons in the medicinal leech was traced physiologically and morphologically using intracellular recording the horseradish peroxidase (HRP) injection. The synapse between S-cell interneurons lies in the connective midway between segmental ganglia, so crushing near one ganglion severs only one S-cell's axon. The severed distal stump remains connected to the adjacent uninjured S-cell and continues for weeks to conduct impulses. The injured cell regenerates, while its uninjured "target" neuron in the next ganglion does not grow. After the sprouts of the regenerating neuron cross the crush, one or a few branches grow along the surviving distal stump toward the original synapse. After about one month when the region of original synapse has been reached, regenerating neurons form electrical junctions and stop growing. Thereafter electrical coupling improves in stages. Within two months the regenerated neuron attains full caliber, the stump degenerates and function is normal. In some instances within days or weeks of crushing, the regenerating neuron forms a basket of synapses upon its severed distal stump and then continues growing to synapse with the target. When this occurs, electrical coupling and subsequent impulse transmission between S-cells rapidly resumes. These experiments indicated that the regenerating neuron is guided to its proper synaptic target by recognizing and following its severed distal stump. Sometimes the distal stump itself becomes an intermediate synaptic target.
Collapse
|
33
|
Abstract
Data from previous histological studies indicate that long-term survival of crayfish medial giant axons might be due in part to trophic support from cells of the surrounding glial sheath which often hypertrophy in response to transection of the medial giants. The biochemical studies reported herein show that segments from transected ventral nerve cords (VNC) always incorporate more [3H]leucine into protein than do corresponding segments from intact VNCs. Furthermore, the relative amount of [3H]leucine incorporation in severed segments seems to be influenced by distance and direction from the lesion site as well as time after lesioning. Similar spatiotemporal parameters were previously shown to be correlated with extent of glial hypertrophy around severed medial giant axons. Quantitative autoradiography of medial giant axons after incubation in [3H]leucine revealed that the grain density of label in glial sheaths surrounding severed medial giants was over two-fold greater than in sheaths around corresponding control axons. Moreover, the grain density in the axoplasm of severed medial giants was nearly four-fold greater than the grain density in the axoplasm of control axons. Data from experiments using short or long labeling intervals suggests that labeling in the medial giant axoplasm may be due more to transfer from glial sheath cells than from inherent axonal synthetic mechanisms. In light of this and other data, we concluded that long-term survival of severed medial giant axons is probably due to the direct transfer of trophic substances from cells of the glial sheath into the axon.
Collapse
|