1
|
Cheng AH, Cheng HYM. Genesis of the Master Circadian Pacemaker in Mice. Front Neurosci 2021; 15:659974. [PMID: 33833665 PMCID: PMC8021851 DOI: 10.3389/fnins.2021.659974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is the central circadian clock of mammals. It is responsible for communicating temporal information to peripheral oscillators via humoral and endocrine signaling, ultimately controlling overt rhythms such as sleep-wake cycles, body temperature, and locomotor activity. Given the heterogeneity and complexity of the SCN, its genesis is tightly regulated by countless intrinsic and extrinsic factors. Here, we provide a brief overview of the development of the SCN, with special emphasis on the murine system.
Collapse
Affiliation(s)
- Arthur H. Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
McNeill JK, Walton JC, Albers HE. Functional Significance of the Excitatory Effects of GABA in the Suprachiasmatic Nucleus. J Biol Rhythms 2018; 33:376-387. [PMID: 29974800 DOI: 10.1177/0748730418782820] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over 90% of neurons within the suprachiasmatic nucleus (SCN) express γ-aminobutyric acid (GABA). Although GABA is primarily an inhibitory neurotransmitter, in vitro studies suggest that the activation of GABAA receptors (GABAAR) elicits excitation in the adult SCN. The ratio of excitatory to inhibitory responses to GABA depends on the balance of chloride influx by Na+-K+-Cl- cotransporter 1 (NKCC1) and chloride efflux by K+-Cl- cotransporters (KCCs). Excitatory responses to GABA can be blocked by inhibition of the inward chloride cotransporter, NKCC1, with the loop diuretic bumetanide. Here we investigated the role of NKCC1 activity in phase shifting the circadian pacemaker in response to photic and nonphotic signals in male Syrian hamsters housed in constant darkness. In the early subjective night (CT 13.5), injection of bumetanide into the SCN reduced light-induced phase delays. However, during the late subjective night (CT 19), bumetanide administration did not alter light-induced phase advances. Injection of bumetanide during the subjective day (CT 6) did not alter the phase of free-running circadian rhythms but attenuated phase advances induced by injection of the GABAAR agonist muscimol into the SCN. These data support the hypothesis that the excitatory effects of endogenously released GABA contribute to the ability of light to induce phase delays, thereby contributing to the most important function of the circadian system, its entrainment with the day-night cycle. Further, the finding that bumetanide inhibits the phase-advancing effects of muscimol during the subjective day supports the hypothesis that the excitatory responses to GABA also contribute to the ability of nonphotic stimuli to phase shift the circadian pacemaker.
Collapse
Affiliation(s)
- John K McNeill
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - James C Walton
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - H Elliott Albers
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
3
|
Albers HE, Walton JC, Gamble KL, McNeill JK, Hummer DL. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol 2017; 44:35-82. [PMID: 27894927 PMCID: PMC5225159 DOI: 10.1016/j.yfrne.2016.11.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.
| | - James C Walton
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John K McNeill
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Daniel L Hummer
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Department of Psychology, Morehouse College, Atlanta, GA 30314, United States
| |
Collapse
|
4
|
Abstract
Mammalian circadian rhythms have been studied in great detail using primarily two different methods. One method is usually referred to as the formal analysis of rhythms. Its goal is to describe the properties of both rhythms and their underlying mechanisms, and it aims at the development of adequate mathematical models of the circadian system. The other method is the physiological analysis of the mechanisms that generate and entrain rhythms. Its goal is the identification of the anatomical components of the circadian system and the elu cidation at a cellular and molecular level of how these components work. This paper reviews how the formal analysis of circadian systems, primarily in rodents, set the agenda for physiological studies, and the degree to which this agenda has been fulfilled. It then discusses how physiological analyses of the system have helped to redefine issues such as the nature and identity of the pacemaker, the nature of the entrainment process, the roles of photic and nonphotic cues, and the role of feedback in the circadian system. The continued commerce between these two approaches has led to a sophisticated appreciation of the com plexities and subtleties of circadian organization in mammals. The further integration of for mal and physiological analyses remains a challenging goal for the future.
Collapse
Affiliation(s)
- Benjamin Rusak
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada
| |
Collapse
|
5
|
Ludin NM, Cheeseman JF, Merry AF, Millar CD, Warman GR. The effects of the general anaesthetic isoflurane on the honey bee (Apis mellifera) circadian clock. Chronobiol Int 2016; 33:128-33. [PMID: 26730506 DOI: 10.3109/07420528.2015.1113987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
General anaesthesia administered during the day has previously been shown to phase shift the honey bee clock. We describe a phase response curve for honey bees (n=105) to six hour isoflurane anaesthesia. The honey bee isoflurane PRC is "weak" with a delay portion (maximum shift of -1.88 hours, circadian time 0 - 3) but no advance zone. The isoflurane-induced shifts observed here are in direct opposition to those of light. Furthermore, concurrent administration of light and isoflurane abolishes the shifts that occur with isoflurane alone. Light may thus provide a means of reducing isoflurane-induced phase shifts.
Collapse
Affiliation(s)
- Nicola M Ludin
- a Department of Anaesthesiology, Faculty of Medical and Health Sciences , University of Auckland , Auckland , New Zealand
| | - James F Cheeseman
- a Department of Anaesthesiology, Faculty of Medical and Health Sciences , University of Auckland , Auckland , New Zealand
| | - Alan F Merry
- a Department of Anaesthesiology, Faculty of Medical and Health Sciences , University of Auckland , Auckland , New Zealand
| | - Craig D Millar
- a Department of Anaesthesiology, Faculty of Medical and Health Sciences , University of Auckland , Auckland , New Zealand.,b Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, Faculty of Science , University of Auckland , Auckland , New Zealand
| | - Guy R Warman
- a Department of Anaesthesiology, Faculty of Medical and Health Sciences , University of Auckland , Auckland , New Zealand
| |
Collapse
|
6
|
General anesthesia alters time perception by phase shifting the circadian clock. Proc Natl Acad Sci U S A 2012; 109:7061-6. [PMID: 22509009 DOI: 10.1073/pnas.1201734109] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following general anesthesia, people are often confused about the time of day and experience sleep disruption and fatigue. It has been hypothesized that these symptoms may be caused by general anesthesia affecting the circadian clock. The circadian clock is fundamental to our well-being because it regulates almost all aspects of our daily biochemistry, physiology, and behavior. Here, we investigated the effects of the most common general anesthetic, isoflurane, on time perception and the circadian clock using the honeybee (Apis mellifera) as a model. A 6-h daytime anesthetic systematically altered the time-compensated sun compass orientation of the bees, with a mean anticlockwise shift in vanishing bearing of 87° in the Southern Hemisphere and a clockwise shift in flight direction of 58° in the Northern Hemisphere. Using the same 6-h anesthetic treatment, time-trained bees showed a delay in the start of foraging of 3.3 h, and whole-hive locomotor-activity rhythms were delayed by an average of 4.3 h. We show that these effects are all attributable to a phase delay in the core molecular clockwork. mRNA oscillations of the central clock genes cryptochrome-m and period were delayed by 4.9 and 4.3 h, respectively. However, this effect is dependent on the time of day of administration, as is common for clock effects, and nighttime anesthesia did not shift the clock. Taken together, our results suggest that general anesthesia during the day causes a persistent and marked shift of the clock effectively inducing "jet lag" and causing impaired time perception. Managing this effect in humans is likely to help expedite postoperative recovery.
Collapse
|
7
|
Seggio JA, Fixaris MC, Reed JD, Logan RW, Rosenwasser AM. Chronic ethanol intake alters circadian phase shifting and free-running period in mice. J Biol Rhythms 2009; 24:304-12. [PMID: 19625732 DOI: 10.1177/0748730409338449] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker--including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli--in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes.
Collapse
Affiliation(s)
- Joseph A Seggio
- School of Biology and Ecology, University of Maine, Orono, ME 04469-5742, USA
| | | | | | | | | |
Collapse
|
8
|
McElroy B, Zakaria A, Glass JD, Prosser RA. Ethanol modulates mammalian circadian clock phase resetting through extrasynaptic GABA receptor activation. Neuroscience 2009; 164:842-8. [PMID: 19695310 DOI: 10.1016/j.neuroscience.2009.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
Abstract
Ethanol modulates the actions of multiple neurotransmitter systems, including GABA. However, its enhancing effects on GABA signaling typically are seen only at high concentrations. In contrast, although GABA is a prominent neurotransmitter in the circadian clock of the suprachiasmatic nucleus (SCN), we see ethanol modulation of clock phase resetting at low concentrations (<50 mM). A possible explanation is that ethanol enhances GABAergic signaling in the SCN through activating GABA(A) receptors that contain the delta subunit (GABA(Adelta) receptors), which are sensitive to low ethanol concentrations. Therefore, we investigated whether ethanol acts on GABA(Adelta) receptors in the SCN. Here we show that acute application of the GABA(Adelta) receptor antagonist, RO15-4513, to mouse hypothalamic slices containing the SCN prevents ethanol inhibition of nighttime glutamate-induced (photic-like) phase delays of the circadian clock. Diazepam, which enhances activity of GABA(A) receptors containing the gamma subunit (GABA(Agamma) receptors), does not modulate these phase shifts. Moreover, we find that RO15-4513 prevents ethanol enhancement of daytime serotonergic (non-photic) phase advances of the circadian clock. Furthermore, diazepam phase-advances the SCN circadian clock when applied alone in the daytime, while ethanol has no effect by itself at that time. These data support the hypothesis that ethanol acts on GABA(Adelta) receptors in the SCN to modulate photic and non-photic circadian clock phase resetting. They also reveal distinct modulatory roles of different GABA(A) receptor subtypes in circadian clock phase regulation.
Collapse
Affiliation(s)
- B McElroy
- Department Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
9
|
Djeridane Y, Lemmer B, Touitou Y. Diazepam affects both level and amplitude of rat locomotor activity rhythm but has no effect on core body temperature. Chronobiol Int 2009; 22:975-85. [PMID: 16393702 DOI: 10.1080/07420520500395094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The present study investigates the effects of a chronic administration of diazepam, a benzodiazepine widely used as an anxiolytic, on locomotor activity and body core temperature rhythms in male Wistar rats housed under 12 : 12 light : dark (LD) cycle conditions. Diazepam was administered subcutaneously for 3 wks in a dosage of 3 mg/kg body weight/day, 1 h before the onset of darkness. Diazepam increased the level of locomotor activity from the first day until the end of treatment, and also increased the amplitude of the activity circadian rhythm, but only on the third wk of treatment. Diazepam exerted no effects on the length of the period and did not affect the phase of the locomotor activity rhythm. The body temperature rhythm of rats was affected neither by short-term (a single injection) nor by long-term (every day for 3 wks) diazepam treatment. Diazepam lacked effect on body core temperature even on the first day of administration, thereby ruling out the possibility of drug tolerance development. The fact that diazepam affects locomotor activity, but not core body temperature, suggests that different mechanisms mediate the actions of diazepam on locomotor activity and on core body temperature.
Collapse
Affiliation(s)
- Yasmina Djeridane
- Faculté de Médecine, Pitié-Salpêtrière, Service de Biochimie Médicale et Biologie Moléculaire and INSERM U713, Paris, France
| | | | | |
Collapse
|
10
|
Suzuki K, Miyamoto T, Miyamoto M, Kaji Y, Takekawa H, Hirata K. Circadian variation of core body temperature in Parkinson disease patients with depression: a potential biological marker for depression in Parkinson disease. Neuropsychobiology 2008; 56:172-9. [PMID: 18332645 DOI: 10.1159/000119735] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 11/25/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND The biological rhythm in comorbidity of depression and Parkinson disease (PD) is still unclear. For early diagnosis or clarification of the pathologic condition of comorbidity of depression and PD, the present study investigated the presence of circadian rhythm abnormalities in patients with depression. METHODS We measured the rectal temperature (RT) in 30 PD patients with or without depression during 48 consecutive hours using the maximum entropy method (MEM) and least-squares method (COSINOR). The presence of major or minor depression was evaluated by the Mini International Neuropsychiatric Interview based on the 4th edition of the Diagnostic and Statistical Manual of Mental Disorders, and the Hamilton Depression Scale. RESULTS The RT rhythms of patients without depression predominately showed a circadian rhythm. However, 2 of 6 patients with depression showed an infradian rhythm using MEM. COSINOR revealed that PD patients with depression showed lower amplitudes of core body temperature (p = 0.012) and higher minimum RT (p = 0.031) relative to those of patients without depression. CONCLUSION PD patients with depression show an altered RT circadian rhythm. The results suggest that the characteristics of core body temperature could be potentially used as a biological marker for depression in PD.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Dysfonctionnements de l’horloge biologique et leurs traitements. ANNALES PHARMACEUTIQUES FRANÇAISES 2008; 66:146-57. [DOI: 10.1016/j.pharma.2008.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 05/15/2008] [Indexed: 11/20/2022]
|
12
|
Roenneberg T. The effects of light on the Gonyaulax circadian system. CIBA FOUNDATION SYMPOSIUM 2007; 183:117-27; discussion 128-33. [PMID: 7656682 DOI: 10.1002/9780470514597.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The circadian system of the marine unicellular alga Gonyaulax polyedra consists of at least two separate circadian oscillators. One of these controls the rhythm of bioluminescence, the other the rhythm of swimming behaviour. These two oscillators have separate light input mechanisms. The bioluminescence oscillator responds mainly to blue light whereas the aggregation oscillator is also sensitive to red light. Therefore, one of the chlorophylls is a likely candidate for the light receptor of the aggregation oscillator. Owing to their differences in spectral sensitivity, the two oscillators can be internally desynchronized when frequent dark pulses (e.g., five minutes every 20 min) are given in otherwise constant red light. Single bright red light pulses interrupting a constant dim blue background shift the bioluminescence oscillator similarly to dark pulses. They also lead to aftereffects in the period of the bioluminescence rhythm, indicating that the aggregation oscillator has a different phase response to red light pulses. In contrast, blue light pulses interrupting a dim red background shift both oscillators in a similar way and do not significantly alter the circadian period following the light pulse. The mammalian phosphagen creatine shortens the period of the bioluminescence rhythm significantly in blue light but not in red. Because it also increases the sensitivity of the phase response of the bioluminescence oscillator, we propose that creatine acts on its blue-sensitive light input mechanism.
Collapse
Affiliation(s)
- T Roenneberg
- Institut für Medizinische Psychologie, Ludwig-Maximilians-Universität, München, Germany
| |
Collapse
|
13
|
Czeisler CA. The effect of light on the human circadian pacemaker. CIBA FOUNDATION SYMPOSIUM 2007; 183:254-90; discussion 290-302. [PMID: 7656689 DOI: 10.1002/9780470514597.ch14] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The periodic light-dark cycle provides the primary signal by which the human circadian pacemaker is synchronized to the 24 h day. Earlier reports that social contacts were more effective than light in the entrainment of human circadian rhythms have not been supported by more recent studies. In fact, we have found that exposure to a cyclic light stimulus can induce strong (type 0) resetting of the human circadian pacemaker, indicating that exposure to light affects the pacemaker's amplitude of oscillation as well as its phase. These findings support Winfree's long-standing prediction, based on his pioneering recognition of the importance of amplitude in the analysis of circadian clocks, that strong (type 0) resetting would prove to be a common property of circadian resetting responses to light across a wide array of species, from algae to humans. Research on humans has shown, for the first time, that the response of the circadian pacemaker to light depends not only on the timing, intensity and duration of light exposure, but also on the number of consecutive daily light exposures. Exposure to light of a critical strength at a critical phase can even drive the human circadian pacemaker to its region of singularity, akin to temporarily 'stopping' the human circadian clock. These findings have important implications for the treatment of circadian rhythm sleep disorders, because properly timed exposure to light can reset the human clock to any desired hour within one to three days.
Collapse
Affiliation(s)
- C A Czeisler
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Seggio JA, Logan RW, Rosenwasser AM. Chronic ethanol intake modulates photic and non-photic circadian phase responses in the Syrian hamster. Pharmacol Biochem Behav 2007; 87:297-305. [PMID: 17544066 PMCID: PMC1989109 DOI: 10.1016/j.pbb.2007.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/01/2007] [Accepted: 05/02/2007] [Indexed: 10/23/2022]
Abstract
Chronic alcohol intake disrupts sleep and other circadian biological rhythms in both human alcoholics and in experimental animals. Recent studies from our laboratory indicate that these effects may be due, in part, to ethanol-induced alterations in fundamental properties of the circadian pacemaker. The present study explored the effects of chronic voluntary ethanol intake (25% v/v) on circadian phase responses to both photic and non-photic stimuli in Syrian hamsters. Hamsters were used in these experiments because they are a popular model organism in behavioral chronobiology research, and are characterized by unusually high levels of voluntary ethanol intake. Relative to controls, ethanol-exposed animals showed attenuation of circadian phase responses and wheel running activity following acute administration of the benzodiazepine, triazolam, a non-photic phase-shifting stimulus. In addition, ethanol-exposed animals displayed reduced phase advances, but normal phase delays, in response to brief light pulses. While the mechanisms underlying these effects remain to be elucidated, we hypothesize that ionotropic GABA and glutamate receptors may be involved, since these proteins serve as important targets for the neurobiological effects of ethanol, and are also known to be critically involved in the modulation of photic and non-photic circadian phase responses.
Collapse
Affiliation(s)
- Joseph A. Seggio
- Department of Biological Sciences University of Maine Orono, ME 04469, USA
| | - Ryan W. Logan
- Department of Psychology University of Maine Orono, ME 04469, USA
| | - Alan M. Rosenwasser
- Department of Biological Sciences University of Maine Orono, ME 04469, USA
- Department of Psychology University of Maine Orono, ME 04469, USA
| |
Collapse
|
15
|
Touitou Y, Bogdan A. Promoting adjustment of the sleep–wake cycle by chronobiotics. Physiol Behav 2007; 90:294-300. [PMID: 17056076 DOI: 10.1016/j.physbeh.2006.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 09/04/2006] [Indexed: 01/29/2023]
Abstract
Chronobiotics are substances that adjust the timing of internal biological rhythms. Many classes of drugs have been claimed to possess such properties and arouse growing interest as the circumstances for their use in sleep disturbances caused by circadian rhythms alterations (delayed or advanced sleep-phase syndromes, non-24-h sleep-wake disorders, jet lag, shift work sleep disorders and so on) have become progressively more frequent. Amongst the substances potentially presenting chronobiotic properties, a consensus seems to be reached on the possible use of melatonin or its agonists to shift the phase of the human circadian clock, but optimizing the dose, formulation and especially the time of administration require further studies.
Collapse
Affiliation(s)
- Yvan Touitou
- Department of Biochemistry and Molecular Biology, Faculty of Medicine Pierre and Marie Curie-Pitie Salpetriere, and INSERM U 713 Douleurs et stress, 91 Boulevard de l'Hopital, 75013, Paris, France.
| | | |
Collapse
|
16
|
Lemmer B. The sleep-wake cycle and sleeping pills. Physiol Behav 2006; 90:285-93. [PMID: 17049955 DOI: 10.1016/j.physbeh.2006.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/04/2006] [Accepted: 09/04/2006] [Indexed: 11/22/2022]
Abstract
Sleeping pills are drugs which are used world-wide to combat sleep disturbances, and to prevent symptoms due to maladjustment to shiftwork or jet-lag. Today, benzodiazepines and the so-called "non-benzodiazepines", such as zolpidem, which both act on benzodiazepine receptors, are drugs of first choice and they are substitutes for barbiturates. Their use as sleeping pills in insomniacs is established after appropriate medical diagnosis. Symptoms from shiftwork or jet-lag are due to an internal desynchronisation of biological rhythms, and there is ample evidence that benzodiazepines are not effective in preventing these symptoms. Cabin crews in particular should never take sleeping pills, in order not to impair cognitive functions or to reduce the reactivity needed to fly an aircraft safely. The biological clock(s) cannot be reset instantaneously by any drug.
Collapse
Affiliation(s)
- Björn Lemmer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Ruprecht-Karls-University of Heidelberg, Maybachstr, 14, 68169 Mannheim, Germany.
| |
Collapse
|
17
|
Carpentieri AR, Pujolràs MA, Chiesa JJ, Noguera AD, Cambras T. Effect of melatonin and diazepam on the dissociated circadian rhythm in rats. J Pineal Res 2006; 40:318-25. [PMID: 16635019 DOI: 10.1111/j.1600-079x.2006.00320.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The main structures involved in the circadian system in mammals are the suprachiasmatic nuclei (SCN) of the hypothalamus. The SCN contain multiple autonomous single-cell circadian oscillators that are coupled among themselves, generating a single rhythm. However, under determined circumstances, the oscillators may uncouple and generate several rhythmic patterns. Rats exposed to an artificially established 22-h light-dark cycle (T22) express two stable circadian rhythms in their motor activity that reflect the separate activities of two groups of oscillators in the morphologically well-defined ventrolateral and dorsomedial SCN subdivisions. In the experiments described in this paper, we studied the effect of melatonin and diazepam (DZP) administration in drinking water on the dissociated components of rat motor activity exposed to T22, to deduce the possible mechanism of these drugs on the circadian system. In order to suppress the endogenous circadian rhythm of melatonin, in some of the rats the pineal gland or the superior cervical ganglia were removed. The results show that melatonin or DZP treatment increased the manifestation of the light-dependent component to the detriment of the manifestation of the non-light-dependent component and that melatonin, but not DZP, shortens the period of the non-light-dependent component. These findings suggest that both DZP and melatonin favor entrainment to external light, and that melatonin could also act on the SCN, producing changes in the period of the circadian cycle.
Collapse
Affiliation(s)
- Agata Rita Carpentieri
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
18
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
19
|
Petri B, Homberg U, Loesel R, Stengl M. Evidence for a role of GABA and Mas-allatotropin in photic entrainment of the circadian clock of the cockroach Leucophaea maderae. J Exp Biol 2002; 205:1459-69. [PMID: 11976357 DOI: 10.1242/jeb.205.10.1459] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Accumulating evidence suggests that the accessory medulla is the location of the circadian pacemaker in the fruit fly Drosophila melanogasterand the cockroach Leucophaea maderae. γ-Aminobutyric acid(GABA) and Mas-allatotropin are two putative neurotransmitters, in the accessory medulla in the cockroach Leucophaea maderae. Neurons immunoreactive to the neuropeptide Mas-allatotropin are local neurons with arborizations in the noduli of the accessory medulla, while GABA-immunoreactive neurons connect the noduli of the accessory medulla to the medulla and to the lamina via processes in the distal tract. Injections of GABA and Mas-allatotropin into the vicinity of the accessory medulla resulted in stable phase-dependent resetting of the circadian locomotor activity of the cockroach. The resulting phase response curves closely matched light-dependent phase response curves, suggesting that both substances play a role in circuits relaying photic information from circadian photoreceptors to the central pacemaker.
Collapse
Affiliation(s)
- Bernhard Petri
- Institut für Zoologie/Biologie I, Universität Regensburg, 93040 Regensburg, Germany
| | | | | | | |
Collapse
|
20
|
Shimura M, Akaike N, Harata N. Circadian rhythm in intracellular Cl(-) activity of acutely dissociated neurons of suprachiasmatic nucleus. Am J Physiol Cell Physiol 2002; 282:C366-73. [PMID: 11788348 DOI: 10.1152/ajpcell.00187.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A link between the circadian rhythm and the function of Cl(-)-permeable gamma-aminobutyric acid (GABA) type A (GABA(A)) receptors on suprachiasmatic nucleus (SCN) neurons was studied by measuring intracellular activity of Cl(-) (aCl) at different times during a circadian cycle in SCN neurons acutely dissociated from rat brains. To measure aCl, the voltage-clamp mode of the gramicidin-perforated patch-clamp technique was used, and reversal potential of GABA-induced currents (E(GABA)) was converted to aCl. Measured aCl was significantly higher at around noon (20.1 +/- 1.4 mM) than at three other time zones of a circadian cycle (means ranging from 11.6 to 14.3 mM). Chord conductance of GABA-induced currents showed no circadian changes, indicating a lack of circadian changes in the number or single-channel conductance of GABA(A) receptors. These results suggest that aCl participates in modulating GABA(A) receptor functions on SCN neurons during the circadian rhythm.
Collapse
Affiliation(s)
- Masahiko Shimura
- Department of Ophthalmology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | | | | |
Collapse
|
21
|
Petri B, Stengl M. Phase response curves of a molecular model oscillator: implications for mutual coupling of paired oscillators. J Biol Rhythms 2001; 16:125-41. [PMID: 11302555 DOI: 10.1177/074873001129001836] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing evidence indicates that the accessory medulla is the circadian pacemaker controlling locomotor activity rhythms in insects. A prominent group of neurons of this neuropil shows immunoreactivity to the peptide pigment-dispersing hormone (PDH). In Drosophila melanogaster, the PDH-immunoreactive (PDH-ir) lateral neurons, which also express the clock genes period and timeless, are assumed to be circadian pacemaker cells themselves. In other insects, such as Leucophaea maderae, a subset of apparently homologue PDH-ir cells is a candidate for the circadian coupling pathway of the bilaterally symmetric clocks. Although knowledge about molecular mechanisms of the circadian clockwork is increasing rapidly, very little is known about mechanisms of circadian coupling. The authors used a computer model, based on the molecular feedback loop of the clock genes in D. melanogaster, to test the hypothesis that release of PDH is involved in the coupling between bilaterally paired oscillators. They can show that a combination of all-delay- and all-advance-type interactions between two model oscillators matches best the experimental findings on mutual pacemaker coupling in L. maderae. The model predicts that PDH affects the phosphorylation rate of clock genes and that in addition to PDH, another neuroactive substance is involved in the coupling pathway, via an all-advance type of interaction. The model suggests that PDH and light pulses, represented by two distinct classes of phase response curves, have different targets in the oscillatory feedback loop and are, therefore, likely to act in separate input pathways to the clock.
Collapse
Affiliation(s)
- B Petri
- Institut für Zoologie/Biologie I, Universität Regensburg, Germany
| | | |
Collapse
|
22
|
Namihira M, Honma S, Abe H, Masubuchi S, Ikeda M, Honmaca K. Circadian pattern, light responsiveness and localization of rPer1 and rPer2 gene expression in the rat retina. Neuroreport 2001; 12:471-5. [PMID: 11234748 DOI: 10.1097/00001756-200103050-00010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Circadian expression, light-responsiveness and localization of clock genes, rPer1 and rPer2, were examined in the rat retina under constant darkness. A significant circadian variation was detected in rPer2 transcript levels with a peak at ZT14, but not in the rPer1. A light pulse given after constant darkness of 3 days increased both rPer1 and rPer2 expression phase-dependently, while rPer1 was induced at more times than rPer2. A major site of these gene expression within the retina was the inner nuclear layer. These findings indicate that rPer1 and rPer2 genes play different roles in the generation and regulation of circadian rhythms in the retina from those in the suprachiasmatic nucleus.
Collapse
Affiliation(s)
- M Namihira
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Circadian rhythms are endogenously-mediated 24 h cycles of behavioral or physiological activity. The interactions among the mammalian circadian clock, acute seizures, and chronic epilepsy are not well-characterized. Evidence suggests that seizures are susceptible to circadian modulation, and that this modulation varies with epilepsy syndrome and location of seizure foci. The circadian timing system and secondary circadian cycles of hormone secretion, sleep and wakefulness, and recurrent environmental factors are discussed as potential systems that effect spontaneous seizure recurrence. Experimental designs should take into account time-of-day effects on seizure threshold and occurrence. Further work is required to determine what mechanisms account for daily variation in seizure susceptibility.
Collapse
Affiliation(s)
- M Quigg
- NSF Center for Biological Timing, Department of Neurology, University of Virginia, Box 394, HSC, Charlottesville, VA 22908, USA.
| |
Collapse
|
24
|
Role of brain-derived neurotrophic factor in the circadian regulation of the suprachiasmatic pacemaker by light. J Neurosci 2000. [PMID: 10751450 DOI: 10.1523/jneurosci.20-08-02978.2000] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus mediates the generation of mammalian circadian rhythms, including an oscillation in pacemaker sensitivity to photic signals conveyed by the retinohypothalamic tract. Because brain-derived neurotrophic factor (BDNF) has been implicated in the functional regulation of neural input to other targets of visual pathways, the present study examined whether changes in BDNF expression or blockade of its action in the SCN affect circadian pacemaker responses to light. In rats receiving infusion of exogenous BDNF into the SCN, the free-running rhythm of activity in constant darkness was characterized by large phase advances in response to light exposure during the midsubjective day, when the circadian pacemaker is normally insensitive to photic perturbation. In contrast, SCN infusion of BDNF did not potentiate either phase-delaying or phase-advancing effects of light on the rat activity rhythm during the subjective night. In heterozygous BDNF mutant mice, deficits and damped rhythmicity in SCN levels of this neurotrophin were accompanied by marked decreases in the amplitude of light-induced phase shifts during the subjective night. In agreement with the effects of decreased BDNF expression, SCN infusion of the tyrosine kinase inhibitor K252a blocked or strongly inhibited both the phase-delaying and -advancing effects of light during the subjective night. Collectively, these findings suggest that BDNF-mediated signaling may play an important role in the circadian regulation of SCN pacemaker sensitivity to light.
Collapse
|
25
|
Shinohara K, Hiruma H, Funabashi T, Kimura F. GABAergic modulation of gap junction communication in slice cultures of the rat suprachiasmatic nucleus. Neuroscience 2000; 96:591-6. [PMID: 10717439 DOI: 10.1016/s0306-4522(99)00556-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We employed morphological and electrophysiological methods in order to elucidate mechanisms which are responsible for communication between cellular oscillators in the cultured rat suprachiasmatic nucleus, the site of the endogenous biological clock that regulates circadian rhythms in mammals. When a gap junction-permeable dye, Lucifer Yellow, was injected into single neurons in the suprachiasmatic nucleus culture, the dye was transferred to neighboring cells in a gap junction blocker-sensitive manner. Optical imaging of neural activity evoked by electrical stimulation in the culture revealed that the spread of depolarization was inhibited by gap junction blockers but not by a blocker of voltage-dependent Na(+) channels. Depolarization propagation was inhibited by muscimol, a GABA(A) receptor agonist, in a dose-dependent manner and the inhibition was reversed by bicuculline, a GABA(A) receptor antagonist. Furthermore, muscimol inhibited dye-transfer between neurons in the suprachiasmatic nucleus culture in a dose-dependent fashion.These independent lines of evidence suggest that the gap junction communication is involved in interneuronal communication in the suprachiasmatic nucleus slice culture and that the coupling state between neurons is not static but dynamically regulated via GABA(A) receptor systems.
Collapse
Affiliation(s)
- K Shinohara
- Department of Physiology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Japan
| | | | | | | |
Collapse
|
26
|
Pinto FT, Golombek DA. Neuroactive steroids alter the circadian system of the Syrian hamster in a phase-dependent manner. Life Sci 1999; 65:2497-504. [PMID: 10622234 DOI: 10.1016/s0024-3205(99)00516-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several steroid compounds affect neuronal function, primarily by modulating the GABAA receptor complex. A circadian variation in the brain concentration of neurosteroids has been reported in rats and humans. We have previously reported that natural occurring or synthetic neuroactive steroids such as androsterone and alphaxalone also have a rhythmic effect on behavior (anesthetic and anticonvulsant activity) and GABAergic activity. In the present work, we have tested the ability of neuroactive steroids to phase shift circadian rhythms in hamsters. The GABA(A) negative modulator dehydroepiandrosterone sulphate (DHEAS) elicited phase advances when administered at CT 6, while the positive modulator androsterone lacked any effect at this time. A complete phase response curve for DHEAS revealed a nonphotic-like effect. DHEAS also blocked the circadian effects of light, while androsterone induced photic-like responses. There is also evidence that neurosteroids may be present and even synthesized in the SCN. Collectively, the results so far indicate that some neuroactive steroids might modulate the activity of the circadian clock.
Collapse
Affiliation(s)
- F T Pinto
- Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | | |
Collapse
|
27
|
Gillespie C, Van Der Beek E, Mintz E, Mickley N, Jasnow A, Huhman K, Albers H. GABAergic regulation of light-induced c-Fos immunoreactivity within the suprachiasmatic nucleus. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990906)411:4<683::aid-cne12>3.0.co;2-j] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Tanaka M, Iijima N, Amaya F, Tamada Y, Ibata Y. NGFI-A gene expression induced in the rat suprachiasmatic nucleus by photic stimulation: spread into hypothalamic periventricular somatostatin neurons and GABA receptor involvement. Eur J Neurosci 1999; 11:3178-84. [PMID: 10510181 DOI: 10.1046/j.1460-9568.1999.00739.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied NGFI-A gene expression in response to photic stimulation in the rat suprachiasmatic nucleus (SCN) using in situ hybridization histochemistry. This gene expression spread within the SCN and extended dorsally into the anterior hypothalamus after 30 min-1 h of light exposure at circadian time (CT) CT18. It appeared first in the ventrolateral SCN where the retinohypothalamic tract (RHT) innervates, then it expanded dorsomedially in the SCN and beyond the SCN to the anterior hypothalamus. However, stimulation for 2 h light exposure decreased its expression in the SCN. NGFI-A expression in the somatostatin neurons in the periventricular nucleus increased from 8.7% to 41% with increasing exposure time from 5 to 30 min. NGFI-A mRNA expression in the SCN was suppressed by pretreatment with baclofen, the GABAB receptor agonist. The spread of photic information from the retina to the SCN was visualized at immediate early gene level not only in the SCN but also in the area beyond the SCN. Somatostatin neurons in the periventricular nucleus which project to the external layer of the median eminence and are involved in regulation of growth hormone release showed NGFI-A gene expression corresponding to the duration of photic stimulation. Photic-induced NGFI-A gene expression in the SCN was also shown to be regulated by GABAergic transmission via GABAB receptors. These NGFI-A gene-expressing cells in the SCN may be involved in the circadian entrainment by light and some of those outside the SCN may participate in the regulation of neuroendocrine function.
Collapse
Affiliation(s)
- M Tanaka
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | |
Collapse
|
29
|
Strecker GJ, Park WK, Dudek FE. Zinc and flunitrazepam modulation of GABA-mediated currents in rat suprachiasmatic neurons. J Neurophysiol 1999; 81:184-91. [PMID: 9914279 DOI: 10.1152/jn.1999.81.1.184] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is responsible for generating circadian rhythms in mammals, and GABA is the predominant neurotransmitter in the SCN. Properties of gamma-aminobutyric acid-A (GABAA) responses in SCN neurons were examined in acutely prepared hypothalamic slices from 3- to 8-wk-old rats with the use of whole cell voltage-clamp techniques. Zn2+ reduced the amplitude of GABAA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in a concentration-dependent manner ranging from a reduction of control amplitude to 88% at 10 microM to 27% at 1,000 microM. Zn2+ reduced IPSC amplitude to a similar degree in the presence of tetrodotoxin and also significantly reduced the amplitude of currents evoked by application of exogenous GABA (100 microM, pressure applied). Zn2+ increased the frequency of IPSCs at lower concentrations and decreased it at higher ones. Flunitrazepam (100 nM) usually failed to potentiate the amplitude of sIPSCs, but prolonged sIPSC kinetics. Two exponential components were normally resolved in the sIPSC decay constants, and flunitrazepam significantly increased those two components. Thus flunitrazepam increased the duration of sIPSCs and potentiated the amplitude of currents evoked by pressure application of GABA. Zn2+ and benzodiazepine each modulated the effect of GABA in nearly all cells, suggesting that most SCN neurons have a similar GABAA receptor subunit composition in this respect. Zn2+ also affected sIPSC frequency, which suggests that Zn2+ increased neuronal firing rate at lower concentrations. These results begin to define the cellular roles that these GABAA receptor modulators might play in circadian regulation.
Collapse
Affiliation(s)
- G J Strecker
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins, Colorado 80523-1670, USA
| | | | | |
Collapse
|
30
|
Duncan WC, Johnson KA, Wehr TA. Decreased sensitivity to light of the photic entrainment pathway during chronic clorgyline and lithium treatments. J Biol Rhythms 1998; 13:330-46. [PMID: 9711508 DOI: 10.1177/074873098129000165] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Certain antidepressant drugs (ADs) cause disturbances in sleep that could result from their capacity to alter the timing of circadian rhythms. Effects on the timing of rhythms could be due to the drugs' known capacity to alter the frequency of the intrinsic rhythm of the circadian pacemaker, or to a capacity to modify the pacemaker's response to external stimuli that serve as time cues (Zeitgebers) that regulate the timing (phase) of its rhythm. To examine the possibility that ADs alter the sensitivity of the system that mediates the phase-shifting effects of light, hamsters were treated chronically with the MAOI, clorgyline, and lithium. Each hamster was then exposed to a single 5-min light pulse (intensity range = 0.00137 to 137 microW/cm2) at circadian phases known to elicit phase advances (CT18) and phase delays (CT13.5) in the daily onset of wheel running. The half-saturation constant (sigma), photic sensitivity (1/sigma), and maximum phase-shifting response to light were estimated from the best-fit stimulus response curves. In addition, threshold sensitivity, the light intensity required to produce a threshold phase-shifting response, was determined. Clorgyline decreased the magnitude of light-induced phase advances at each of the light intensities tested. Clorgyline also decreased the magnitude of light-induced phase delays at low light intensities, but increased the magnitude of phase delays at higher light intensities. Clorgyline decreased the sensitivity of the photic phase-shifting system, as indicated both by the threshold sensitivities at CT13.5 and CT18, and by 1/sigma at CT13.5. Lithium decreased the threshold sensitivity at CT18, and 1/sigma at CT13.5. Lithium decreased the magnitude of phase delays, but not phase advances. Clorgyline's effects on the photic entrainment pathway may be mediated by its effects on serotonin, which has been shown to modulate the pacemaker's response to morning and evening light, and by tolerance to this effect of serotonin. The fact that both clorgyline and lithium decrease the photic sensitivity of the entrainment pathway suggests that other psychoactive drugs might also share this property. It is possible that the decreased sensitivity to light of the entrainment pathway affects the clinical response to these and other psychoactive medications.
Collapse
Affiliation(s)
- W C Duncan
- Section on Biological Rhythms, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
31
|
Challet E, Naylor E, Metzger JM, MacIntyre DE, Turek FW. An NK1 receptor antagonist affects the circadian regulation of locomotor activity in golden hamsters. Brain Res 1998; 800:32-9. [PMID: 9685577 DOI: 10.1016/s0006-8993(98)00491-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Substance P (SP) is a neuromodulator which may participate in the photic regulation of the circadian timing system in mammals. The biological effects of SP are mediated by interaction with specific receptors, designated as NK1, NK2, and NK3. The NK1 subtype receptor is expressed in the circadian system. Experiment 1 was designed to test whether an NK1 antagonist mimics the effects of dark pulses. Hamsters were housed in constant lighting conditions, either constant darkness or constant light (around 250 lx), and they received an i.p. injection of either the specific NK1 receptor antagonist, L-760,735 (5 mg/kg), or saline during the mid-subjective day, a time when dark pulses cause a phase-advance in circadian rhythm of locomotor activity. After treatment with the NK1 antagonist, significant phase-advances of wheel-running activity rhythm were found in constant light, but not in constant darkness. Experiment 2 was designed to test the ability of the NK1 antagonist to block the phase-delaying and/or the phase-advancing effects of light in animals kept in constant darkness. Phase-advances of locomotor activity rhythm that can normally be induced by light pulses given during the late subjective night were markedly reduced by pre-treatment with the NK1 antagonist. By contrast, phase-delays that can be induced by lights pulses given during the early subjective night were unaffected by the NK1 antagonist. These data support the hypothesis that SP within the circadian system may, by interacting with NK1 receptors, modulate photic responses of the SCN pacemaker.
Collapse
Affiliation(s)
- E Challet
- Center for Circadian Biology and Medicine, Department of Neurobiology and Physiology, Northwestern University, 2153 North Campus Drive, Evanston, IL 60208, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
GABA is the major inhibitory neurotransmitter in the mammalian brain, and has been implicated in the regulation of a variety of behavioral functions, including biological rhythms. The focus of this minireview is the rhythmic variation of the central GABAergic system, comprising fluctuations of GABA levels and turnover, GABA receptor affinity and postsynaptic activity on the chloride ionophore in rodent's brain. Neurochemical rhythms correlated with diurnal and circadian changes in several behaviors associated with the GABA(A) receptor, e.g., anxiolysis-related behavior. GABA is considered to be the principal neurotransmitter of the mammalian circadian system, being present in the suprachiasmatic nuclei and the intergeniculate leaflet. Pharmacological manipulations of GABA(A) receptors phase shift circadian rhythms and alter circadian responses to light. Administration of putative modulators of GABA function, like melatonin or neuroactive steroids, affects the timing of biological rhythms. Therefore, not only does the GABAergic system exhibit strong diurnal and circadian variations, but it also serves as one of the key modulators of the circadian apparatus.
Collapse
Affiliation(s)
- D P Cardinali
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina.
| | | |
Collapse
|
33
|
Duncan WC, Johnson KA, Sutin E, Wehr TA. Disruption of the activity-rest cycle by MAOI treatment: dependence on light and a secondary visual pathway to the circadian pacemaker. Brain Res Bull 1998; 45:457-65. [PMID: 9570715 DOI: 10.1016/s0361-9230(97)00383-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The disruptive effects on the activity-rest cycle of the monoamine oxidase inhibitor (MAOI) clorgyline and of continuous light were examined in Syrian hamsters. When administered in dim and moderate light intensities, clorgyline delayed the daily onset of wheel-running. When administered in bright light, it dissociated the circadian rhythm of wheel-running. This dissociation was prevented by lesions of the intergeniculate leaflet of the ventral lateral geniculate nucleus. Constant darkness restored the circadian rhythm of wheel-running in hamsters with disrupted circadian rhythms. The phase of the restored rhythm of wheel-running was shifted 6-12 h later than the phase of wheel-running prior to dissociation. Our results suggest that MAOI treatment weakens the coupling between oscillators that comprise the circadian pacemaker, and augments the disruptive effects of continuous light acting via the intergeniculate leaflet region of the ventral lateral geniculate nucleus. These effects on the circadian pacemaker may be responsible for disruptions of the sleep-wake cycle that occur as side effects when MAOIs are used clinically to treat depression and might play a role in the induction of mania and rapid cycling by antidepressants.
Collapse
Affiliation(s)
- W C Duncan
- Clinical Psychobiology Branch, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
34
|
|
35
|
Weber ET, Rea MA. Neuropeptide Y blocks light-induced phase advances but not delays of the circadian activity rhythm in hamsters. Neurosci Lett 1997; 231:159-62. [PMID: 9300646 DOI: 10.1016/s0304-3940(97)00559-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In mammals, the suprachiasmatic nuclei (SCN) are the anatomical site of localization of the light-entrainable circadian clock responsible for the generation of daily rhythms in physiology and behavior. In addition to direct retinohypothalamic innervation, the SCN receive a prominent projection of fibers from the intergeniculate leaflet (IGL) of the thalamus, the geniculohypothalamic tract (GHT), some of which contain the neurotransmitter, neuropeptide Y (NPY). Since the GHT has been suggested to play a role in the modulation of photic entrainment of the SCN circadian clock in rodents, we investigated the effects of local administration of NPY into the region of the SCN on light-induced phase shifts of the free-running activity rhythm in hamsters. Injection of 60 nmol of NPY into the SCN region 10 min prior to light exposure at circadian time 19 completely blocked light-induced phase advances. Similar treatment at circadian time 14 had no significant effect on the magnitude of light-induced phase delays. Injection of NPY at either time point without light exposure did not alter circadian phase. The findings support a modulatory role for NPY in the photic entrainment of the SCN circadian clock.
Collapse
Affiliation(s)
- E T Weber
- Biological Rhythms and Integrative Neuroscience Research Institute, Armstrong Laboratory (CFTO), Brooks AFB, TX 78235, USA
| | | |
Collapse
|
36
|
Gillespie CF, Mintz EM, Marvel CL, Huhman KL, Albers HE. GABA(A) and GABA(B) agonists and antagonists alter the phase-shifting effects of light when microinjected into the suprachiasmatic region. Brain Res 1997; 759:181-9. [PMID: 9221935 DOI: 10.1016/s0006-8993(97)00235-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
GABAergic drugs have profound effects on the regulation of circadian rhythms. The present study evaluated the effects of microinjections of GABAergic drugs into the suprachiasmatic region in hamsters on phase shifts induced by light and by microinjection of a cocktail containing vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI) and gastrin-releasing peptide (GRP). The phase-advancing effects of light at circadian time (CT) 19 were significantly reduced by microinjection of GABA(A) or GABA(B) agonists into the SCN, but were not altered by microinjection of GABA(A) or GABA(B) antagonists. Microinjection of a GABA(B) agonist also reduced the phase-delaying effects of light at CT 13.5-14 while a GABA(B) antagonist increased the phase delays caused by light. Neither GABA(B) drug altered the phase delays produced by microinjection of a peptide cocktail containing VIP, PHI, GRP. These data indicate that changes in GABA(A) or GABA(B) activity within the SCN can alter the phase-shifting effects of light on circadian rhythms and support a role for GABA in gating photic input to the circadian clock.
Collapse
Affiliation(s)
- C F Gillespie
- Department of Biology, Georgia State University, Atlanta 30303, USA
| | | | | | | | | |
Collapse
|
37
|
Gillespie CF, Huhman KL, Babagbemi TO, Albers HE. Bicuculline increases and muscimol reduces the phase-delaying effects of light and VIP/PHI/GRP in the suprachiasmatic region. J Biol Rhythms 1996; 11:137-44. [PMID: 8744241 DOI: 10.1177/074873049601100206] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present study investigated the effects of gamma-amino butyric acid (GABA)A-active drugs on the ability of light or coadministration of vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI), and gastrin-releasing peptide (GRP) to phase delay hamster activity rhythms. Microinjection of the GABAA agonist, muscimol, significantly (p < .01) reduced the phase-delaying effect of light administered at circadian time (CT) 13.5. By contrast, microinjection of the GABAA antagonist, bicuculline, significantly (p < .01) increased the phase-delaying effect of light administered at CT 13.5. Microinjection of muscimol or bicuculline into the suprachiasmatic nucleus (SCN) produced little or no effect on circadian phase when no light pulses were provided. Coadministration of muscimol with VIP/PHI/GRP significantly (p < .01) reduced the phase-delaying effect of VIP/PHI/GRP, whereas administration of bicuculline with VIP/PHI/GRP significantly (p < .05) increased the phase-delaying effect of these peptides. These data indicate that changes in GABAA activity within the SCN can modulate the phase-delaying effects of light and VIP/PHI/GRP during the early portion of subjective night.
Collapse
Affiliation(s)
- C F Gillespie
- Department of Biology and Psychology, Georgia State University, Atlanta 30303, USA
| | | | | | | |
Collapse
|
38
|
Shimura M, Harata N, Tamai M, Akaike N. Allosteric modulation of GABAA receptors in acutely dissociated neurons of the suprachiasmatic nucleus. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1726-34. [PMID: 8764156 DOI: 10.1152/ajpcell.1996.270.6.c1726] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The gamma-aminobutyric acid (GABA)-induced response was investigated in acutely dissociated suprachiasmatic nucleus (SCN) neurons of 11- to 14-day-old rats, under the voltage-clamp condition of nystatin-perforated patch recording. At a holding potential of -40 mV, application of GABA induced inward currents in a concentration-dependent manner. Pentobarbital and 5 beta-pregnan-3 alpha-ol-20-one (pregnanolone) similarly induced inward currents. GABA-induced inward currents were suppressed in a concentration-dependent manner by pretreating neurons with a GABAA receptor antagonist, bicuculline. Bicuculline (3 x 10(-6) M) shifted the concentration-response curve of GABA to the left in a competitive manner. Reversal potential of the GABA response (EGABA) was -3.4 +/- 0.7 mV, close to the theoretical Cl- equilibrium potential of -4.1 mV. Pretreating SCN neurons with diazepam, pentobarbital, and pregnanolone enhanced the 3 x 10(-6) M GABA response. Diazepam (3 x 10(-8) M), pentobarbital (3 x 10(-5) M), and pregnanolone (10(-7) M) shifted the concentration-response curve of GABA to the left without changing the maximal amplitude of GABA responses. EGABA in the presence of diazepam, pentobarbital, or pregnanolone was the same as that in their absence. These results show that the GABA response in acutely dissociated SCN neurons is mediated by the GABAA receptor. Because the GABAA receptor of SCN neurons is allosterically augmented by diazepam, pentobarbital, and pregnanolone, similarly as in other regions of the central nervous system, the present study opens up ways to functionally modulate the GABAA receptors in SCN.
Collapse
Affiliation(s)
- M Shimura
- Department of Physiology, Kyushu University Faculty of Medicine, Fukuoka, Japan
| | | | | | | |
Collapse
|
39
|
Subramanian P, Subbaraj R. Diazepam modulates the period of locomotor rhythm in mice (Mus booduga) and attenuates light-induced phase advances. Pharmacol Biochem Behav 1996; 54:393-8. [PMID: 8743600 DOI: 10.1016/0091-3057(95)02079-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Experiments were carried out on the continuous action of diazepam (benzodiazepine) offered through drinking water in 2% ethanol on psi and tau of the activity rhythms under LD (12:12) and DD conditions. Under entraining conditions diazepam failed to evoke striking changes in psi. On the other hand, under free-running conditions period-lengthening and period-shortening effects were observed. Further experiments conducted on the continuous effect of diazepam on light pulse evoked phase shifts revealed that phase advances were attenuated significantly in diazepam-treated animals at CT 20 and 24. These results were discussed with regard to the action of diazepam on the light sensitivity of the circadian pacemaker.
Collapse
Affiliation(s)
- P Subramanian
- Department of Animal Behaviour and Physiology, School of Biological Sciences, Madurai Kamaraj University, India
| | | |
Collapse
|
40
|
Abstract
The chronic effects of antidepressant drugs (ADs) on circadian rhythms of behavior, physiology and endocrinology are reviewed. The timekeeping properties of several classes of ADs, including tricyclic antidepressants, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, serotonin agonists and antagonists, benzodiazepines, and melatonin are reviewed. Pharmacological effects on the circadian amplitude and phase, as well as effects on day-night measurements of motor activity, sleep-wake, body temperature (Tb), 3-methoxy-4-hydroxyphenylglycol, cortisol, thyroid hormone, prolactin, growth hormone and melatonin are examined. ADs often lower nocturnal Tb and affect the homeostatic regulation of sleep. ADs often advance the timing and decrease the amount of slow wave sleep, reduce rapid eye movement sleep and increase or decrease arousal. Together, AD effects on nocturnal Tb and sleep may be related to their therapeutic properties. ADs sometimes delay nocturnal cortisol timing and increase nocturnal melatonin, thyroid hormone and prolactin levels; these effects often vary with diagnosis, and clinical state. The effects of ADs on the coupling of the central circadian pacemaker to photic and nonphotic zeitgebers are discussed.
Collapse
Affiliation(s)
- W C Duncan
- Clinical Psychobiology Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Abstract
A chronobiotic is defined and levels of action within the mammalian circadian pacemaker system, such as the retina, retinohypothalamic tract, geniculohypothalamic tract, suprachiasmatic nuclei, output and feedback systems are identified. Classes of drug that include the indoleamines, cholinergic agents, peptides, and benzodiazepines, which might act as chronobiotics within these levels, are evaluated. Particular emphasis is placed on the indole, melatonin (MLT). The clinical circumstances for use of chronobiotics in sleep disturbances of the circadian kind, such as jet lag, shift work, delayed sleep-phase syndrome, advanced sleep-phase syndrome, irregular and non-24-hr sleep-wake cycles, are described under reorganized headings of disorders of entrainment, partial entrainment, and desynchronization. Specific attention is given to the blind and the aged. Both human and animal studies suggest that MLT has powerful chronobiotic properties. MLT shows considerable promise as a prophylactic and therapeutic alternative or supplement to the use of natural and artificial bright light for resetting the circadian pacemaker. Throughout this discussion, the hypnotic and hypothermic versus the chronobiotic actions of MLT are raised. Finally, problems in the design of delivery systems for MLT are discussed.
Collapse
Affiliation(s)
- D Dawson
- School of Psychology, University of South Australia, Adelaide, Australia
| | | |
Collapse
|
42
|
van den Pol AN, Strecker GJ, Dudek FE. Excitatory and inhibitory amino acids and synaptic transmission in the suprachiasmatic nucleus. PROGRESS IN BRAIN RESEARCH 1996; 111:41-56. [PMID: 8990906 DOI: 10.1016/s0079-6123(08)60399-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- A N van den Pol
- Section of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
43
|
Abstract
In the present study, the distribution of GABAA-receptor alpha 1-, alpha 2-, alpha 3-, alpha 5-, beta 2.3- and gamma 2-subunits were localized immunohistochemically with subunit specific antibodies in the rat circadian timing system (CTS). The areas examined include the principal circadian pacemaker, the suprachiasmatic nucleus (SCN), and areas that receive important SCN input including the intergeniculate leaflet (IGL), subparaventricular zone (SPVZ), paraventricular hypothalamic nucleus (PVH), the retrochiasmatic area (RCh) and the paraventricular nucleus of the thalamus (PVT). The SCN has an unusual pattern with immunoreactivity for the alpha 2-, alpha 3-, alpha 5-, and gamma 2-subunits but not for the commonly expressed alpha 1- and beta 2.3-subunits. In all of the areas receiving SCN efferent input (SPVZ, PVH, RCh, PVT and IGL), staining is present either for all six subunits or for the three common subunits, alpha 1-, beta 2.3-, and gamma 2. There is some evidence for a differential distribution of subunits at the cellular level. The alpha 2-, and beta 2.3-subunits are predominantly expressed in neuropil, the alpha 3-, alpha 5- and gamma 2-subunits are predominantly expressed over perikarya and the alpha 1-subunit is expressed over both neuropil and perikarya in the areas in which subunit immunoreactivity is found. The demonstration of this regional and cellular expression of GABAA-receptor subunits should contribute to our understanding of GABAergic neurotransmission in the CTS.
Collapse
Affiliation(s)
- B Gao
- Department of Psychiatry, University of Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
44
|
Abstract
This study examined the normal development of neuronal activity in the suprachiasmatic nuclei (SCN) of rats between age 3-60 days, using Fos protein-like immunoreactivity (Fos-LI) as a marker. At age 3 days, Fos-positive nuclei are sparsely distributed throughout the SCN. Between age 3-10 days, the density of labeled nuclei increases significantly. Fos-LI labeling is maximal at 10 days. Between age 10-14 days, the number of labeled nuclei decreases and remains relatively constant thereafter, although the intensity of the reaction product diminishes as the animal matures. By age 60 days, the number of Fos-LI labeled nuclei in the SCN is substantially decreased and is essentially the same as in the 3-day-old rat. The appearance of Fos-LI nuclei in the SCN during development appears to reflect the development of visual system afferents to the nucleus as well as the development of intrinsic SCN synaptology.
Collapse
Affiliation(s)
- M P Joyce
- Biopsychology Doctoral Program, City University of New York, New York 10021, USA
| | | |
Collapse
|
45
|
Dijk DJ, Boulos Z, Eastman CI, Lewy AJ, Campbell SS, Terman M. Light treatment for sleep disorders: consensus report. II. Basic properties of circadian physiology and sleep regulation. J Biol Rhythms 1995; 10:113-25. [PMID: 7632985 DOI: 10.1177/074873049501000204] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The rationale for the treatment of sleep disorders by scheduled exposure to bright light in seasonal affective disorder, jet lag, shift work, delayed sleep phase syndrome, and the elderly is, in part, based on a conceptual framework developed by nonclinical circadian rhythm researchers working with humans and other species. Some of the behavioral and physiological data that contributed to these concepts are reviewed, and some pitfalls related to their application to bright light treatment of sleep disorders are discussed. In humans and other mammals the daily light-dark (LD) cycle is a major synchronizer responsible for entrainment of circadian rhythms to the 24-h day, and phase response curves (PRCs) to light have been obtained. In humans, phase delays can be induced by light exposure scheduled before the minimum of the endogenous circadian rhythm of core body temperature (CBT), whereas phase advances are induced when light exposure is scheduled after the minimum of CBT. Since in healthy young subjects the minimum of CBT is located approximately 1 to 2 h before the habitual time of awakening, the most sensitive phase of the PRC to light coincides with sleep, and the timing of the monophasic sleep-wake cycle itself is a major determinant of light input to the pacemaker. The effects of light are mediated by the retinohypothalamic tract, and excitatory amino acids play a key role in the transduction of light information to the suprachiasmatic nuclei. LD cycles have direct "masking" effects on many variables, including sleep, which complicates the assessment of endogenous circadian phase and the interpretation of the effects of light treatment on sleep disorders. In some rodents motor activity has been shown to affect circadian phase, but in humans the evidence for such a feedback of activity on the pacemaker is still preliminary. The endogenous circadian pacemaker is a major determinant of sleep propensity and sleep structure; these, however, are also strongly influenced by the prior history of sleep and wakefulness. In healthy young subjects, light exposure schedules that do not curtail sleep but induce moderate shifts of endogenous circadian phase have been shown to influence the timing of sleep and wakefulness without markedly affecting sleep structure.
Collapse
Affiliation(s)
- D J Dijk
- Institute of Pharmacology, University of Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
Huhman KL, Babagbemi TO, Albers HE. Bicuculline blocks neuropeptide Y-induced phase advances when microinjected in the suprachiasmatic nucleus of Syrian hamsters. Brain Res 1995; 675:333-6. [PMID: 7796148 DOI: 10.1016/0006-8993(95)00018-l] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Microinjection of neuropeptide Y (NPY) into the suprachiasmatic nucleus of the hypothalamus (SCN) during the middle of the subjective day (i.e. circadian time 6) causes large phase advances in circadian rhythms. The present study demonstrates that microinjection of the gamma-aminobutyric acid (GABA) antagonist, bicuculline, completely blocks NPY-induced phase advances. These data indicate that GABAA activity within the SCN may mediate the phase shifting effects of some stimuli on the circadian pacemaker.
Collapse
Affiliation(s)
- K L Huhman
- Department of Biology, Georgia State University, Atlanta 30302-4010, USA
| | | | | |
Collapse
|
47
|
Golombek DA, Ralph MR. Inhibition of GABA transaminase enhances light-induced circadian phase delays but not advances. J Biol Rhythms 1994; 9:251-61. [PMID: 7772793 DOI: 10.1177/074873049400900306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The CNS neurotransmitter GABA is distributed extensively throughout the suprachiasmatic nucleus, the site of circadian pacemaker cells in mammals. Pharmacological agents that act at GABAA receptors alter specific circadian responses to light and may induce phase shifts of circadian rhythms. In the present study, the role of endogenously released GABA in rhythm regulation was investigated using vigabatrin (gamma-vinyl GABA), an agent that has been shown to increase chronically or acutely the CNS levels of this neurotransmitter by inhibiting GABA transaminase. In Experiment 1, hamsters in constant darkness (DD) received a saline or a vigabatrin injection 1 hr before a 15-min, 700-lux light pulse. Vigabatrin increased photic phase delays but did not affect advances. In Experiment 2, vigabatrin delivered chronically via osmotic minipump treatment did not affect locomotor activity period in DD. However, after 14 days of infusion, photic phase delays (but not advances) were greatly increased in the vigabatrin group. In Experiment 3, in constant light (LL), chronic vigabatrin-treated animals showed an increased period that returned to pretreatment values after the 14-day drug infusion. The results are consistent with the phase-dependent effects of other agents that alter GABA neurotransmission. The data support the general hypothesis that GABA modulates the circadian responses to light in a phase-dependent manner, and may participate in entrainment to light-dark cycles by influencing the relative responsiveness to light in the early and late subjective night.
Collapse
Affiliation(s)
- D A Golombek
- Department of Psychology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
48
|
Abstract
This overview considers the origins of jet lag in terms of altered circadian rhythmicity. The properties required of a chronobiotic--an agent to cause phase adjustment of the body clock--are discussed, and an account is given of the major candidates at the present time: light, melatonin, activity, and benzodiazepines. It is concluded that current knowledge indicates that a combination of factors is likely to be most effective.
Collapse
Affiliation(s)
- P Redfern
- School of Pharmacy and Pharmacology, University of Bath, England
| | | | | |
Collapse
|
49
|
Abstract
Phase shifts produced by single 1-hr light pulses were compared in homozygous tau mutant and wild-type hamsters after several different kinds of pretreatment regimens. There was a dramatic increase in the magnitude of phase delays in the mutant hamsters as they were kept for progressively longer times in constant darkness (DD), and a smaller increase in the magnitude of phase advances. Under the same conditions a small increase in the magnitude of phase delays and no significant increase in phase advances occurred in the wild-type hamsters. After only 7 days in DD the phase response curves (PRCs) of mutant and wild-type hamsters were both type 1 and were indistinguishable from each other, whereas after 49 days in DD the PRCs of mutant hamsters had become type O. Mutant hamsters were entrained to eight different T-cycles (1 hr of light per cycle), released into DD, and given a phase delaying light pulse 7 days later. T-cycles which entrained the animals so that the 1 hr of light fell between 6 and 9 hours after the onset of activity suppressed the amplitude of phase delays, whereas T-cycles which entrained the animals so that the 1 hr of light fell at other times did not suppress phase delays. The implications of the data for entrainment theory and the mechanism of action of the tau gene are discussed.
Collapse
Affiliation(s)
- K Shimomura
- NSF Center for Biological Timing, University of Virginia, Charlottesville 22903
| | | |
Collapse
|
50
|
Roenneberg T, Taylor W. Light-induced phase responses in Gonyaulax are drastically altered by creatine. J Biol Rhythms 1994; 9:1-12. [PMID: 7949302 DOI: 10.1177/074873049400900101] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mammalian phosphagen creatine has been shown to shorten the circadian period (tau) of the bioluminescence rhythm in the marine alga Gonyaulax polyedra from 23 to 18 hr. The studies described here concern the interactive effects of creatine and light, mainly on the bioluminescence rhythm. We have found that the tau-shortening effect of creatine is greater in blue light, suggesting that it acts on a blue-sensitive light input pathway. In addition, creatine affects the phase response mechanism in Gonyaulax, which is also known to be mainly blue-sensitive. The responses to 4-hr light pulses are dramatically increased under the influence of creatine. The unusual phase response curve (PRC) of the Gonyaulax circadian system, which has no phase delays in the early night, is changed in the presence of creatine to a more typical type 0 PRC, with delays of up to 12 hr. Creatine also amplifies the cells' phototactic response, suggesting that the blue-sensitive light input pathway is shared by the phase-shifting mechanism of the bioluminescence oscillator and the mechanism responsible for phototaxis.
Collapse
Affiliation(s)
- T Roenneberg
- Institut für Medizinische Psychologie, Ludwig-Maximilians Universität München, Germany
| | | |
Collapse
|