1
|
Anand U, Anand P, Sodergren MH. Terpenes in Cannabis sativa Inhibit Capsaicin Responses in Rat DRG Neurons via Na +/K + ATPase Activation. Int J Mol Sci 2023; 24:16340. [PMID: 38003528 PMCID: PMC10671062 DOI: 10.3390/ijms242216340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Terpenes in Cannabis sativa exert analgesic effects, but the mechanisms are uncertain. We examined the effects of 10 terpenes on capsaicin responses in an established model of neuronal hypersensitivity. Adult rat DRG neurons cultured with neurotrophic factors NGF and GDNF were loaded with Fura2AM for calcium imaging, and treated with individual terpenes or vehicle for 5 min, followed by 1 µMol capsaicin. In vehicle treated control experiments, capsaicin elicited immediate and sustained calcium influx. Most neurons treated with terpenes responded to capsaicin after 6-8 min. Few neurons showed immediate capsaicin responses that were transient or normal. The delayed responses were found to be due to calcium released from the endoplasmic reticulum, as they were maintained in calcium/magnesium free media, but not after thapsigargin pre-treatment. Terpene inhibition of calcium influx was reversed after washout of medium, in the absence of terpenes, and in the presence of the Na+/K+ ATPase inhibitor ouabain, but not CB1 or CB2 receptor antagonists. Thus, terpenes inhibit capsaicin evoked calcium influx by Na+/K+ ATPase activation. Immunofluorescence showed TRPV1 co-expression with α1β1 Na+/K+ ATPase in most neurons while others were either TRPV1 or α1β1 Na+/K+ ATPase positive.
Collapse
Affiliation(s)
- Uma Anand
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 ONN, UK; (P.A.); (M.H.S.)
| | - Praveen Anand
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 ONN, UK; (P.A.); (M.H.S.)
| | - Mikael Hans Sodergren
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 ONN, UK; (P.A.); (M.H.S.)
- Curaleaf International Ltd., 179 Great Portland Street, London W1W 5PL, UK
| |
Collapse
|
2
|
Su Q, Yu XJ, Wang XM, Peng B, Bai J, Li HB, Li Y, Xia WJ, Fu LY, Liu KL, Liu JJ, Kang YM. Na+/K+-ATPase Alpha 2 Isoform Elicits Rac1-Dependent Oxidative Stress and TLR4-Induced Inflammation in the Hypothalamic Paraventricular Nucleus in High Salt-Induced Hypertension. Antioxidants (Basel) 2022; 11:antiox11020288. [PMID: 35204171 PMCID: PMC8868219 DOI: 10.3390/antiox11020288] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Numerous studies have indicated that a high salt diet inhibits brain Na+/K+-ATPase (NKA) activity, and affects oxidative stress and inflammation in the paraventricular nucleus (PVN). Furthermore, Na+/K+-ATPase alpha 2-isoform (NKA α2) may be a target in the brain, taking part in the development of salt-dependent hypertension. Therefore, we hypothesized that NKA α2 regulates oxidative stress and inflammation in the PVN in the context of salt-induced hypertension. Part I: We assessed NKA subunits (NKA α1, NKA α2, and NKA α3), Na+/K+-ATPase activity, oxidative stress, and inflammation in a high salt group (8% NaCl) and normal salt group (0.3% NaCl). Part II: NKA α2 short hairpin RNA (shRNA) was bilaterally microinjected into the PVN of salt-induced hypertensive rats to knockdown NKA α2, and we explored whether NKA α2 regulates downstream signaling pathways related to protein kinase C γ (PKC γ)-dependent oxidative stress and toll-like receptor 4 (TLR4)-induced inflammation in the PVN to promote the development of hypertension. High salt diet increased NKA α1 and NKA α2 protein expression in the PVN but had no effect on NKA α3 compared to the normal salt diet. Na+/K+-ATPase activity and ADP/ATP ratio was lower, but NAD(P)H activity and NF-κB activity in the PVN were higher after a high salt diet. Bilateral PVN microinjection of NKA α2 shRNA not only improved Na+/K+-ATPase activity and ADP/ATP ratio but also suppressed PKC γ-dependent oxidative stress and TLR4-dependent inflammation in the PVN, thus decreasing sympathetic activity in rats with salt-induced hypertension. NKA α2 in the PVN elicits PKC γ/Rac1/NAD (P)H-dependent oxidative stress and TLR4/MyD88/NF-κB-induced inflammation in the PVN, thus increasing MAP and sympathetic activity during the development of salt-induced hypertension.
Collapse
Affiliation(s)
- Qing Su
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Xiao-Jing Yu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
- Correspondence: (X.-J.Y.); (Y.-M.K.); Tel./Fax: +86-298-265-7677 (X.-J.Y. & Y.-M.K.)
| | - Xiao-Min Wang
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Bo Peng
- School of Clinical Medicine, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Juan Bai
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Hong-Bao Li
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Ying Li
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Wen-Jie Xia
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Li-Yan Fu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Kai-Li Liu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Jin-Jun Liu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Yu-Ming Kang
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
- Correspondence: (X.-J.Y.); (Y.-M.K.); Tel./Fax: +86-298-265-7677 (X.-J.Y. & Y.-M.K.)
| |
Collapse
|
3
|
Pratt M, Uchitel J, McGreal N, Gordon K, Prange L, McLean M, Noel RJ, Rikard B, Rogers Boruta MK, Mikati MA. Alternating Hemiplegia of Childhood: gastrointestinal manifestations and correlation with neurological impairments. Orphanet J Rare Dis 2020; 15:231. [PMID: 32883312 PMCID: PMC7469407 DOI: 10.1186/s13023-020-01474-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background Alternating Hemiplegia of Childhood (AHC) is caused by mutations of the ATP1A3 gene which is expressed in brain areas that include structures controling autonomic, gastrointestinal, gut motility and GABAergic functions. We aimed to investigate, in a cohort of 44 consecutive AHC patients, two hypotheses: 1) AHC patients frequently manifest gastrointestinal, particularly motility, problems. 2) These problems are often severe and their severity correlates with neurological impairments. Results 41/44 (93%) exhibited gastrointestinal symptoms requiring medical attention. For these 41 patients, symptoms included constipation (66%), swallowing problems (63%), vomiting (63%), anorexia (46%), diarrhea (44%), nausea (37%), and abdominal pain (22%). Symptoms indicative of dysmotility occurred in 33 (80%). The most common diagnoses were oropharyngeal dysphagia (63%) and gastroesophageal reflux (63%). 16 (39%) required gastrostomy and two fundoplication. Severity of gastrointestinal symptoms correlated with non-paroxysmal neurological disability index, Gross Motor Function Classification System scores, and with the presence/absence of non-gastrointestinal autonomic dysfunction (p = 0.031, 0.043, Spearman correlations and 0.0166 Cramer’s V, respectively) but not with the paroxysmal disability index (p = 0.408). Conclusions Most AHC patients have gastrointestinal problems. These are usually severe, most commonly are indicative of dysmotility, often require surgical therapies, and their severity correlates with that of non-paroxysmal CNS manifestations. Our findings should help in management-anticipatory guidance of AHC patients. Furthermore, they are consistent with current understandings of the pathophysiology of AHC and of gastrointestinal dysmotility, both of which involve autonomic and GABAergic dysfunction.
Collapse
Affiliation(s)
- Milton Pratt
- Division of Pediatric Neurology and Developmental Medicine, Duke University Health System, 2301 Erwin Rd., Durham, NC, 27710, USA
| | - Julie Uchitel
- Division of Pediatric Neurology and Developmental Medicine, Duke University Health System, 2301 Erwin Rd., Durham, NC, 27710, USA
| | - Nancy McGreal
- Divison of Gastroenterology, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Kelly Gordon
- Department of Speech Pathology and Audiology, Duke University Health System, Durham, NC, USA
| | - Lyndsey Prange
- Division of Pediatric Neurology and Developmental Medicine, Duke University Health System, 2301 Erwin Rd., Durham, NC, 27710, USA
| | - Melissa McLean
- Division of Pediatric Neurology and Developmental Medicine, Duke University Health System, 2301 Erwin Rd., Durham, NC, 27710, USA
| | - Richard J Noel
- Divison of Gastroenterology, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Blaire Rikard
- Division of Pediatric Neurology and Developmental Medicine, Duke University Health System, 2301 Erwin Rd., Durham, NC, 27710, USA
| | - Mary K Rogers Boruta
- Divison of Gastroenterology, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Health System, 2301 Erwin Rd., Durham, NC, 27710, USA.
| |
Collapse
|
4
|
Manuel M, Zytnicki D. Molecular and electrophysiological properties of mouse motoneuron and motor unit subtypes. CURRENT OPINION IN PHYSIOLOGY 2018; 8:23-29. [PMID: 32551406 DOI: 10.1016/j.cophys.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The field of motoneuron and motor unit physiology in mammals has deeply evolved the last decade thanks to the parallel development of mouse genetics and transcriptomic analysis and of in vivo mouse preparations that allow intracellular electrophysiological recordings of motoneurons. We review the efforts made to investigate the electrophysiological properties of the different functional subtypes of mouse motoneurons, to decipher the mosaic of molecular markers specifically expressed in each subtype, and to elucidate which of those factors drive the identity of motoneurons.
Collapse
Affiliation(s)
- Marin Manuel
- Center for Neurophysics, Physiology and Pathology, Paris Descartes University, CNRS UMR 8119, Paris, France
| | - Daniel Zytnicki
- Center for Neurophysics, Physiology and Pathology, Paris Descartes University, CNRS UMR 8119, Paris, France
| |
Collapse
|
5
|
Presynaptic inhibition of nociceptive neurotransmission by somatosensory neuron-secreted suppressors. SCIENCE CHINA-LIFE SCIENCES 2017. [PMID: 28624955 DOI: 10.1007/s11427-017-9061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Noxious stimuli cause pain by activating cutaneous nociceptors. The Aδ- and C-fibers of dorsal root ganglion (DRG) neurons convey the nociceptive signals to the laminae I-II of spinal cord. In the dorsal horn of spinal cord, the excitatory afferent synaptic transmission is regulated by the inhibitory neurotransmitter γ-aminobutyric acid and modulators such as opioid peptides released from the spinal interneurons, and by serotonin, norepinepherine and dopamine from the descending inhibitory system. In contrast to the accumulated evidence for these central inhibitors and their neural circuits in the dorsal spinal cord, the knowledge about the endogenous suppressive mechanisms in nociceptive DRG neurons remains very limited. In this review, we summarize our recent findings of the presynaptic suppressive mechanisms in nociceptive neurons, the BNP/NPR-A/PKG/BKCa channel pathway, the FSTL1/α1Na+-K+ ATPase pathway and the activin C/ERK pathway. These endogenous suppressive systems in the mechanoheat nociceptors may also contribute differentially to the mechanisms of nerve injury-induced neuropathic pain or inflammation-induced pain.
Collapse
|
6
|
Egr3-dependent muscle spindle stretch receptor intrafusal muscle fiber differentiation and fusimotor innervation homeostasis. J Neurosci 2015; 35:5566-78. [PMID: 25855173 DOI: 10.1523/jneurosci.0241-15.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Muscle stretch proprioceptors (muscle spindles) are required for stretch reflexes and locomotor control. Proprioception abnormalities are observed in many human neuropathies, but the mechanisms involved in establishing and maintaining muscle spindle innervation and function are still poorly understood. During skeletal muscle development, sensory (Ia-afferent) innervation induces contacted myotubes to transform into intrafusal muscle fibers that form the stretch receptor core. The transcriptional regulator Egr3 is induced in Ia-afferent contacted myotubes by Neuregulin1 (Nrg1)/ErbB receptor signaling and it has an essential role in spindle morphogenesis and function. Because Egr3 is widely expressed during development and has a pleiotropic function, whether Egr3 functions primarily in skeletal muscle, Ia-afferent neurons, or in Schwann cells that myelinate Ia-afferent axons remains unresolved. In the present studies, cell-specific ablation of Egr3 in mice showed that it has a skeletal muscle autonomous function in stretch receptor development. Moreover, using genetic tracing, we found that Ia-afferent contacted Egr3-deficient myotubes were induced in normal numbers, but their development was blocked to generate one to two shortened fibers that failed to express some characteristic myosin heavy chain (MyHC) proteins. These "spindle remnants" persisted into adulthood, remained innervated by Ia-afferents, and expressed neurotrophin3 (NT3), which is required for Ia-afferent neuron survival. However, they were not innervated by fusimotor axons and they did not express glial derived neurotrophic factor (GDNF), which is essential for fusimotor neuron survival. These results demonstrate that Egr3 has an essential role in regulating gene expression that promotes normal intrafusal muscle fiber differentiation and fusimotor innervation homeostasis.
Collapse
|
7
|
Developmental expression analysis of Na, K-ATPase α subunits in Xenopus. Dev Genes Evol 2015; 225:105-11. [PMID: 25772274 DOI: 10.1007/s00427-015-0497-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
Abstract
Na, K-ATPase is an integral membrane protein complex responsible for maintaining the ionic gradients of Na(+) and K(+) across the plasma membrane and has a variety of cellular functions including neuronal activity. Studies in several organisms have shown that this protein complex regulates multiple aspects of embryonic development and is responsible for the pathogenesis of several human diseases. Here, we report the cloning and expression of Na, K-ATPase α2 (atp1a2) and α3 (atp1a3) subunits during Xenopus development and compare the expression patterns of each subunit. Using in situ hybridization in whole embryos and on sections, we show that all three α subunits are co-expressed in the pronephric kidney, with varying expression in neurogenic derivatives. The atp1a2 has a unique expression in the ependymal cell layer of the developing brain that is not shared with other α subunits. The Na, K-ATPase α1 (atp1a1), and atp1a3 share many expression domains in placode derivatives, including the otic vesicle, lens, ganglion of the anterodorsal lateral line nerve, and ganglia of the facial and anteroventral lateral line nerve and olfactory cells. All the subunits share a common expression domain, the myocardium.
Collapse
|
8
|
Wang F, Cai B, Li KC, Hu XY, Lu YJ, Wang Q, Bao L, Zhang X. FXYD2, a γ subunit of Na⁺, K⁺-ATPase, maintains persistent mechanical allodynia induced by inflammation. Cell Res 2015; 25:318-34. [PMID: 25633594 DOI: 10.1038/cr.2015.12] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/09/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023] Open
Abstract
Na⁺, K⁺-ATPase (NKA) is required to generate the resting membrane potential in neurons. Nociceptive afferent neurons express not only the α and β subunits of NKA but also the γ subunit FXYD2. However, the neural function of FXYD2 is unknown. The present study shows that FXYD2 in nociceptive neurons is necessary for maintaining the mechanical allodynia induced by peripheral inflammation. FXYD2 interacted with α1NKA and negatively regulated the NKA activity, depolarizing the membrane potential of nociceptive neurons. Mechanical allodynia initiated in FXYD2-deficient mice was abolished 4 days after inflammation, whereas it persisted for at least 3 weeks in wild-type mice. Importantly, the FXYD2/α1NKA interaction gradually increased after inflammation and peaked on day 4 post inflammation, resulting in reduction of NKA activity, depolarization of neuron membrane and facilitation of excitatory afferent neurotransmission. Thus, the increased FXYD2 activity may be a fundamental mechanism underlying the persistent hypersensitivity to pain induced by inflammation.
Collapse
Affiliation(s)
- Feng Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Cai
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai-Cheng Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xu-Ye Hu
- Shanghai Clinical Center, Chinese Academy of Sciences/XuHui Central Hospital, Shanghai, China
| | - Ying-Jin Lu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiong Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lan Bao
- 1] State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China [2] School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Xu Zhang
- 1] Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China [2] School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
9
|
Zhang X, Bao L, Li S. Opioid receptor trafficking and interaction in nociceptors. Br J Pharmacol 2014; 172:364-74. [PMID: 24611685 DOI: 10.1111/bph.12653] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/29/2014] [Accepted: 02/17/2014] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Opiate analgesics such as morphine are often used for pain therapy. However, antinociceptive tolerance and dependence may develop with long-term use of these drugs. It was found that μ-opioid receptors can interact with δ-opioid receptors, and morphine antinociceptive tolerance can be reduced by blocking δ-opioid receptors. Recent studies have shown that μ- and δ-opioid receptors are co-expressed in a considerable number of small neurons in the dorsal root ganglion. The interaction of μ-opioid receptors with δ-opioid receptors in the nociceptive afferents is facilitated by the stimulus-induced cell-surface expression of δ-opioid receptors, and contributes to morphine tolerance. Further analysis of the molecular, cellular and neural circuit mechanisms that regulate the trafficking and interaction of opioid receptors and related signalling molecules in the pain pathway would help to elucidate the mechanism of opiate analgesia and improve pain therapy. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- X Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai, China
| | | | | |
Collapse
|
10
|
Abstract
The Na(+)/K(+) ATPase (NKA) is an essential membrane protein underlying the membrane potential in excitable cells. Transmembrane ion transport is performed by the catalytic α subunits (α1-4). The predominant subunits in neurons are α1 and α3, which have different affinities for Na(+) and K(+), impacting on transport kinetics. The exchange rate of Na(+)/K(+) markedly influences the activity of the neurons expressing them. We have investigated the distribution and function of the main isoforms of the α subunit expressed in the mouse spinal cord. NKAα1 immunoreactivity (IR) displayed restricted labeling, mainly confined to large ventral horn neurons and ependymal cells. NKAα3 IR was more widespread in the spinal cord, again being observed in large ventral horn neurons, but also in smaller interneurons throughout the dorsal and ventral horns. Within the ventral horn, the α1 and α3 isoforms were mutually exclusive, with the α3 isoform in smaller neurons displaying markers of γ-motoneurons and α1 in α-motoneurons. The α3 isoform was also observed within muscle spindle afferent neurons in dorsal root ganglia with a higher proportion at cervical versus lumbar regions. We confirmed the differential expression of α subunits in motoneurons electrophysiologically in neonatal slices of mouse spinal cord. γ-Motoneurons were excited by bath application of low concentrations of ouabain that selectively inhibit NKAα3 while α-motoneurons were insensitive to these low concentrations. The selective expression of NKAα3 in γ-motoneurons and muscle spindle afferents, which may affect excitability of these neurons, has implications in motor control and disease states associated with NKAα3 dysfunction.
Collapse
|
11
|
Interaction and regulatory functions of μ- and δ-opioid receptors in nociceptive afferent neurons. Neurosci Bull 2012; 28:121-30. [PMID: 22466123 DOI: 10.1007/s12264-012-1206-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
μ-opioid receptor (MOR) agonists such as morphine are powerful analgesics used for pain therapy. However, the use of these drugs is limited by their side-effects, which include antinociceptive tolerance and dependence. Earlier studies reported that MOR analgesic tolerance is reduced by blockade of δ-opioid receptors (DORs) that interact with MORs. Recent studies show that the MOR/DOR interaction in nociceptive afferent neurons in the dorsal root ganglion may contribute to morphine analgesic tolerance. Further analysis of the mechanisms for regulating the trafficking of receptors, ion channels and signaling molecules in nociceptive afferent neurons would help to understand the nociceptive mechanisms and improve pain therapy.
Collapse
|
12
|
Elucidation of ameliorative effect of Co-enzyme Q10 in streptozotocin-induced diabetic neuropathic perturbation by modulation of electrophysiological, biochemical and behavioral markers. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.biomag.2012.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Kagiava A, Aligizaki K, Katikou P, Nikolaidis G, Theophilidis G. Assessing the neurotoxic effects of palytoxin and ouabain, both Na+/K+-ATPase inhibitors, on the myelinated sciatic nerve fibres of the mouse: An ex vivo electrophysiological study. Toxicon 2012; 59:416-26. [DOI: 10.1016/j.toxicon.2011.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 11/26/2022]
|
14
|
Matsumoto S, Takahashi M, Iwasaki K, Ide R, Saiki C, Takeda M. Direct inhibition of the transient voltage-gated K(+) currents mediates the excitability of tetrodotoxin-resistant neonatal rat nodose ganglion neurons after ouabain application. Eur J Pharmacol 2011; 659:130-8. [PMID: 21296073 DOI: 10.1016/j.ejphar.2011.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 12/27/2010] [Accepted: 01/17/2011] [Indexed: 11/30/2022]
Abstract
The purpose of the present study was to determine the relationship between the responses of transient and sustained K(+) currents, and action potentials to ouabain, and to compare the immunoreactive expression of alpha Na(+)-K(+)-ATPase isoforms (α(1), α(2) and α(3)) in neonatal rat small-diameter nodose ganglion neurons. We used perforated patch-clamp techniques. We first confirmed that the neurons (n=20) were insensitive to 0.5 μM tetrodotoxin (TTX). Application of 1 μM ouabain 1) decreased the transient K(+) currents in 60% of neurons and the sustained K(+) currents in 20%, 2) increased voltage-gated transient and sustained K(+) currents in 20% of neurons, and 3) had no effect on transient K(+) currents in 20% of neurons and on sustained K(+) currents in 60%. Thirteen of the neurons were of a rapidly adapting type, and the remaining 7 were of a slowly adapting type. In 6 rapidly adapting type neurons (46%), their activity was not significantly altered by ouabain application, but in 4 rapidly adapting type neurons, the activity increased. In the remaining 3 rapidly adapting type neurons, ouabain application hyperpolarized the resting membrane potential. The slowly adapting type 7 neurons each showed increased activity after 1 μM ouabain application. The α(1) isoform of Na(+)-K(+)-ATPase was identified as the predominant immunoreactive isoforms in small-diameter nodose ganglion neurons. These results suggest that the increased activity of small-diameter nodose ganglion neurons seen after application of 1 μM ouabain is mediated by direct inhibition of the transient K(+) current.
Collapse
Affiliation(s)
- Shigeji Matsumoto
- Department of Physiology, Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo 102-8159, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Li KC, Zhang FX, Li CL, Wang F, Yu MY, Zhong YQ, Zhang KH, Lu YJ, Wang Q, Ma XL, Yao JR, Wang JY, Lin LB, Han M, Zhang YQ, Kuner R, Xiao HS, Bao L, Gao X, Zhang X. Follistatin-like 1 suppresses sensory afferent transmission by activating Na+,K+-ATPase. Neuron 2011; 69:974-87. [PMID: 21382556 DOI: 10.1016/j.neuron.2011.01.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2010] [Indexed: 01/09/2023]
Abstract
Excitatory synaptic transmission is modulated by inhibitory neurotransmitters and neuromodulators. We found that the synaptic transmission of somatic sensory afferents can be rapidly regulated by a presynaptically secreted protein, follistatin-like 1 (FSTL1), which serves as a direct activator of Na(+),K(+)-ATPase (NKA). The FSTL1 protein is highly expressed in small-diameter neurons of the dorsal root ganglion (DRG). It is transported to axon terminals via small translucent vesicles and secreted in both spontaneous and depolarization-induced manners. Biochemical assays showed that FSTL1 binds to the α1 subunit of NKA and elevates NKA activity. Extracellular FSTL1 induced membrane hyperpolarization in cultured cells and inhibited afferent synaptic transmission in spinal cord slices by activating NKA. Genetic deletion of FSTL1 in small DRG neurons of mice resulted in enhanced afferent synaptic transmission and sensory hypersensitivity, which could be reduced by intrathecally applied FSTL1 protein. Thus, FSTL1-dependent activation of NKA regulates the threshold of somatic sensation.
Collapse
Affiliation(s)
- Kai-Cheng Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Girard C, Eychenne B, Schweizer-Groyer G, Cadepond F. Mineralocorticoid and glucocorticoid receptors in sciatic nerve function and regeneration. J Steroid Biochem Mol Biol 2010; 122:149-58. [PMID: 20678573 DOI: 10.1016/j.jsbmb.2010.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/21/2010] [Accepted: 07/24/2010] [Indexed: 12/20/2022]
Abstract
The contribution of the two corticosteroid (mineralocorticoid and glucocorticoid) receptor (MR and GR) pathways to the function and regeneration of the sciatic nerve was investigated. We found that the corticosterone-inactivating enzyme 11β-hydroxysteroid dehydrogenase type 2 (HSD2) was up-regulated 7 days after lesion in freeze-injured nerve. The maintenance of a low intracellular level of corticosterone by HSD2 activity in the regenerating nerve is concordant with the improvement of nervous function in injured animals (as measured by walking ability) after treatment by the GR antagonist mifepristone and with the reduction in GR participation in accumulation of the mRNA for numerous endogenous genes (from the renin-angiotensin system and other classical mineralocorticoid-responsive genes), in the same animals. Furthermore, using the MR antagonist spironolactone, we demonstrated that MR plays an active role in the function of the intact sciatic nerve: MR is required for walking ability and participates in the control of the accumulation of the mRNA for several endogenous genes. However, after injury, changes in gene expression cannot be fully explained by changes in MR/GR activity, due to an HSD2 effect, and other signalling pathway(s) induced by the lesion likely combine with the effect of the corticosteroid receptors.
Collapse
Affiliation(s)
- Christelle Girard
- Unité Mixte de Recherche 788, Inserm and Université Paris-Sud 11, 94276 Le Kremlin-Bicêtre, France
| | | | | | | |
Collapse
|
17
|
Parekh A, Campbell AJM, Djouhri L, Fang X, McMullan S, Berry C, Acosta C, Lawson SN. Immunostaining for the α3 isoform of the Na+/K+-ATPase is selective for functionally identified muscle spindle afferents in vivo. J Physiol 2010; 588:4131-43. [PMID: 20807787 PMCID: PMC3002446 DOI: 10.1113/jphysiol.2010.196386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Muscle spindle afferent (MSA) neurons can show rapid and sustained firing. Immunostaining for the α3 isoform of the Na+/K+-ATPase (α3) in some large dorsal root ganglion (DRG) neurons and large intrafusal fibres suggested α3 expression in MSAs (Dobretsov et al. 2003), but not whether α3-immunoreactive DRG neuronal somata were exclusively MSAs. We found that neuronal somata with high α3 immunointensity were neurofilament-rich, suggesting they have A-fibres; we therefore focussed on A-fibre neurons to determine the sensory properties of α3-immunoreactive neurons. We examined α3 immunointensity in 78 dye-injected DRG neurons whose conduction velocities and hindlimb sensory receptive fields were determined in vivo. A dense perimeter or ring of staining in a subpopulation of neurons was clearly overlying the soma membrane and not within satellite cells. Neurons with clear α3 rings (n = 23) were all MSAs (types I and II); all MSAs had darkly stained α3 rings, that tended to be darker in MSA1 than MSA2 units. Of 52 non-MSA A-fibre neurons including nociceptive and cutaneous low-threshold mechanoreceptive (LTM) neurons, 50 had no discernable ring, while 2 (Aα/β cutaneous LTMs) had weakly stained rings. Three of three C-nociceptors had no rings. MSAs with strong ring immunostaining also showed the strongest cytoplasmic staining. These findings suggest that α3 ring staining is a selective marker for MSAs. The α3 isoform of the Na+/K+-ATPase has previously been shown to be activated by higher Na+ levels and to have greater affinity for ATP than the α1 isoform (in all DRG neurons). The high α3 levels in MSAs may enable the greater dynamic firing range in MSAs.
Collapse
Affiliation(s)
- A Parekh
- Department of Physiology and Pharmacology, Medical School, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hou X, Theriault SF, Dostanic-Larson I, Moseley AE, Lingrel JB, Wu H, Dean S, Van Huysse JW. Enhanced pressor response to increased CSF sodium concentration and to central ANG I in heterozygous alpha2 Na+ -K+ -ATPase knockout mice. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1427-38. [PMID: 19244589 DOI: 10.1152/ajpregu.00809.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracerebroventricular (ICV) infusion of NaCl mimics the effects of a high-salt diet in salt-sensitive hypertension, raising the sodium concentration in the cerebrospinal fluid (CSF [Na]) and subsequently increasing the concentration of an endogenous ouabain-like substance (OLS) in the brain. The OLS, in turn, inhibits the brain Na(+)-K(+)-ATPase, causing increases in the activity of the brain renin-angiotensin system (RAS) and blood pressure. The Na(+)-K(+)-ATPase alpha (catalytic)-isoform(s) that mediates the pressor response to increased CSF [Na] is unknown, but it is likely that one or more isoforms that bind ouabain with high affinity are involved (e.g., the Na(+)-K(+)-ATPase alpha(2)- and/or alpha(3)-subunits). We hypothesize that OLS-induced inhibition of the alpha(2)-subunit mediates this response. Therefore, a chronic reduction in alpha(2) expression via a heterozygous gene knockout (alpha(2) +/-) should enhance the pressor response to increased CSF [Na]. Intracerebroventricular (ICV) infusion of artificial CSF containing 0.225 M NaCl increased mean arterial pressure (MAP) in both wild-type (+/+) and alpha(2) +/- mice, but to a greater extent in alpha(2) +/-. Likewise, the pressor response to ICV ouabain was enhanced in alpha(2) +/- mice, demonstrating enhanced sensitivity to brain Na(+)-K(+)-ATPase inhibition per se. The pressor response to ICV ANG I but not ANG II was also enhanced in alpha(2) +/- vs. alpha(2)+/+ mice, suggesting an enhanced brain RAS activity that may be mediated by increased brain angiotensin converting enzyme (ACE). The latter hypothesis is supported by enhanced ACE ligand binding in the organum vasculosum laminae terminalis. These studies demonstrate that chronic downregulation of Na(+)-K(+)-ATPase alpha(2)-isoform expression by heterozygous knockout increases the pressor response to increased CSF [Na] and activates the brain RAS. Since these changes mimic those produced by the endogenous brain OLS, the brain alpha(2)-isoform may be a target for the brain OLS during increases in CSF [Na], such as in salt-dependent hypertension.
Collapse
Affiliation(s)
- Xiaohong Hou
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON, Canada K1Y 4W7
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Van Huysse JW. Endogenous brain Na pumps, brain ouabain-like substance and the alpha2 isoform in salt-dependent hypertension. ACTA ACUST UNITED AC 2007; 14:213-20. [PMID: 17980562 DOI: 10.1016/j.pathophys.2007.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/09/2007] [Accepted: 08/25/2007] [Indexed: 11/24/2022]
Abstract
An endogenous ouabain-like substance (OLS) plays a critical role in the etiology of experimental models of human hypertension induced by a high salt diet. Early on, evidence for a role of this Na, K-ATPase inhibitor in blood pressure regulation was provided mainly by correlations of blood pressure with the levels of circulating Na, K-ATPase inhibitor. However, over the past decade, numerous studies have shown that endogenous Na pump inhibitors in the brain mediate salt-dependent hypertension in a variety of experimental models, including Dahl salt-sensitive (Dahl-S) and spontaneously hypertensive (SHR) rats on a high-salt diet. Other forms of hypertension that are known to be mediated by endogenous ouabain-like substances include steroid/salt- (e.g., DOCA-salt) and ACTH-induced hypertension. Even when exogenous ouabain is peripherally administered and/or the plasma ouabain/OLS level is increased in rats, the resulting hypertension is of CNS origin. After peripheral ouabain administration, ouabain levels increase in the plasma and the inhibitor subsequently accumulates in the brain. The ensuing hypertension is abolished by the intracerebroventricular (icv) administration of an anti-ouabain antibody (but not by the same antibody dose given iv), by discrete excitotoxic lesions in the brain or by ganglionic blockade, demonstrating that the response is neurally mediated. The pressor response to stimuli that increase the brain OLS (high salt diet, icv sodium) or to icv ouabain is abolished by icv losartan, demonstrating that the brain OLS activates the brain renin-angiotensin system (RAS) downstream. There are three isoforms of the catalytic alpha subunit of the Na, K-ATPase in the brain and cardiovascular system (alpha1, alpha2 and alpha3), but it is not known which brain isoform(s) mediate the hypertensive effects of circulating/CNS ouabain. Preliminary studies in gene-targeted mice suggest that the alpha2 isoform plays a critical role.
Collapse
Affiliation(s)
- James W Van Huysse
- University of Ottawa Heart Institute and Departments of Medicine and Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1Y 4W7
| |
Collapse
|
20
|
Alberti S, Gregório EA, Spadella CT, Cojocel C. Localization and irregular distribution of Na,K-ATPase in myelin sheath from rat sciatic nerve. Tissue Cell 2007; 39:195-201. [PMID: 17507069 DOI: 10.1016/j.tice.2007.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 03/25/2007] [Accepted: 03/29/2007] [Indexed: 11/17/2022]
Abstract
Sodium, potassium adenosine triphosphatase (Na,K-ATPase) is a membrane-bound enzyme that maintains the Na(+) and K(+) gradients used in the nervous system for generation and transmission of bioelectricity. Recently, its activity has also been demonstrated during nerve regeneration. The present study was undertaken to investigate the ultrastructural localization and distribution of Na,K-ATPase in peripheral nerve fibers. Small blocks of the sciatic nerves of male Wistar rats weighing 250-300g were excised, divided into two groups, and incubated with and without substrate, the para-nitrophenyl phosphate (pNPP). The material was processed for transmission electron microscopy, and the ultra-thin sections were examined in a Philips CM 100 electron microscope. The deposits of reaction product were localized mainly on the axolemma, on axoplasmic profiles, and irregularly dispersed on the myelin sheath, but not in the unmyelinated axons. In the axonal membrane, the precipitates were regularly distributed on the cytoplasmic side. These results together with published data warrant further studies for the diagnosis and treatment of neuropathies with compromised Na,K-ATPase activity.
Collapse
Affiliation(s)
- Sandra Alberti
- Department of Surgery, Medical School, São Paulo State University, Botucatu, São Paulo, Brazil.
| | | | | | | |
Collapse
|
21
|
Romanovsky D, Moseley AE, Mrak RE, Taylor MD, Dobretsov M. Phylogenetic preservation of alpha3 Na+,K+-ATPase distribution in vertebrate peripheral nervous systems. J Comp Neurol 2007; 500:1106-16. [PMID: 17183534 DOI: 10.1002/cne.21218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The alpha(3) isoform of Na(+),K(+)-ATPase is uniquely expressed in afferent and efferent neurons innervating muscle spindles in the peripheral nervous system (PNS) of adult rats, but the distribution pattern of this isoform in other species has not been investigated. We compared expression of alpha(3) Na(+),K(+)-ATPase in lumbar dorsal root ganglia (DRG), spinal roots, and skeletal muscle samples of amphibian (frog), reptilian (turtle), avian (pigeon and chicken), and mammalian (mouse and human) species. In all species studied, the alpha(3) Na(+),K(+)-ATPase isoform was nonuniformly expressed in peripheral ganglia and nerves. In spinal ganglia, only 5-20% of neurons expressed this isoform, and, in avian and mammalian species, these alpha(3) Na(+),K(+)-ATPase-expressing neurons belonged to a subpopulation of large DRG neurons. In ventral root fibers of pigeons, mice, and humans, the alpha(3) Na(+),K(+)-ATPase was abundantly expressed predominantly in small myelinated axons. In skeletal muscle samples from turtles, pigeons, mice, and humans, alpha(3) Na(+),K(+)-ATPase was detected in intramuscular myelinated axons and in profiles of nerve terminals associated with the equatorial and polar regions of muscle spindle intrafusal fibers. These results show that the expression profiles for alpha(3) Na(+),K(+)-ATPase in the peripheral nervous system of a wide variety of vertebrate species are similar to the profile of rats and suggest that stretch receptor-associated expression of alpha(3) Na(+),K(+)-ATPase is preserved through vertebrate evolution.
Collapse
Affiliation(s)
- Dmitry Romanovsky
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
22
|
Choi JS, Dib-Hajj SD, Waxman SG. Differential Slow Inactivation and Use-Dependent Inhibition of Nav1.8 Channels Contribute to Distinct Firing Properties in IB4+ and IB4− DRG Neurons. J Neurophysiol 2007; 97:1258-65. [PMID: 17108087 DOI: 10.1152/jn.01033.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nociceptive dorsal root ganglion (DRG) neurons can be classified into nonpeptidergic IB4+ and peptidergic IB4− subtypes, which terminate in different layers in dorsal horn and transmit pain along different ascending pathways, and display different firing properties. Voltage-gated, tetrodotoxin-resistant (TTX-R) Nav1.8 channels are expressed in both IB4+ and IB4− cells and produce most of the current underlying the depolarizing phase of action potential (AP). Slow inactivation of TTX-R channels has been shown to regulate repetitive DRG neuron firing behavior. We show in this study that use-dependent reduction of Nav1.8 current in IB4+ neurons is significantly stronger than that in IB4− neurons, although voltage dependency of activation and steady-state inactivation are not different. The time constant for entry of Nav1.8 into slow inactivation in IB4+ neurons is significantly faster and more Nav1.8 enter the slow inactivation state than in IB4− neurons. In addition, recovery from slow inactivation of Nav1.8 in IB4+ neurons is slower than that in IB4− neurons. Using current-clamp recording, we demonstrate a significantly higher current threshold for generation of APs and a longer latency to onset of firing in IB4+, compared with those of IB4− neurons. In response to a ramp stimulus, IB4+ neurons produce fewer APs and display stronger adaptation, with a faster decline of AP peak than IB4− neurons. Our data suggest that differential use-dependent reduction of Nav1.8 current in these two DRG subpopulations, which results from their different rate of entry into and recovery from the slow inactivation state, contributes to functional differences between these two neuronal populations.
Collapse
Affiliation(s)
- Jin-Sung Choi
- Department of Neurology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
23
|
Arteaga MF, Gutiérrez R, Avila J, Mobasheri A, Díaz-Flores L, Martín-Vasallo P. Regeneration influences expression of the Na+, K+-atpase subunit isoforms in the rat peripheral nervous system. Neuroscience 2005; 129:691-702. [PMID: 15541890 DOI: 10.1016/j.neuroscience.2004.08.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2004] [Indexed: 01/06/2023]
Abstract
Neural injury triggers changes in the expression of a large number of gene families. Particularly interesting are those encoding proteins involved in the generation, propagation or restoration of electric potentials. The expression of the Na+, K+-ATPase subunit isoforms (alpha, beta and gamma) was studied in dorsal root ganglion (DRG) and sciatic nerve of the rat in normal conditions, after axotomy and during regeneration. In normal DRG, alpha1 and alpha2 are expressed in the plasma membrane of all cell types, while there is no detectable signal for alpha3 in most DRG cells. After axotomy, alpha1 and alpha2 expression decreases evenly in all cells, while there is a remarkable onset in alpha3 expression, with a peak about day 3, which gradually disappears throughout regeneration (day 7). beta1 Is restricted to the nuclear envelope and plasma membrane of neurons and satellite cells. Immediately after injury, beta1 shows a homogeneous distribution in the soma of neurons. No beta2 expression was found. Beta3 Specific immunofluorescence appears in all neurons, although it is brightest in the smallest, diminishing progressively after injury until day 3 and, thereafter, increasing in intensity, until it reaches normal levels. FXYD7 is expressed weakly in a few DRG neurons (less than 2%) and Schwann cells. It increases intensely in satellite cells immediately after axotomy, and in all cell types at day 3. Transient switching of members of the Na+, K+-ATPase isoform family elicited by axotomy suggests variations in the sodium pump isozymes with different affinities for Na+, K+ and ATP from those in intact nerve. This adaptation may be important for regeneration.
Collapse
Affiliation(s)
- M-F Arteaga
- Laboratorio de Biología del Desarrollo, Department of Bioquímica y Biología Molecular, Universidad de La Laguna, Avda Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Romanovsky D, Light KE, Walker J, Dobretsov M. Target-determined expression of ?3 isoform of the Na+,K+-ATPase in the somatic nervous system of rat. J Comp Neurol 2005; 483:114-23. [PMID: 15672395 DOI: 10.1002/cne.20401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Factors that determine the differential expression of isoforms of Na(+),K(+)-ATPase in the nervous system of vertebrates are not understood. To address this question we studied the expression of alpha(3) Na(+),K(+)-ATPase in the L5 dorsal root ganglia (DRG) of developing rat, the normal adult rat, and the adult rat after peripheral axotomy. During development, the first alpha(3) Na(+),K(+)-ATPase-positive DRG neurons appear by embryonic day 21. At birth, the L5 DRG have a full complement (14 +/- 2%) of these neurons. By 15 days after sciatic nerve transection in adult rat, the number of alpha(3) Na(+),K(+)-ATPase-positive DRG neurons and small myelinated L5 ventral root axons decreases to about 35% of control counts. These results combined with data from the literature suggest that the expression of alpha(3) Na(+),K(+)-ATPase by rat somatic neurons is determined by target-muscle spindle-derived factors.
Collapse
Affiliation(s)
- Dmitry Romanovsky
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | |
Collapse
|
25
|
Kwon HJ, Hwang IK, An HJ, Han SH, Yang JI, Shin HS, Yoo ID, Kang TC, Won MH, Won MHH. Changes of glial Na+–K+ ATPase (α1 subunit) immunoreactivity in the gerbil hippocampus after transient forebrain ischemia. Brain Res 2003; 987:233-9. [PMID: 14499968 DOI: 10.1016/s0006-8993(03)03341-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study to evaluate the effects of ischemia on sodium-potassium adenosine triphosphatase (Na(+)-K+ ATPase) alpha1 subunit (alpha6F) expression in the glia, the immunodensities of both Na(+)-K+ ATPase and the glial fibrillary acidic protein in the hippocampus were measured and analyzed. In the sham hippocampus, alpha6F immunoreactivity was mainly observed in the both the molecular layer and the polymorphic layer of dentate gyrus. At 30 min after ischemic insult, the alpha6F immunoreactivity was markedly decreased in the molecular layer of the dentate gyrus, in contrast to the appearance of this immunoreactivity in the hilar neurons. Up to 12 h after ischemic insult, the alpha6F immunoreactivity was re-enhanced in the molecular layer of dentate gyrus. In addition, the alpha6F immunoreactivity appeared slightly in the glial components in the hippocampal region. Four days after ischemia-reperfusion, the intensity of alpha6F immunoreactivity in the glial cells was highest. At this time point, strong alpha6F immunoreactivity was colocalized with GFAP immunoreactivity in the strata radiatum of the CA1 and the molecular layer of the dentate gyrus. These results suggest that the enhancement of alpha6F immunoreactivity may be a compensatory response to regulate the ion homeostasis in the brain. In addition, the maintenance of Na(+)-K+ ATPase activity in the astrocytes may explain the resistant characteristics of these cells to ischemic insults.
Collapse
Affiliation(s)
- Ho Jung Kwon
- Department of Anatomy, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dobretsov M, Hastings SL, Sims TJ, Stimers JR, Romanovsky D. Stretch receptor-associated expression of alpha 3 isoform of the Na+, K+-ATPase in rat peripheral nervous system. Neuroscience 2003; 116:1069-80. [PMID: 12617948 DOI: 10.1016/s0306-4522(02)00922-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression of the neuronal alpha(3) isoform of the Na(+),K(+)-ATPase (alpha(3) Na(+),K(+)-ATPase) was studied in the rat peripheral nervous system using histological and immunohistochemical techniques. Non-uniform expression of the alpha(3) Na(+),K(+)-ATPase was observed in L5 ventral and dorsal roots, dorsal root ganglion, sciatic nerve and its branches into skeletal muscle. The alpha(3) Na(+),K(+)-ATPase was not detected in nerve fibers in skin, saphenous and sural nerves. In dorsal root ganglion 12+/-2% of neurons were immunopositive for alpha(3) Na(+),K(+)-ATPase and all these neurons were large primary afferents that were not labeled by Griffonia simplicifolia isolectin B4 (marker of small primary sensory neurons). In dorsal and ventral roots 27+/-3% and 40+/-3%, respectively, of myelinated axons displayed immunoreactivity for alpha(3) Na(+),K(+)-ATPase. In contrast to the dorsal roots, strong immunoreactivity in ventral roots was observed only in myelinated axons of small caliber, presumably gamma-efferents. In the mixed sciatic nerve alpha(3) Na(+),K(+)-ATPase was detected in 26+/-5% of myelinated axons (both small and large caliber). In extensor hallicus proprius and lumbricales hind limb muscles alpha(3) Na(+),K(+)-ATPase was detected in some intramuscular axons and axonal terminals on intrafusal muscle fibers in the spindle equatorial and polar regions (regions of afferent and efferent innervation of the muscle stretch receptor, respectively). No alpha(3) Na(+),K(+)-ATPase was found in association with innervation of extrafusal muscle fibers or in tendon-muscle fusion regions. These data demonstrate non-uniform expression of the alpha(3) isoform of the Na(+),K(+)-ATPase in rat peripheral nervous system and suggest that alpha(3) Na(+),K(+)-ATPase is specifically expressed in afferent and efferent axons innervating skeletal muscle stretch receptors.
Collapse
Affiliation(s)
- M Dobretsov
- Department of Anesthesiology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
27
|
Hamada K, Matsuura H, Sanada M, Toyoda F, Omatsu-Kanbe M, Kashiwagi A, Yasuda H. Properties of the Na+/K+ pump current in small neurons from adult rat dorsal root ganglia. Br J Pharmacol 2003; 138:1517-27. [PMID: 12721107 PMCID: PMC1573791 DOI: 10.1038/sj.bjp.0705170] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Revised: 12/02/2002] [Accepted: 01/07/2003] [Indexed: 11/09/2022] Open
Abstract
1 The present investigation was undertaken to characterize the Na(+)/K(+) pump current in small (
Collapse
Affiliation(s)
- Kanako Hamada
- Division of Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Mitsuru Sanada
- Division of Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Mariko Omatsu-Kanbe
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Atsunori Kashiwagi
- Division of Endocrinology and Metabolism, Department of Medicine, Otsu, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Hitoshi Yasuda
- Division of Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
28
|
Global loss of Na,K-ATPase and its nitric oxide-mediated regulation in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 2003. [PMID: 12514200 DOI: 10.1523/jneurosci.23-01-00043.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Na,K-ATPase plays a critical role in energy metabolism and ion fluxes. Its loss was investigated in the G93A mouse model of amyotrophic lateral sclerosis (ALS) in which the mutation of Cu/Zn superoxide dismutase (SOD1) is thought to lead to aberrant oxidative damage. Observed losses in spinal cord Na,K-ATPase activity exceeded all expectations. All three catalytic subunit isoforms (alpha1, alpha2, alpha3) were reduced, and the global alpha subunit loss affected not just neurons, glia, and myelinated axon tracts but even ependymal and pial membranes. Decreases in Na,K-ATPase activity were greater than losses of protein, and there were losses of Na,K-ATPase alpha, but not beta, subunits. Together, these observations are consistent with selective degradation of the alpha subunit after damage. Overexpression of normal SOD1 does not cause ALS-like symptoms, but it has other known pathological effects. In transgenic mice overexpressed normal human SOD1 had a smaller but still considerable effect on Na,K-ATPase. Furthermore, the nitric oxide-mediated regulatory pathway for Na,K-ATPase inhibition was undetectable in spinal cord tissue slices from mice overexpressing either mutant or normal human SOD1. Na,K-ATPase activity did not respond to nitric oxide donors, and the free radical-dependent step of the pathway could not be bypassed by the addition of the downstream protein kinase G activator, 8-Br-cGMP. The data demonstrate that Na,K-ATPase is vulnerable to aberrant SOD1 activity, making it a potential contributing factor in disease pathology. Moreover, the global cellular distribution of Na,K-ATPase loss indicates that SOD1 overexpression is far-reaching in its pathological effects.
Collapse
|
29
|
Abstract
Autoradiographic and cytochemical procedures were employed to determine the cellular distribution of the Na,K-ATPase enzyme in the mammalian vestibular system. A light-microscope survey of vestibular tissues incubated with [(3)H]ouabain shows high densities of ouabain binding sites within the dark cell epithelium (DC) of the ampullae of the semi-circular canals, and to a lesser extent, the DC of the utricular macula. A moderate number of binding sites was found in nerve fibers penetrating the connective tissue beneath the sensory epithelium (SE) of the ampullae and the maculae. A small number of binding sites is distributed in the deep portion of the SE, both in the ampullae and in the maculae. These latter binding sites seem to be associated with nerve terminals and receptor cells. At the ultrastructural level, the vestibular dark cells exhibit extensive basolateral membrane infolding, a morphological hallmark of cells engaged in trans-epithelial ion transport. The cytochemical reaction product is K(+)-dependent, ouabain inhibitable, and is restricted to the basolateral membrane extensions, with little or no product on the luminal membrane. The extent of membrane infolding in dark cells of the utricle is less pronounced than that of the ampullar dark cells and the intensity of the cytochemical reaction appears to correlate with the extent of membrane infolding. The results support the widely held hypothesis that the vestibular dark cells play a role in endolymph production. They also suggest that the vestibular sensory epithelia may be a site of ion exchange.
Collapse
Affiliation(s)
- Dimitri Z Pitovski
- Department of Otolaryngology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
30
|
Banerjee B, Chaudhury S. Thyroidal regulation of different isoforms of NaKATPase in the primary cultures of neurons derived from fetal rat brain. Life Sci 2002; 71:1643-54. [PMID: 12137911 DOI: 10.1016/s0024-3205(02)01856-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The developmental profile of the different isoforms of NaKATPase have been investigated using primary cultures of isolated neurons initiated from 17 day old fetal rat brain. Northern blot analysis showed that the expression of three alpha isoforms (alpha(1), alpha(2) and alpha(3)) and two beta isoforms (beta(1) and beta(2)) increased progressively and reached a peak between 12 to 16 days of culture. Comparison of the mRNA levels of these isoforms in the cells maintained in thyroid hormone deficient (TH def) and thyroid hormone supplemented (TH sup) media for 6-12 days, revealed for the first time that in the neurons three alpha and two beta isoforms of NaKATPase are sensitive to TH. Furthermore immunocytochemical staining of these cells with isoform specific NaKATPase antibodies showed that the uniform distribution of alpha(2), alpha(3) and beta(2) isoforms in the neuronal processes require the presence of TH. These results establish neurons as the target cells for the regulation of NaKATPase by TH in the developing brain.
Collapse
Affiliation(s)
- Bhaswati Banerjee
- Neurobiology Division, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Calcutta-700032, India
| | | |
Collapse
|
31
|
Liu SH, Wang JH, Kang JJ, Lin RH, Lin-Shiau SY. Alterations in the properties and isoforms of sciatic nerve Na(+), K(+)-ATPase in methylcyclopentadienyl manganese tricarbonyl-treated mice. ENVIRONMENTAL RESEARCH 2000; 82:239-244. [PMID: 10702331 DOI: 10.1006/enrs.1999.4026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The in vivo effect of methylcyclopentadienyl manganese tricarbonyl (MMT), an organic manganese-containing compound, on the mouse motor nerve was studied. The motor nerve conduction velocity was markedly decreased in MMT-treated mice. The Na(+),K(+)-ATPase activity of sciatic nerve isolated from MMT-treated mice was decreased; however, the sciatic nerve Na(+),K(+)-ATPase activity was not affected by the in vitro treatment of MMT. Moreover, [(3)H]ouabain binding of sciatic nerve isolated from MMT-treated mice was decreased. Using Western blot analysis, the amount of Na(+),K(+)-ATPase catalytic alpha1 subunit polypeptide in sciatic nerve of MMT-treated mice was also decreased. These results indicate that a causal relationship may exist between reduced nerve Na(+),K(+)-ATPase activity and motor nerve conduction velocity in MMT-treated mice and that a measurable decrease in alpha1 catalytic subunit isoform of Na(+),K(+)-ATPase may be necessary for the development of peripheral neuropathy by MMT.
Collapse
Affiliation(s)
- S H Liu
- Institute of Toxicology, National Taiwan University, Taipei, 10043, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Abstract
Steady-state Na+/K+ pump current (Ip) in isolated adult rat dorsal root ganglia neurons was studied to determine if the plasma membrane Na+/K+ pump activity is uniform across the population of dorsal root ganglia neurons. Cells were voltage-clamped at -40 mV and holding current (Ih) was recorded using whole-cell patch-clamp techniques under conditions that stimulate the Na+/K+ pump (60 mM intracellular Na+ and 5.4 mM extracellular K+). Ip was defined as the 1 mM ouabain-sensitive fraction of Ih. Data suggest the existence of three subpopulations of dorsal root ganglia neurons having mean steady-state Ip densities of 1.6+/-0.1, 3.8+/-0.2 and 7.5+/-0.4 pA/pF. Neurons with small Ip had an average soma perimeter of 95+/-3 microm, while neurons with medium and large Ip density had significantly larger soma sizes (131+/-8 and 141+/-7 microm, respectively). Neurons with a large Ip density had a significantly lower specific membrane resistance (Rm; mean 4.0+/-0.3 kohm x cm2) than neurons with medium or small Ip density (19+/-6 and 31+/-6 kohm x cm2, respectively). Regardless of these differences, in all groups of neurons Ip had a low sensitivity to ouabain (Ip half inhibition by ouabain was observed at 80-110 microM). These data suggest that the Na+/K+ pump site density and/or its activity is not uniform throughout the dorsal root ganglia neuron population; however, this non-uniformity does not appear to relate to the functional expression of the different alpha isoforms of the Na+/K+ pump. The major functional Na+/K+ pump in the dorsal root ganglia neuron plasma membrane appeared to be the low ouabain affinity (alpha1) isoform.
Collapse
Affiliation(s)
- M Dobretsov
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | |
Collapse
|
33
|
Dobretsov M, Hastings SL, Stimers JR. Non-uniform expression of alpha subunit isoforms of the Na+/K+ pump in rat dorsal root ganglia neurons. Brain Res 1999; 821:212-7. [PMID: 10064805 DOI: 10.1016/s0006-8993(98)01361-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tissue sections and antibodies selectively recognizing isoforms of the alpha subunit of the Na+/K+ pump were used to determine the expression of alpha1, alpha2 and alpha3 pump isoforms in the plasma membrane of adult rat dorsal root ganglia (DRG) neurons. There was no detectable membrane signal from DRG neurons that were probed with antibodies to the alpha2 isoform of the Na+/K+ pump. The alpha1 isoform of the Na+/K+ pump was found in most (77+/-4%) studied DRG neurons, regardless of cell size. Only 16+/-7% of the neurons expressed a detectable level of the alpha3 Na+/K+ pump and all were apparently from a subpopulation of large DRG neurons. Comparison of cell size distributions and a study of neurons identified in serial sections suggested that of the alpha3 positive DRG neurons about 75% coexpressed the alpha1 isoform of the Na+/K+ pump. These data show that the expression of the protein of the alpha subunit isoforms of the Na+/K+ pump is not uniform throughout the population of DRG neurons and that alpha1 is the predominant isoform in the plasma membrane of these neurons.
Collapse
Affiliation(s)
- M Dobretsov
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 611, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
34
|
Lehning EJ, Persaud A, Dyer KR, Jortner BS, LoPachin RM. Biochemical and morphologic characterization of acrylamide peripheral neuropathy. Toxicol Appl Pharmacol 1998; 151:211-21. [PMID: 9707497 DOI: 10.1006/taap.1998.8464] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether reduced Na+/K+-ATPase activity might be involved in acrylamide (ACR)-induced peripheral axon swelling and degeneration, rubidium (Rb+) transport was measured as an index of enzyme function. x-ray microanalysis was used to quantify elemental Rb uptake and accumulation in internodal myelinated axons, mitochondria, Schwann cells, and myelin of rat tibial nerve cryosections. Results demonstrated impairment of Rb uptake in tibial axons from orally intoxicated (2.8 mM ACR for 34 days), moderately affected rats. In severely affected oral rats (49 days), complete inhibition of Rb transport and frank axon degeneration were evident. However, in moderate-to-severely affected rats exposed to ACR via ip injection (50 mg/kg/day for 11 days), neither structural nor enzymatic changes were present in tibial fibers. These findings in nerve cryosections suggested inhibition of axolemmal Na+ pump activity and degeneration were dependent upon route of ACR administration. This possibility was substantiated by a quantitative longitudinal morphometric study of conventionally fixed tibial nerve. Oral ACR treatment (2.8 mM ACR for 15-49 days) was associated with progressive axon degeneration, which was preceded by atrophy. Axonal swellings were rarely (<1%) observed. In contrast, ip ACR injection (50 mg/kg/day for 5-11 days) produced classic behavioral neurotoxicity but did not alter axon morphology in tibial nerve. Thus, fiber degeneration and decreased Na+ pump activity were consequences of subchronic oral ACR administration. This parallel expression suggests a mechanistic relationship. However, the corresponding general neurotoxicological significance is unclear since, behavioral toxicity induced by ip ACR develops without structural and enzymatic changes in tibial nerve.
Collapse
Affiliation(s)
- E J Lehning
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York 10467-2490, USA
| | | | | | | | | |
Collapse
|
35
|
Basavappa S, Mobasheri A, Errington R, Huang CC, Al-Adawi S, Ellory JC. Inhibition of Na+, K+-ATPase activates swelling-induced taurine efflux in a human neuroblastoma cell line. J Cell Physiol 1998; 174:145-53. [PMID: 9428800 DOI: 10.1002/(sici)1097-4652(199802)174:2<145::aid-jcp1>3.0.co;2-o] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Na+ pump (Na+, K+-ATPase) has been implicated in the regulation of many cellular functions, including cell volume regulation. The effects of inhibiting Na+ pump activity on cell volume and taurine efflux were evaluated in the human neuroblastoma cell line CHP-100. Cell volume changes monitored with the Coulter Multisizer technique and confocal microscopy showed that neuroblastoma cells exposed to ouabain swelled by 22 +/- 4% (n = 5). The rapid cell swelling was followed by regulatory volume decrease (RVD). In cells treated with ouabain, 14C-taurine efflux increased by 183 +/- 11% compared with controls. However, cells exposed simultaneously to ouabain and hypoosmotic solution resulted in a 14C-taurine efflux of 207 +/- 18%. Western blot and immunofluorescence microscopy with specific monoclonal antibodies for the catalytic alpha isoforms of Na+, K+-ATPase demonstrated high levels of the ubiquitously expressed alpha1 and the neuronal-specific alpha3. Ouabain-binding data showed that CHP-100 cells express approximately 3 x 10(5) pump units/cell. The present data indicate that efflux of taurine may be involved during volume recovery subsequent to blockade of Na+, K+-ATPase in CHP-100 cells.
Collapse
Affiliation(s)
- S Basavappa
- University Laboratory of Physiology, University of Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
36
|
Chauhan NB, Lee JM, Siegel GJ. Na,K-ATPase mRNA levels and plaque load in Alzheimer's disease. J Mol Neurosci 1997; 9:151-66. [PMID: 9481617 DOI: 10.1007/bf02800498] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED The expression of Na,K-ATPase alpha 1- and alpha 3-mRNAs was analyzed by in situ hybridization in the superior frontal cortex and cerebellum of brains from five Alzheimer's disease (AD), five nondemented age-matched, and three young control subjects. Brains with well-preserved RNA, tested by Northern hybridization of immobilized RNA with [32P]-labeled human beta-actin riboprobe, were chosen for analysis. In situ hybridization was performed on formalin-fixed, 5 microns-thick Paraplast sections with [35S]-labeled riboprobes prepared by in vitro transcription of the respective linearized clones: a 537-bp EcoRI-PstI fragment of alpha 1-cDNA and a 342-bp PstI-EcoRI fragment of alpha 3-cDNA. In cortex, grains related to mRNA were measured by density per unit area in five cortical columns separated by 1.0-1.2 cm in each of two adjacent sections. Each cortical column of 180-micron width was divided into four depths orthogonal to the pial surface between the pia and the white matter. Amyloid plaques were counted in the same regions of adjacent sections. In addition, alpha 3-mRNA grain clusters over individual pyramidal neurons within depth 4 were analyzed. We found the following significant changes (p < 0.05): 1. Increases in total alpha 1-mRNA by 13-19% in AD compared to young and by 7-12% in AD compared to age-matched controls. 2. Decrease in total alpha 3-mRNA by 31-38% in AD compared to young and age-matched controls. 3. Decrease in alpha 3-mRNA content over individual pyramidal perikarya by 14% in normal aged brains without plaques compared to young controls, and by 44% in AD relative to young controls and by 35% compared to age-matched controls. No significant difference (p < 0.2) was found with respect to alpha 1- or alpha 3-mRNA in cerebellar cortex or individual Purkinje cells among any of the groups. In addition, there was a trend toward an inverse correlation between the levels of alpha 3-mRNA and of diffuse plaques, but not of neuritic plaques, in AD cases. IN CONCLUSION 1. The increases in alpha 1-mRNA in AD may be related to an increased reactive gliosis. 2. The declines in alpha 3-mRNA per individual neuron found in normal aging occur prior to the formation of diffuse plaques and are greatly accelerated in AD. 3. The declines in alpha 3-mRNA per neuron found in normal aging may predispose to or potentiate AD pathogenesis.
Collapse
Affiliation(s)
- N B Chauhan
- Molecular and Cellular Neuroscience Laboratory, Edward Hines Jr. Veterans Affairs Hospital, IL 60141, USA
| | | | | |
Collapse
|
37
|
Liu SH, Sheu TJ. The in vivo effect of lipopolysaccharide on Na+,K(+)-ATPase catalytic (alpha) subunit isoforms in rat sciatic nerve. Neurosci Lett 1997; 234:166-8. [PMID: 9364523 DOI: 10.1016/s0304-3940(97)00686-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Na+,K(+)-ATPase catalytic (alpha) subunit in sciatic nerve of lipopolysaccharide (endotoxin, LPS)-treated rat was investigated. Using Western blot to determine subunit isoform polypeptide levels in rat sciatic nerve, we found a substantial reduction in alpha 1 polypeptide, but not that of alpha 2 and alpha 3 polypeptides, after the administration of LPS. Moreover, when rats were treated with polymyxin B (a LPS neutralizer) and NG-nitro-L-arginine (an inhibitor of nitric oxide (NO) synthase), the effects of LPS were reversed. These results implicate a specific marked deficit in alpha 1 subunit isoform of Na+,K(+)-ATPase in the pathogenesis of neuropathy during endotoxemia, through, at least in part, the L-arginine/NO pathway.
Collapse
Affiliation(s)
- S H Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei.
| | | |
Collapse
|
38
|
Ochi K, Hanada K, Youn SH, Wakisaka S, Maeda T. Immunocytochemical demonstration of beta 1-subunit of Na+/K(+)-ATPase in the mechanoreceptive Ruffini-like endings of the rat incisor ligament. Arch Oral Biol 1997; 42:779-82. [PMID: 9447268 DOI: 10.1016/s0003-9969(97)00097-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The localization of one of the isoforms of Na+/K(+)-ATPase, the beta 1-subunit, was investigated in the periodontal Ruffini endings of rat incisors by light- and electron-microscopic immunocytochemistry. Immunoreactivity for the rat beta 1-subunit followed the pattern of dendritic terminal arborization in the alveolar half of the lingual periodontal ligament. Ultrastructurally, the reaction products were localized in dilatations of axons, possibly the terminals of Ruffini-like endings in the periodontal ligament. No immunoreactivity was seen in Schwann cells. The immunostaining results support the view that the beta 1-subunit of Na+/K(+)-ATPase is the predominant isoform in sensory neurones, and that this protein is a useful marker for periodontal Ruffini-like endings.
Collapse
Affiliation(s)
- K Ochi
- Department of Oral Anatomy, Niigata University School of Dentistry, Japan
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Stevens MJ, Lattimer SA, Feldman EL, Helton ED, Millington DS, Sima AA, Greene DA. Acetyl-L-carnitine deficiency as a cause of altered nerve myo-inositol content, Na,K-ATPase activity, and motor conduction velocity in the streptozotocin-diabetic rat. Metabolism 1996; 45:865-72. [PMID: 8692023 DOI: 10.1016/s0026-0495(96)90161-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Defective metabolism of long-chain fatty acids and/or their accumulation in nerve may impair nerve function in diabetes by altering plasma or mitochondrial membrane integrity and perturbing intracellular metabolism and energy production. Carnitine and its acetylated derivatives such as acetyl-L-carnitine (ALC) promote fatty acid beta-oxidation in liver and prevent motor nerve conduction velocity (MNCV) slowing in diabetic rats. Neither the presence nor the possible implications of putative ALC deficiency have been definitively established in diabetic nerve. This study explored sciatic nerve ALC levels and the dose-dependent effects of ALC replacement on sciatic nerve metabolites, Na,K-ATPase, and MNCV after 2 and 4 weeks of streptozotocin-induced diabetes (STZ-D) in the rat. ALC treatment that increased nerve ALC levels delayed (to 4 weeks) but did not prevent nerve myo-inositol (MI) depletion, but prevented MNCV slowing and decreased ouabain-sensitive (but not -insensitive) ATPase activity in a dose-dependent fashion. However, ouabain-sensitive ATPase activity was also corrected by subtherapeutic doses of ALC that did not increase nerve ALC or affect MNCV. These data implicate nerve ALC depletion in diabetes as a factor contributing to alterations in nerve intermediary and energy metabolism and impulse conduction in diabetes, but suggest that these alterations may be differentially affected by various degrees of ALC depletion.
Collapse
Affiliation(s)
- M J Stevens
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Zahler R, Sun W, Ardito T, Zhang ZT, Kocsis JD, Kashgarian M. The alpha3 isoform protein of the Na+, K(+)-ATPase is associated with the sites of cardiac and neuromuscular impulse transmission. Circ Res 1996; 78:870-9. [PMID: 8620608 DOI: 10.1161/01.res.78.5.870] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The alpha (catalytic) subunit of the Na+ pump (Na+, K(+)-ATPase) has three isoforms; alpha1 is ubiquitous, skeletal muscle expresses predominantly alpha2, and alpha3 has been localized to specific types of neurons and, possibly, to axonal processes. The alpha3 isoform mRNA is also expressed in the rat cardiac conduction system. Thus, we studied rat heart and quadriceps muscles by immunohistochemistry using isoform-specific antibodies to the Na+ pump alpha subunit and labeled alpha-bungarotoxin as a probe for the neuromuscular junction (NMJ). We found that alpha3 pump protein is localized to three sites important for impulse transmission: the junctional complex between cardiac myocytes, the heart conduction system, and the NMJ. Specifically, all levels of the conduction system expressed alpha3 immunoreactive protein, as assessed by two isoform-specific antibodies and histological conduction system markers. Specific expression at the junctional complex was confirmed by immuno-EM. Double-labeling and denervation analysis indicated that alpha3-positive areas in skeletal muscle were presynaptic and adjacent to postsynaptic bungarotoxin-positive regions, which had the classic morphology of NMJs. Thus, specific Na+,K(+)-ATPase pump isoforms may be adapted to maintenance of membrane potential and/or intracellular ion concentrations required for impulse transmission in both heart and presynaptic motor terminals contacting skeletal muscle.
Collapse
Affiliation(s)
- R Zahler
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
42
|
Brines ML, Tabuteau H, Sundaresan S, Kim J, Spencer DD, de Lanerolle N. Regional distributions of hippocampal Na+,K(+)-ATPase, cytochrome oxidase, and total protein in temporal lobe epilepsy. Epilepsia 1995; 36:371-83. [PMID: 7607116 DOI: 10.1111/j.1528-1157.1995.tb01012.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Na+,K(+)-ATPase (the sodium pump) is a ubiquitous enzyme that consumes ATP to maintain an adequate neuronal transmembrane electrical potential necessary for brain function and to dissipate ionic transients. Reductions in sodium pump function augment the sensitivity of neurons to glutamate, increasing excitability and neuronal damage in vitro. Temporal lobe epilepsy (TLE) is one disease characterized by hyperexcitability and marked hippocampal neuronal losses that could depend in part, on impaired sodium pump capacity secondary to changes in sodium pump levels and/or insufficient ATP supply. To assess whether abnormalities in the sodium pump occur in this disease, we used [3H]ouabain to determine the density of Na+,K(+)-ATPase for each anatomic region of hippocampus by in vitro autoradiography. Tissues were surgically obtained from epileptic patients with hippocampal sclerosis and compared with specimens from patients with seizures originating from temporal lobe tumors and autopsy controls. Changes in cellular population arising from neuronal losses or gliosis were assessed by protein densities derived from quantitative computerized densitometry of Coomassie-stained tissue sections. We estimated regional differences in capacity for ATP generation by determining cytochrome c oxidase (CO) activity. Principal neurons of hippocampus exhibit high levels of sodium pump enzyme. Both epilepsy groups exhibited slight but significant increases in sodium pump density/unit mass of protein in the dentate molecular layer, CA2, and subiculum as compared with autopsy controls. Greater hilar sodium pump density was also observed in sclerotic hippocampi. In contrast, CO activity was reduced in both epilepsy types throughout hippocampus. Results suggest that although sodium pump protein in surviving neurons appears to be upregulated in epilepsy, sodium pump capacity may be limited by the reduced levels of CO activity. Functional reduction in sodium pump capacity may be an important factor in hyperexcitability and neuronal death.
Collapse
Affiliation(s)
- M L Brines
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
43
|
Fink DJ, Fang D, Li T, Mata M. Na,K-ATPase beta subunit isoform expression in the peripheral nervous system of the rat. Neurosci Lett 1995; 183:206-9. [PMID: 7537868 DOI: 10.1016/0304-3940(94)11152-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using the RNase protection assay (RPA) to study the distribution of isoforms of the non-catalytic (beta) subunit of Na,K-ATPase in the peripheral nervous system, we found both beta 1 and beta 2 isoform mRNAs in dorsal root ganglion (DRG), but only beta 2 mRNA in sciatic nerve. Using Western blot to measure accumulation of the polypeptides at a ligature on the nerve we found that beta 1 but not beta 2 polypeptide is carried by rapid axonal transport in the sciatic nerve. These results imply that beta 1 is the prominent isoform of Na,K-ATPase in neurons and beta 2 the prominent isoform in Schwann cells.
Collapse
Affiliation(s)
- D J Fink
- Department of Neurology, University of Michigan, Ann Arbor, USA
| | | | | | | |
Collapse
|
44
|
Sayers ST, Khan T, Shahid R, Dauzvardis MF, Siegel GJ. Distribution of alpha 1 subunit isoform of (Na,K)-ATPase in the rat spinal cord. Neurochem Res 1994; 19:597-602. [PMID: 8065516 DOI: 10.1007/bf00971336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three isoforms of the alpha subunit of (Na,K)-ATPase have been identified in the rat central nervous system. Using a probe specific for the alpha 1 isoform, mRNA levels were measured from five sections of the rat spinal cord using slot blot techniques. Assigning a value of 1 to the slope obtained from the cervical section, the upper thoracic section was 2.6 times higher; the midthoracic section was 4.5 times higher; the lower thoracic section was 2.6 times higher; and the lumbar section was 1.7 times higher. The results suggest that alpha 1 isoform mRNA levels are not uniform throughout the spinal cord. In situ hybridization techniques showed that alpha 1 isoform mRNA was diffusely abundant in glial and central canal ependymal cells, while labeled neurons were localized exclusively in laterally located anterior horn neurons in cervical, thoracic, and lumbar segments and in ventromedial neurons in mid-thoracic spinal cord. Also, dorsal root ganglia neurons were extensively labeled at all segments.
Collapse
Affiliation(s)
- S T Sayers
- Rehabilitation Research and Development Center, Hines VA Hospital, Hines, IL 60141
| | | | | | | | | |
Collapse
|
45
|
Mata M, Datta S, Jin CF, Fink DJ. Differential axonal transport of individual Na,K-ATPase catalytic (alpha) subunit isoforms in rat sciatic nerve. Brain Res 1993; 618:295-8. [PMID: 7690668 DOI: 10.1016/0006-8993(93)91278-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Three isoforms of the Na,K-ATPase catalytic (alpha) subunit are present in neurons, demonstrated by in situ hybridization of neurons and Western blot of nerve. We used Western blot with antibodies specific for alpha 1, alpha 2 and alpha 3 peptides to measure the accumulation of individual peptides at a ligature on the sciatic nerve. alpha 1 peptide accumulated with kinetics suggesting rapid axonal transport of that isoform within nerve. alpha 2 and alpha 3 peptides did not accumulate at the ligature. These studies provide insight into the dynamics of axonal Na,K-ATPase isoforms.
Collapse
Affiliation(s)
- M Mata
- Department of Neurology, University of Michigan, Ann Arbor
| | | | | | | |
Collapse
|
46
|
Mata M, Hieber V, Beaty M, Clevenger M, Fink DJ. Activity-dependent regulation of Na+, K(+)-ATPase alpha isoform mRNA expression in vivo. J Neurochem 1992; 59:622-6. [PMID: 1321232 DOI: 10.1111/j.1471-4159.1992.tb09415.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To investigate the functional role of the different Na+, K(+)-ATPase alpha (catalytic) subunit isoforms in neuronal cells, we used quantitative in situ hybridization with riboprobes specific for alpha 1, alpha 2, and alpha 3 isoforms to measure the level of alpha isoform-specific expression in the neuroendocrine cells of the supraoptic (SON) and paraventricular (PVN) nuclei of rat hypothalamus. A prolonged increase in electrical activity of these cells, achieved by 5 days of salt treatment, increased the amount of alpha 1 isoform mRNA in the SON and PVN by 50%. Levels of alpha 1 mRNA in other brain regions and levels of alpha 2 and alpha 3 mRNAs were not affected by salt treatment. We conclude that the alpha 1 isoform Na+, K(+)-ATPase may be specifically adapted to pump out Na+, which enters the cells through voltage-gated channels during neuronal depolarization.
Collapse
Affiliation(s)
- M Mata
- Department of Neurology, University of Michigan, Ann Arbor
| | | | | | | | | |
Collapse
|
47
|
Hieber V, Siegel GJ, Fink DJ, Beaty MW, Mata M. Differential distribution of (Na, K)-ATPase alpha isoforms in the central nervous system. Cell Mol Neurobiol 1991; 11:253-62. [PMID: 1851465 PMCID: PMC11567476 DOI: 10.1007/bf00769038] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/1990] [Accepted: 08/11/1990] [Indexed: 12/29/2022]
Abstract
1. mRNA transcripts for three isoforms of the alpha subunit of (Na,K)-ATPase have been previously identified in the rat nervous system and designated alpha 1, alpha 2 and alpha 3. 2. In order to study the localization and expression of the different alpha isoform mRNAs on a regional and cellular level in the brain, we prepared probes from the unique 3' untranslated region of rat alpha 1 cDNA and from a segment containing a portion of the translated region of rat alpha 3 cDNA. These probes were used in dot blot and in situ hybridization assays of rat brain. 3. alpha 1 mRNA was found predominantly in cerebral cortex, dentate gyrus of hippocampus, and specific isolated brain-stem nuclei such as locus ceruleus and motor nuclei V and VII. In contrast alpha 3 mRNA was found predominantly in pyramidal neurons in the deep layers of cerebral cortex, in both pyramidal and dentate gyrus neurons of the hippocampus, and in neurons of most subcortical structures of the thalamus, basal ganglia, and brain-stem nuclei. 4. In the cerebellum, Purkinje cells showed predominantly alpha 3, as did stellate and basket cells. The granule cells contained predominantly alpha 1. 5. These experiments show that mRNAs for both alpha 1 and alpha 3 isoforms of (Na,K)-ATPase are found in neurons of the CNS. The isoforms have unique cellular and regional distributions, which in some cases overlap.
Collapse
Affiliation(s)
- V Hieber
- GRECC Neurology Research Laboratory, VA Medical Center, Ann Arbor, Michigan
| | | | | | | | | |
Collapse
|