1
|
Abstract
Interleukin-1 (IL-1) is an inflammatory cytokine that has been shown to modulate neuronal signaling in homeostasis and diseases. In homeostasis, IL-1 regulates sleep and memory formation, whereas in diseases, IL-1 impairs memory and alters affect. Interestingly, IL-1 can cause long-lasting changes in behavior, suggesting IL-1 can alter neuroplasticity. The neuroplastic effects of IL-1 are mediated via its cognate receptor, Interleukin-1 Type 1 Receptor (IL-1R1), and are dependent on the distribution and cell type(s) of IL-1R1 expression. Recent reports found that IL-1R1 expression is restricted to discrete subpopulations of neurons, astrocytes, and endothelial cells and suggest IL-1 can influence neural circuits directly through neuronal IL-1R1 or indirectly via non-neuronal IL-1R1. In this review, we analyzed multiple mechanisms by which IL-1/IL-1R1 signaling might impact neuroplasticity based upon the most up-to-date literature and provided potential explanations to clarify discrepant and confusing findings reported in the past.
Collapse
Affiliation(s)
- Daniel P. Nemeth
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
2
|
Turrin NP, Rivest S. Unraveling the Molecular Details Involved in the Intimate Link between the Immune and Neuroendocrine Systems. Exp Biol Med (Maywood) 2016; 229:996-1006. [PMID: 15522835 DOI: 10.1177/153537020422901003] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During systemic infections, the immune system can signal the brain and act on different neuronal circuits via soluble molecules, such as proinflammatory cytokines, that act on the cells forming the blood-brain barrier and the circumventricular organs. These activated cells release prostaglandin of the E2 type (PGE2), which is the endogenous ligand that triggers the pathways involved in the control of autonomic functions necessary to restore homeostasis and provide inhibitory feedback to innate immunity. Among these neurophysiological functions, activation of the circuits that control the plasma release of glucocorticoids is probably the most critical to the survival of the host in the presence of pathogens. This review revisits this issue and describes in depth the molecular details (including the emerging role of Toll-like receptors during inflammation) underlying the influence of circulating inflammatory molecules on the cerebral tissue, focusing on their contribution in the synthesis and action PGE2 in the brain. We also provide an innovative view supporting the concept of “fast and delayed response” involving the same ligands but different groups of cells, signal transduction pathways, and target genes.
Collapse
Affiliation(s)
- Nicolas P Turrin
- Laboratory of Molecular Endocrinology, CHUL Research Center and Department of Anatomy and Physiology, Laval University, 2705 Boulevard Laurier, Québec G1V 4G2, Canada
| | | |
Collapse
|
3
|
Helwig BG, Leon LR. Tissue and circulating expression of IL-1 family members following heat stroke. Physiol Genomics 2011; 43:1096-104. [PMID: 21828249 DOI: 10.1152/physiolgenomics.00076.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interleukin-1 (IL-1) is thought to have a significant role in the pathophysiology of heat stroke (HS), although little is known regarding the actions or expression patterns of the IL-1 family. This study tested the hypotheses that following HS IL-1 family gene expression is dynamic, while loss of IL-1 signaling enhances recovery. IL-1 family expression was determined in plasma, spleen, and liver from C57BL/6J mice (n=24 control, n=20 HS) at maximum core temperature (Tc,Max), hypothermia, and 24 h post-HS (24 h). Soluble IL-1 receptor subtype I (sIL-1RI) protein expression peaked at 24 h (14,659.01±2,016.28 pg/ml, P<0.05), while sIL-1RII peaked at hypothermia (19,099.30±1,177.07 pg/ml). IL-1α gene expression in the spleen (ninefold) and liver (fourfold) along with IL-1RI (threefold spleen and fivefold liver) were maximal at hypothermia. Spleen IL-1β gene expression peaked at Tc,Max (fourfold) but at hypothermia (fourfold) in liver. Gene expression of the IL-1 family member IL-18 peaked (2.5-fold) at Tc,Max but was similar at all other time points. Subsequent studies revealed that despite accruing a greater heating area (298±16 vs. 247±13°C·min, P<0.05), IL-1RI knockout (KO) mice (n=14) showed an attenuated hypothermia depth (28.5±0.2 vs. 27.3±0.5°C, P<0.05) and duration (675±82 vs. 1,283±390 min, P<0.05) with a higher 24 h Tc (36.9 vs. 34.1°C, P<0.05) compared with C57BL/6J mice (n=8). The current results demonstrate that following HS IL-1 family gene expression is altered and IL-1RI KO mice display Tc responses consistent with a more rapid recovery.
Collapse
Affiliation(s)
- Bryan G Helwig
- United States Army Research Institute of Environmental Medicine, Thermal and Mountain Medicine Division, Natick, Massachusetts 01760, USA.
| | | |
Collapse
|
4
|
A crucial role for IL-6 in the CNS of rats during fever induced by the injection of live E. coli. Med Microbiol Immunol 2011; 201:47-60. [DOI: 10.1007/s00430-011-0204-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Indexed: 12/20/2022]
|
5
|
|
6
|
Cotman CW, Kahle JS, Korotzer AR. Maintenance and Regulation in Brain of Neurotransmission, Trophic Factors, and Immune Responses. Compr Physiol 2011. [DOI: 10.1002/cphy.cp110113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Rivest S, Lacroix S, Vallières L, Nadeau S, Zhang J, Laflamme N. How the Blood Talks to the Brain Parenchyma and the Paraventricular Nucleus of the Hypothalamus During Systemic Inflammatory and Infectious Stimuli. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1525-1373.2000.22304.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
CY Chiou G, XL Liu S. Novel non-arachidonate-mediated, non-steroidal anti-inflammatory agents. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.3.7.725] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Shu HF, Wang BR, Wang SR, Yao W, Huang HP, Zhou Z, Wang X, Fan J, Wang T, Ju G. IL-1beta inhibits IK and increases [Ca2+]i in the carotid body glomus cells and increases carotid sinus nerve firings in the rat. Eur J Neurosci 2007; 25:3638-47. [PMID: 17610583 DOI: 10.1111/j.1460-9568.2007.05586.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing evidence indicates that there exists a reciprocal communication between the immune system and the brain. Interleukin 1beta (IL-1beta), a proinflammatory cytokine produced during immune challenge, is believed to be one of the mediators of immune-to-brain communication, but how it gets into the brain is unknown because of its large molecular weight and difficulty in crossing the blood-brain barrier. Our previous work has demonstrated that IL-1 receptor type I is strongly expressed in the glomus cells of rat carotid body (CB), a well characterized polymodal chemoreceptive organ which serves not only for the detection of hypoxia, hypercapnia and acidity, but also for low temperature and blood glucose. The present study was designed to test whether IL-1beta could stimulate the CB glomus cells and alter the discharge properties in the carotid sinus nerve, the afferent nerve innervating the organ. The results from whole-cell patch-clamp recordings and calcium imaging showed that extracellular application of IL-1beta significantly decreased the outward potassium current and triggered a transient rise in [Ca(2+)](i) in the cultured glomus cells of rat CB. Furthermore, by using extracellular recordings and pharmacological intervention, it was found that IL-1beta stimulation of the CB in the anaesthetized rat in vivo significantly increased the discharge rate in the carotid sinus nerve, most probably mediated by ATP release. This experiment provides evidence that the CB responds to cytokine stimulation and proposes the possibility that the CB might play a role in immune-to-brain communication.
Collapse
Affiliation(s)
- Hai-Feng Shu
- Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Frosini M. Changes in CSF composition during heat stress and fever in conscious rabbits. PROGRESS IN BRAIN RESEARCH 2007; 162:449-57. [PMID: 17645932 DOI: 10.1016/s0079-6123(06)62022-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Elevation of brain temperature after stroke can lead to severe brain injury and even a moderate hyperthermia correlates with increased nervous damage. The role of endogenous cryogens in the pathways that down-regulate body temperature are of overwhelming interest in view of their effectiveness in protecting brain from such damage. The aim of the present work was to study whether heat stress (HS) or fever generates brain homeostatic responses aimed at counteracting the resulting rise in body temperature. Conscious rabbits, with cannulas chronically implanted in the cisterna magna and lateral ventricle, underwent HS (50 min, 40 degrees C) or were injected with 25 ng of endogenous pyrogen IL-1beta, while cerebrospinal fluid (CSF) levels of amino acids involved in central mechanisms of thermoregulation like taurine, GABA, aspartate and glutamate were monitored. The concentrations of some CSF cations (Na(+), K(+), Mg(2+) and Ca(2+)) were also determined in view of their purported role (sodium and calcium in particular) in establishing the thermal set point within the hypothalamus. Results show that during HS-induced hyperthermia, CSF taurine and GABA levels were significantly increased. On the contrary, IL-1beta caused an increase in CSF taurine and, concurrently, a decrease in CSF GABA. Aspartate and glutamate did not change in both conditions. Furthermore, among CSF cations, only calcium and sodium underwent changes. In particular, calcium content increased both in HS- and febrile-animals, while CSF sodium decreased significantly only under IL-1beta-injected treatment. In conclusion, GABA and taurine contribute as endogenous cryogens in a different fashion to the central mechanisms, which regulate dissipation of body heat in hyperthermia or heat production in fever, possibly in coordination with extracellular calcium and sodium.
Collapse
Affiliation(s)
- Maria Frosini
- Dipartimento di Scienze Biomediche, Sezione di Farmacologia, Fisiologia e Tossicologia Università di Siena, Polo Scientifico di S. Miniato viale A. Moro 2, lotto C 53100 Siena, Italy.
| |
Collapse
|
11
|
Tabarean IV, Korn H, Bartfai T. Interleukin-1beta induces hyperpolarization and modulates synaptic inhibition in preoptic and anterior hypothalamic neurons. Neuroscience 2006; 141:1685-95. [PMID: 16777343 DOI: 10.1016/j.neuroscience.2006.05.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/03/2006] [Accepted: 05/04/2006] [Indexed: 11/26/2022]
Abstract
Most of the inflammatory effects of the cytokine interleukin 1beta (IL-1beta) are mediated by induction of cyclooxygenase (COX)2 and the subsequent synthesis and release of prostaglandin E2. This transcription-dependent process takes 45-60 min, but IL-1beta, a well-characterized endogenous pyrogen also exerts faster neuronal actions in the preoptic area/anterior hypothalamus. Here, we have studied the fast (1-3 min) signaling by IL-1beta using whole-cell patch clamp recordings in preoptic area/anterior hypothalamus neurons. Exposure to IL-1beta (0.1-1 nM) hyperpolarized a subset ( approximately 20%) of preoptic area/anterior hypothalamus neurons, decreased their input resistance and reduced their firing rate. These effects were associated with an increased frequency of bicuculline-sensitive spontaneous inhibitory postsynaptic currents and putative miniature inhibitory postsynaptic currents, strongly suggesting a presynaptic mechanism of action. These effects require the type 1 interleukin 1 receptor (IL-1R1), and the adapter protein myeloid differentiation primary response protein (MyD88), since they were not observed in cultures obtained from IL-1R1 (-/-) or from MyD88 (-/-) mice. Ceramide, a second messenger of the IL-1R1-dependent fast signaling cascade, is produced by IL-1R1-MyD88-mediated activation of the neutral sphingomyelinase. C2-ceramide, its cell penetrating analog, also increased the frequency of miniature inhibitory postsynaptic currents in a subset of cells. Both IL-1beta and ceramide reduced the delayed rectifier and the A-type K(+) currents in preoptic area/anterior hypothalamus neurons. The latter effect may account in part for the increased spontaneous inhibitory postsynaptic current frequency as suggested by experiments with the A-type K(+) channel blockers 4-aminopyridine. Taken together our data suggest that IL-1beta inhibits the activity of preoptic area/anterior hypothalamus neurons by increasing the presynaptic release of GABA.
Collapse
Affiliation(s)
- I V Tabarean
- Harold L. Dorris Neurological Research Center, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
12
|
Fabricio ASC, Tringali G, Pozzoli G, Melo MC, Vercesi JA, Souza GEP, Navarra P. Interleukin-1 mediates endothelin-1-induced fever and prostaglandin production in the preoptic area of rats. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1515-23. [PMID: 16455768 DOI: 10.1152/ajpregu.00604.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intracerebroventricular injection of endothelin-1 (ET-1) induces fever and increases PG levels in the cerebrospinal fluid of rats. Likewise, the injection of IL-1 into the preoptic area (POA) of the rat hypothalamus causes both fever and increased PG production. In this study, we conducted in vivo and in vitro experiments in the rat to investigate 1) the hypothalamic region involved in ET-1-induced fever and PG biosynthesis and 2) whether hypothalamic IL-1 plays a role as a mediator of the above ET-1 activities. One hundred femtomoles of ET-1 increased body temperature when injected in the POA of conscious Wistar rats; this effect was significantly counteracted by the coinjection of 600 pmol IL-1 receptor antagonist (IL-1ra). In experiments on rat hypothalamic explants, 100 nM ET-1 caused a significant increase in PGE2 production and release from the whole hypothalamus and from the isolated POA, but not from the retrochiasmatic region, in 1-h incubations. Six nanomoles of IL-1ra or 10 nM of a cell-permeable interleukin-1 converting enzyme inhibitor completely counteracted the effect of ET-1 on PGE2 release from the POA. One hundred nanomoles ET-1 also caused a significant increase in IL-1beta immunoreactivity released into the bath solution of hypothalamic explants after 1 h of incubation, although during such time ET-1 failed to modify the gene expression of IL-1beta and other pyrogenic cytokines within the hypothalamus. In conclusion, our results show that ET-1 increases IL-1 production in the POA, and this effect appears to be correlated to ET-1-induced fever in vivo, as well as to PG production in vitro.
Collapse
Affiliation(s)
- Aline S C Fabricio
- Institute of Pharmacology, Catholic University Medical School, Largo F. Vito 1 - 00168 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Fabricio ASC, Rae GA, Zampronio AR, D'Orléans-Juste P, Souza GEP. Central endothelin ETBreceptors mediate IL-1-dependent fever induced by preformed pyrogenic factor and corticotropin-releasing factor in the rat. Am J Physiol Regul Integr Comp Physiol 2006; 290:R164-71. [PMID: 16123229 DOI: 10.1152/ajpregu.00337.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blockade of central endothelin ETBreceptors inhibits fever induced by LPS in conscious rats. The contribution of ETBreceptor-mediated mechanisms to fever triggered by intracerebroventricular IL-6, PGE2, PGF2α, corticotropin-releasing factor (CRF), and preformed pyrogenic factor derived from LPS-stimulated macrophages (PFPF) was examined. The influence of natural IL-1 receptor antagonist or soluble TNF receptor I on endothelin (ET)-1-induced fever was also assessed. The selective ETBreceptor antagonist BQ-788 (3 pmol icv) abolished fever induced by intracerebroventricular ET-1 (1 pmol) or PFPF (200 ng) and reduced that caused by ICV CRF (1 nmol) but not by IL-6 (14.6 pmol), PGE2(1.4 nmol), or PGF2α(2 nmol). CRF-induced fever was also attenuated by bosentan (dual ETA/ETBreceptor antagonist; 10 mg/kg iv) but unaffected by BQ-123 (selective ETAreceptor antagonist; 3 pmol icv). α-Helical CRF9–41(dual CRF1/CRF2receptor antagonist; 6.5 nmol icv) attenuated fever induced by CRF but not by ET-1. Human IL-1 receptor antagonist (9.1 pmol) markedly reduced fever to IL-1β (180 fmol) or ET-1 and attenuated that caused by PFPF or CRF. Murine soluble TNF receptor I (23.8 pmol) reduced fever to TNF-α (14.7 pmol) but not to ET-1. The results of the present study suggest that PFPF and CRF recruit the brain ET system to cause ETBreceptor-mediated IL-1-dependent fever.
Collapse
Affiliation(s)
- Aline S C Fabricio
- Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n-Campus USP 14040-903 Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
14
|
Alam MN, McGinty D, Bashir T, Kumar S, Imeri L, Opp MR, Szymusiak R. Interleukin-1beta modulates state-dependent discharge activity of preoptic area and basal forebrain neurons: role in sleep regulation. Eur J Neurosci 2004; 20:207-16. [PMID: 15245493 DOI: 10.1111/j.1460-9568.2004.03469.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interleukin-1beta (IL-1) is a pro-inflammatory cytokine that has been implicated in the regulation of nonrapid eye movement (nonREM) sleep. IL-1, IL-1 receptors and the IL-1 receptor antagonist (ra) are present normally in discrete brain regions, including the preoptic area (POA) of the hypothalamus and the adjoining magnocellular basal forebrain (BF). The POA/BF have been implicated in the regulation of sleep-wakefulness. We hypothesized that IL-1 promotes nonREM sleep, in part by altering the state-dependent discharge activity of POA/BF neurons. We recorded the sleep-wake discharge profiles of 83 neurons in the lateral POA/BF and assessed the effects of IL-1, IL-1ra, and IL-ra + IL-1 delivered through a microdialysis probe on state-dependent neuronal discharge activity. IL-1 decreased the discharge rate of POA/BF neurons as a group (n = 55) but wake-related and sleep-related neurons responded differently. IL-1 significantly decreased the discharge rate of wake-related neurons. Of 24 wake-related neurons studied, 19 (79%) neurons exhibited a greater than 20% change in their discharge in the presence of IL-1 during waking. IL-1 suppressed the discharge activity of 18 of 19 responsive neurons. Of 13 sleep-related neurons studied, IL-1 increased the discharge activity of five and suppressed the discharge activity of four neurons. IL-1ra increased the discharge activity of four of nine neurons and significantly attenuated IL-1-induced effects on neuronal activity of POA/BF neurons (n = 19). These results suggest that the sleep-promoting effects of IL-1 may be mediated, in part, via the suppression of wake-related neurons and the activation of a subpopulation of sleep-related neurons in the POA/BF.
Collapse
Affiliation(s)
- Md Noor Alam
- Veteran Affairs Greater Los Angeles Health Care System, 16111 Plummer Street, North Hills, CA 91343, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Manfridi A, Brambilla D, Bianchi S, Mariotti M, Opp MR, Imeri L. Interleukin-1beta enhances non-rapid eye movement sleep when microinjected into the dorsal raphe nucleus and inhibits serotonergic neurons in vitro. Eur J Neurosci 2003; 18:1041-9. [PMID: 12956704 DOI: 10.1046/j.1460-9568.2003.02836.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interleukin-1 (IL-1) and IL-1 receptors are constitutively expressed in normal brain. IL-1 increases non-rapid eye movements (NREM) sleep in several animal species, an effect mediated in part by interactions with the serotonergic system. The site(s) in brain at which interactions between IL-1 and the serotonergic system increase NREM sleep remain to be identified. The dorsal raphe (DRN) is the origin of the major ascending serotonergic pathways to the forebrain, and it contains IL-1 receptors. This study examined the hypothesis that IL-1 increases NREM sleep by acting at the level of the DRN. IL-1beta (0.25 and 0.5 ng) was microinjected into the DRN of freely behaving rats and subsequent effects on sleep-wake activity were determined. IL-1beta 0.5 ng increased NREM sleep during the first 2 h post-injection from 33.5 +/- 3.7% after vehicle microinjection to 42.9 +/- 3.0% of recording time. To determine the effects of IL-1beta on electrophysiological properties of DRN serotonergic neurons, intracellular recordings were performed in a guinea-pig brain stem slice preparation. In 26 of 32 physiologically and pharmacologically identified serotonergic neurons, IL-1beta superfusion (25 ng/mL) decreased spontaneous firing rates by 50%, from 1.6 +/- 0.2 Hz (before IL-1beta superfusion) to 0.8 +/- 0.2 Hz. This effect was reversible upon washout. These results show that IL-1beta increases NREM sleep when administered directly into the DRN. Serotonin enhances wakefulness and these novel data also suggest that IL-1beta-induced enhancement of NREM sleep could be due in part to the inhibition of DRN serotonergic neurons.
Collapse
Affiliation(s)
- Alfredo Manfridi
- Institute of Human Physiology II, 'Giuseppe Moruzzi' Centre for Experimental Sleep Research, Milano, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Diem R, Hobom M, Grötsch P, Kramer B, Bähr M. Interleukin-1 beta protects neurons via the interleukin-1 (IL-1) receptor-mediated Akt pathway and by IL-1 receptor-independent decrease of transmembrane currents in vivo. Mol Cell Neurosci 2003; 22:487-500. [PMID: 12727445 DOI: 10.1016/s1044-7431(02)00042-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recently, we have demonstrated that tumor necrosis factor-alpha (TNF-alpha) rescues retinal ganglion cells (RGCs) from retrograde cell death in vivo after axotomy of the optic nerve. The mechanism of RGC rescue was dependent on TNF-receptor I-mediated potassium current reduction and consecutive activation of the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. Here, we present evidence that interleukin-1 beta (IL-1 beta) also promotes RGC survival, but shows distinct differences with respect to its neuroprotective mechanisms. Using whole-cell and outside-out patch-clamp techniques, we observed that IL-1 beta decreased both inward sodium current amplitudes and outward potassium current amplitudes. Counteracting these effects by sodium or potassium channel opening inhibited the survival-promoting effects of this cytokine. IL-1 beta-induced current reduction could not be abolished by the interleukin-1 receptor antagonist, indicating that the electrophysiological effects of IL-1 beta are independent of interleukin-1 receptor I (IL-1RI) activation. Western blot analysis revealed an IL-1 beta-induced IL-1RI-dependent upregulation of phospho-Akt. Antagonism of the survival-promoting effects of IL-1 beta by PI3-K inhibition revealed the functional relevance of the PI3-K/Akt pathway in IL-1 beta-induced signal transduction in vivo.
Collapse
Affiliation(s)
- Ricarda Diem
- Neurologische Universitätsklinik, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
17
|
Kenney MJ, Blecha F, Fels RJ, Morgan DA. Altered frequency responses of sympathetic nerve discharge bursts after IL-1beta and mild hypothermia. J Appl Physiol (1985) 2002; 93:280-8. [PMID: 12070215 DOI: 10.1152/japplphysiol.01250.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although interleukin-1beta (IL-1beta) administration produces nonuniform changes in the level of sympathetic nerve discharge (SND), the effect of IL-1beta on the frequency-domain relationships between discharges in different sympathetic nerves is not known. Autospectral and coherence analyses were used to determine the effect of IL-1beta and mild hypothermia (60 min after IL-1beta, colonic temperature from 38 degrees C to 36 degrees C) on the relationships between renal-interscapular brown adipose tissue (IBAT) and splenic-lumbar sympathetic nerve discharges in chloralose-anesthetized rats. The following observations were made. 1) IL-1beta did not alter renal-IBAT coherence values in the 0- to 2-Hz frequency band or at the cardiac frequency (CF). 2) Peak coherence values relating splenic-lumbar discharges at the CF were significantly increased after IL-1beta and during hypothermia. 3) Hypothermia after IL-1beta significantly reduced the coupling (0-2 Hz and CF) between renal-IBAT but not splenic-lumbar SND bursts. 4) Combining IL-1beta and mild hypothermia had a greater effect on renal-IBAT SND coherence values than did mild hypothermia alone. These data demonstrate functional plasticity in sympathetic neural circuits and suggest complex relationships between immune products and SND regulation.
Collapse
Affiliation(s)
- M J Kenney
- Department of Anatomy and Physiology, Kansas State University, Manhattan 66506, USA.
| | | | | | | |
Collapse
|
18
|
Hori T, Oka T, Hosoi M, Abe M, Oka K. Hypothalamic mechanisms of pain modulatory actions of cytokines and prostaglandin E2. Ann N Y Acad Sci 2001; 917:106-20. [PMID: 11268335 DOI: 10.1111/j.1749-6632.2000.tb05375.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A decrease and subsequent increase in nociceptive threshold in the whole body are clinical symptoms frequently observed during the course of acute systemic infection. These biphasic changes in nociceptive reactivity are brought about by central signal substances induced by peripheral inflammatory messages. Systemic administration of lipopolysaccharide (LPS) or interleukin-1 beta (IL-1 beta), an experimental model of acute infection, may mimic the biphasic changes in nociception, hyperalgesia at small doses of LPS, and IL-1 beta and analgesia at larger doses. Our behavioral and electrophysiological studies have revealed that IL-1 beta in the brain induces hyperalgesia through the actions of prostaglandin E2 (PGE2) on EP3 receptors in the preoptic area and its neighboring basal forebrain, whereas the IL-1 beta-induced analgesia is produced by the actions of PGE2 on EP1 receptors in the ventromedial hypothalamus. An intravenous injection of LPS (10-100 micrograms/kg) produced hyperalgesia only during the period before fever develops and was abolished by microinjection of NS-398 (an inhibitor of cyclooxygenase 2) into the preoptic area, but not into the other areas in the hypothalamus. The hyperalgesia induced by the cytokines PGE2 and LPS may explain the systemic hyperalgesia clinically observed in the early phase of infectious diseases, which probably warns the organisms of infection before the full development of sickness symptoms. The switching of nociception from hyperalgesia to analgesia accompanied by sickness symptoms may reflect changes in the host's strategy for fighting microbial invasion as the disease progresses.
Collapse
Affiliation(s)
- T Hori
- Department of Integrative Physiology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
19
|
Vasilenko VY, Petruchuk TA, Gourine VN, Pierau FK. Interleukin-1beta reduces temperature sensitivity but elevates thermal thresholds in different populations of warm-sensitive hypothalamic neurons in rat brain slices. Neurosci Lett 2000; 292:207-10. [PMID: 11018313 DOI: 10.1016/s0304-3940(00)01470-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Extracellularly recorded firing rates of neurons in slices of the preoptic area and anterior hypothalamus (PO/AH) of the rat were determined during thermal stimulation. Human recombinant interleukin-1beta (20 ng/ml) did not influence temperature-insensitive neurons, but reduced the firing rate and thermosensitivity in linear warm-sensitive neurons, and shifted the thermal thresholds of activation in threshold warm- and cold-sensitive neurons by 1.1-2.3 degrees C to hyperthermic temperatures. The data support the suggestion that endogenous pyrogens may act on different populations of thermosensitive PO/AH neurons to induce fever. The shift of the thermal thresholds of activation of threshold warm- and cold-sensitive neurons in combination with the otherwise maintained temperature sensitivity of these neurons appears to play a major part for the controlled shift of body temperature and the maintenance of the elevated body temperature during cytokine-induced fever.
Collapse
Affiliation(s)
- V Y Vasilenko
- Institute of Physiology, National Academy of Sciences, Skorina Strasse 28, 220072, Minsk, Belarus
| | | | | | | |
Collapse
|
20
|
Abstract
Cytokines have a major role in promoting the growth and spread of cancers. Elevated levels of several cytokines have been described in cancer patients. Evidence from animal and human studies suggests that cytokines may contribute to a wide range of symptoms in advanced cancer, including: asthenia, pain, drowsiness, cognitive failure, agitated delirium, autonomic dysfunction, anorexia, cachexia, fever and metabolic abnormalities. Considerable effort is being directed at finding anticytokine treatments, raising the possibility of new options for symptoms that are currently difficult to control.
Collapse
Affiliation(s)
- R J Dunlop
- St. Christopher's Hospice, Esher, Surrey, United Kingdom
| | | |
Collapse
|
21
|
Murzenok P, Lange B, Tzschentke B, Nichelmann M. Effects of recombinant interleukin 1b on oxygen consumption in the Muscovy duck embryo (Cairina moschata). J Therm Biol 2000. [DOI: 10.1016/s0306-4565(99)00029-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Rivest S, Lacroix S, Vallières L, Nadeau S, Zhang J, Laflamme N. How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 223:22-38. [PMID: 10632958 DOI: 10.1046/j.1525-1373.2000.22304.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There are exciting new developments regarding the molecular mechanisms involved in the influence of circulating proinflammatory molecules within cells of the blood-brain barrier (BBB) during systemic immune challenges. These molecules, when present in the circulation, have the ability to trigger a series of events in cascade, leading to either the mitogen-activated protein (MAP) kinases/nuclear factor kappa B (NF-kappaB) or the janus kinase (JAK)/signal transducer and activator of transcription (STAT) transduction pathways in vascular-associated cells of the central nervous system (CNS). The brain blood vessels exhibit both constitutive and induced expression of receptors for different proinflammatory ligands that have the ability to stimulate these signaling molecules. Depending on the challenges and the cytokines involved, the transduction signal(s) solicited in cells of the BBB may orient the neuronal activity in a very specific manner in activating the transcription and production of soluble factors, such as prostaglandins (PGs). It is interesting to note that cytokines as well as systemic localized inflammation stimulate the cells of the BBB in a nonselective manner (i.e., within both large blood vessels and small capillaries across the brain). This nonselectivity raises several questions with regard to the localized neuronal activation induced by different experimental models of inflammation and cytokines. It is possible that the selectivity of the neuronal response is a consequence of the fine interaction between nonparenchymal synthesis of soluble mediators and expression of specific receptors for these ligands within parenchymal elements of different brain nuclei. This review will present the recent developments on this concept and the mechanisms that take place in cells of the BBB, which lead to the neuronal circuits involved in restoring the body's homeostasis during systemic immunogenic challenges. The induction of fever, the hypothalamic-pituitary adrenal (HPA) axis, and other autonomic functions are among the physiological outcomes necessary for the protection of the mammalian organism in the presence of foreign material.
Collapse
Affiliation(s)
- S Rivest
- Laboratory of Molecular Endocrinology, CHUL Research Center, Department of Anatomy, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Fever is induced in response to the entrance of pathogenic microorganisms into the body and is thought to be mediated by cytokines. Because these pathogens most commonly invade the body through its natural barriers and because body temperature is regulated centrally, these mediators are presumed to be produced peripherally and transported by the bloodstream to the brain, to act. It is generally considered that their febrigenic messages are further modulated there by prostaglandin E2 (PGE2). However, the detailed mechanism by which these cytokines signal the brain and activate the febrile response is not yet clear. Indeed, the specific role of each cytokine has been difficult to establish due to complex interactions among them. Furthermore, recent evidence suggests that different pyrogens may induce different cytokines; for example, i.v. LPS (a model of systemic bacterial infection) induces large increases in IL-6, but only small rises in IL-1 and TNF alpha plasma levels. Moreover, their appearance lags the fever onset. We recently found that subdiaphragmatic vagotomy, decomplementation, and blockade of Kupffer cells suppress the febrile response of guinea pigs to i.v. LPS, and that i.v. LPS rapidly stimulates the release of norepinephrine (NE) and, hence, of PGE2 in their preoptic-anterior hypothalamus (POA, the brain region containing the thermoregulatory controller). Based on these and other data in the literature, we hypothesize that LPS fever may be initiated as follows: i.v., LPS-->complement-->Kupffer cells-->cytokines?-->vagal afferents -->n. tractus solitarius?-->A1/A2 cell groups?-->ventral noradrenergic bundle? -->POA-->NE-->PGE2-->fever.
Collapse
Affiliation(s)
- C M Blatteis
- Department of Physiology and Biophysics, University of Tennessee, Memphis 38163, USA.
| | | |
Collapse
|
24
|
Hori T, Oka T, Hosoi M, Aou S. Pain modulatory actions of cytokines and prostaglandin E2 in the brain. Ann N Y Acad Sci 1998; 840:269-81. [PMID: 9629255 DOI: 10.1111/j.1749-6632.1998.tb09567.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proinflammatory cytokines such as IL-1, IL-6, and TNF alpha are known to enhance nociception at peripheral inflammatory tissues. These cytokines are also produced in the brain. We found that an intracerebroventricular injection of IL-1 beta only at nonpyrogenic doses in rats reduced the paw-withdrawal latency on a hot plate and enhanced the responses of the wide dynamic range neurons in the trigeminal nucleus caudalis to noxious stimuli. This hyperalgesia, as assessed by behavioral and neuronal responses, was blocked by pretreatment with IL-1 receptor antagonist (IL-1Ra), Na salicylate, or alpha melanocyte-stimulating hormone, indicating the involvement of IL-1 receptors and the synthesis of prostanoids. IL-6 and TNF alpha at nonpyrogenic doses also induced hyperalgesia in a prostanoid-dependent way. Furthermore, the preoptic area (POA) was most sensitive to IL-1 beta (5-50 pg/kg) in the induction of behavioral hyperalgesia. The maximal response was obtained 30 min after injection of IL-1 beta at 20 pg/kg. On the other hand, an injection of IL-1 beta (20-50 pg/kg) into the ventromedial hypothalamus (VMH) prolonged the paw-withdrawal latency maximally 10 min after injection. This analgesia, as well as the intraPOA IL-1 beta-induced hyperalgesia, was completely blocked by IL-1Ra or Na salicylate. Our previous study has revealed that i.c.v. injection of PGE2 induces hyperalgesia through EP3 receptors and analgesia through EP1 receptors by its central action. The results, taken together, suggest (1) that IL-1 beta at lower doses in the brain induces hyperalgesia through EP3 receptors in the POA and (2) that the higher doses of brain IL-1 beta produces analgesia through EP1 receptors, probably, in the VMH.
Collapse
Affiliation(s)
- T Hori
- Department of Physiology, Kyushu University Faculty of Medicine, Fukuoka, Japan
| | | | | | | |
Collapse
|
25
|
Abstract
Increased body temperature (fever or hyperthermia) is a physiological response to many different stimuli. In fact, fever (a 1-4°C elevation of the body temperature) is not only a clinical symptom common to many infectious diseases but also a side effect of immunostimulating or antiviral therapies. Hyperthermic reactions, on the other hand, can be observed after treatment with antipsychotic drugs, 5-hydroxytryptamine-receptor agonists, and acetylcholinesterase inhibitors and as a reaction to anesthesia. Moreover, hyperthermic reactions can be related to particularly stressful emotional states, to the menstrual ovulatory cycle, and to pregnancy. Transient hyperthermia or fever is also a common consequence of cerebral ischemic events, and it is present during stress as well as intense physical exercise. This review focuses on fever, one of the main components of the systemic acute-phase reaction to external proinflammatory stimuli. Special emphasis is given to neuronal mechanisms of fever induction, in which the hypothalamus plays a crucial role in both control of the febrile response as well as other centrally mediated neurological signs of inflammation, such as increased sleep, activation of the hypothalamic-pituitary-adrenal axis, anorexia, and sickness behavior. This review pays particular attention to the role of proinflammatory cytokines as endogenous pyrogens. NEUROSCIENTIST 4:113-121, 1998
Collapse
Affiliation(s)
- Anna K. Sundgren-Andersson
- Department of Neurochemistry and Neurotoxicology (AKS-A), Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden, Research (SG), Pharmacia and UpJohn, S.p.A., Nerviano, Italy, Department PharmaResearch Preclinical Nervous System (TB), F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Silvia Gatti
- Department of Neurochemistry and Neurotoxicology (AKS-A), Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden, Research (SG), Pharmacia and UpJohn, S.p.A., Nerviano, Italy, Department PharmaResearch Preclinical Nervous System (TB), F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Tamas Bartfai
- Department of Neurochemistry and Neurotoxicology (AKS-A), Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden, Research (SG), Pharmacia and UpJohn, S.p.A., Nerviano, Italy, Department PharmaResearch Preclinical Nervous System (TB), F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| |
Collapse
|
26
|
Köller H, Siebler M, Hartung HP. Immunologically induced electrophysiological dysfunction: implications for inflammatory diseases of the CNS and PNS. Prog Neurobiol 1997; 52:1-26. [PMID: 9185232 DOI: 10.1016/s0301-0082(96)00065-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During inflammation of the central or peripheral nervous system, a high number of immunologically active molecules, including bacterial or viral products as well as host-derived cytokines, are released. Patients suffering from inflammatory CNS or PNS diseases often develop transient symptoms with a rapid recovery, which obviously cannot be accounted for by immunologically induced tissue damage. These observations led to the hypothesis that immunologically active molecules can affect directly the electrophysiological functions of neurons and glial cells. Evidence for this hypothesis came from in vitro studies showing that cytokines, such as interleukins or tumor necrosis factors, arachidonic acid and its metabolites, interfere with electrophysiological properties of neurons or glial cells. These molecules affect ion currents, intracellular Ca2+ homeostasis, membrane potentials, and suppress or enhance the induction and maintenance of long-term potentiation. Similarly, virus proteins from human immunodeficiency virus type I were found to alter intracellular Ca2+ concentrations of neurons and astrocytes by modulating either transmitter receptors and channels or membrane transporters. Cerebrospinal fluid from MS patients contains factors which increase Na+ current inactivation and thereby reduce neuronal excitability. Immunoglobulins in sera of patients suffering from multifocal motor neuropathy and from acquired neuromyotonia interfere with nerve fibers, inducing alterations of conduction. Increased knowledge of these mechanisms will help to explain the pathogenesis of neurological symptoms and may provide a rationale for new therapeutic strategies.
Collapse
Affiliation(s)
- H Köller
- Department of Neurology, Heinrich-Heine University Düsseldorf, Germany
| | | | | |
Collapse
|
27
|
Aubé AC, Blottière HM, Scarpignato C, Cherbut C, Rozé C, Galmiche JP. Inhibition of acetylcholine induced intestinal motility by interleukin 1 beta in the rat. Gut 1996; 39:470-4. [PMID: 8949656 PMCID: PMC1383358 DOI: 10.1136/gut.39.3.470] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND/AIMS The fact that raised interleukin 1 beta (IL 1 beta) concentrations have been found in the colonic mucosa of rats with experimentally induced colitis and of patients with inflammatory bowel disease indicates that this cytokine may participate in the disturbed intestinal motility seen during inflammatory bowel disease. This study investigated whether IL 1 beta could change the contractility of (a) a longitudinal muscle-myenteric plexus preparation from rat jejunum, ileum, and colon and (b) isolated jejunal smooth muscle cells. METHODS Isometric mechanical activity of intestinal segments was recorded using a force transducer. Moreover, smooth muscle cell length was measured by image analysis. RESULTS Although IL 1 beta did not affect jejunal, ileal, and colonic basal contractility, it significantly reduced contractile response to acetylcholine (ACh). This significant inhibition was seen only after 90 or 150 minutes of incubation with IL 1 beta. Pretreatment with cycloheximide blocked IL 1 beta induced inhibition of ACh stimulated jejunal contraction, suggesting that a newly synthesised protein was involved in the effect. NW-nitro-L-arginine (a nitric oxide synthase inhibitor) did not prevent the inhibition induced by IL 1 beta. Blocking neural transmission with tetrodotoxin abolished the IL 1 beta effect on jejunal contractile activity, whereas IL 1 beta had no effect on isolated and dispersed smooth muscle cells. CONCLUSIONS IL 1 beta inhibits ACh induced intestinal contraction and this inhibitory effect involves protein synthesis but is independent of nitric oxide synthesis. This effect does not involve a myogenic mechanism but is mediated through the myenteric plexus.
Collapse
Affiliation(s)
- A C Aubé
- Centre de Recherche en Nutrition Humaine de Nantes, Equipe INSERM Biologie de la Motricité Digestive, Nantes, France
| | | | | | | | | | | |
Collapse
|
28
|
Won C, Park HJ, Shin HC. Interleukin-1 beta facilitates afferent sensory transmission in the primary somatosensory cortex of anesthetized rats. Neurosci Lett 1995; 201:255-8. [PMID: 8786853 DOI: 10.1016/0304-3940(95)12185-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of topical application of human recombinant interleukin-1 beta (IL-1) on afferent sensory transmission to the neurones in the primary somatosensory (SI) cortex was determined in anesthetized rats. Quantitative determination of the effect of IL-1 was made by generating post-stimulus time histograms of unit responses to the stimulation of receptive field. IL-1 (0.01, 0.1, 1.0 U) significantly facilitated afferent sensory transmission in SI cortical neurones (n = 22). IL-1-induced facilitation fully recovered by 60 min after drug. In control experiments (n = 10), saline solution containing 0.2 bovine serum albumin, used as a vehicle, did not affect afferent sensory transmission. Our results suggest that IL-1 may be involved in the processing of afferent sensory information in the SI cortex of rats.
Collapse
Affiliation(s)
- C Won
- Department of Physiology, Hallym University, Chunchon, Kangwon-do, South Korea
| | | | | |
Collapse
|
29
|
Malinowsky D, Chai Z, Bristulf J, Simoncsits A, Bartfai T. The type I interleukin-1 receptor mediates fever in the rat as shown by interleukin-1 receptor subtype selective ligands. Neurosci Lett 1995; 201:33-6. [PMID: 8830306 DOI: 10.1016/0304-3940(95)12123-l] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The interleukin-1 (IL-1) system possesses two distinct receptors (type I and type II) which, together with the accessory protein, mediate a multitude of responses to IL-1 alpha and IL-1 beta, including fever. So far, no receptor subtype-specific ligands have been described. Since both types of IL-1 receptors occur in the thermoregulatory areas it was unclear which IL-1 receptor type mediates fever. We report here that for a series of deletion mutants of human recombinant IL-1 beta (hrIL-1 beta), the affinity of these ligands for the type I IL-1 receptor correlates with their efficacy to evoke the fever response (hrIL-1 beta > des-SND52-54 > des-QGE48-50 > des-I56). Thus, the results suggest that agonist occupancy of the type I IL-1 receptor is essential for IL-1 beta-mediated fever.
Collapse
Affiliation(s)
- D Malinowsky
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
30
|
Oka T, Oka K, Hosoi M, Aou S, Hori T. The opposing effects of interleukin -1 beta microinjected into the preoptic hypothalamus and the ventromedial hypothalamus on nociceptive behavior in rats. Brain Res 1995; 700:271-8. [PMID: 8624721 DOI: 10.1016/0006-8993(95)00980-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of microinjections of recombinant human interleukin-1 beta (rhIL-1 beta) into the hypothalamus and neighboring basal forebrain on nociceptive behavior were studied using a hot-plate test in rats. The microinjection of rhIL-1 beta at doses between 5 pg/kg and 50 pg/kg into the medial part of the preoptic area (MPO) reduced the paw-withdrawal latency. The maximal reduction was obtained 30 min after the injection of rhIL-1 beta at 20 pg/kg. RhIL-1 beta (20 pg/kg)-induced hyperalgesia was completely blocked by the simultaneous injection of IL-1 receptor antagonist (IL-1ra, 20 ng/kg), Na salicylate (200 ng/kg) or alpha-melanocyte-stimulating hormone alpha-MSH, 20 ng/kg). The intra-MPO injection of rhIL-1 beta at doses of less than 5 pg/kg or more than 50 pg/kg (up to 2 ng/kg) into the paraventricular nucleus, the lateral hypothalamic area and the septal nucleus had no effect on nociception. The microinjection rhIL-1 beta (20 pg/kg-50 pg/kg) into the ventromedial hypothalamus produced a prolongation of the paw-withdrawal latency. A maximal prolongation was obtained 10 min after the injection of rhIL-1 beta at 50 pg/kg. This reaction was also blocked by the simultaneous injection of IL-1ra (50 ng/kg) and Na salicylate (500 ng/kg). These findings indicate that IL-1 beta in the MPO and the VMH produces hyperalgesia and analgesia, respectively, while, in addition, both effects are mediated by IL-1 receptors and the synthesis of prostaglandins.
Collapse
Affiliation(s)
- T Oka
- Department of Physiology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
31
|
Rühl A, Hurst S, Collins SM. Synergism between interleukins 1 beta and 6 on noradrenergic nerves in rat myenteric plexus. Gastroenterology 1994; 107:993-1001. [PMID: 7926489 DOI: 10.1016/0016-5085(94)90223-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND/AIMS Because levels of interleukins 1 beta and 6 (IL-1 beta and IL-6) are elevated during intestinal Trichinella spiralis infection, they may mediate the changes in enteric neural function in that model. IL-1 beta suppresses norepinephrine release from the myenteric plexus, but the effect of IL-6 is unknown. Therefore, we investigated the effects of IL-6 alone and in combination with IL-1 beta on norepinephrine release. METHODS Longitudinal muscle myenteric plexus or myenteric nerve varicosity preparations from jejunum of noninfected rats were loaded with [3H]norepinephrine, and 3H release was measured after a preincubation with or without human recombinant IL-6, alone or in combination with human recombinant IL-1 beta. RESULTS 1 ng/mL of IL-6 augmented 3H release, 100 ng/mL suppressed 3H release, whereas 10 ng/mL had no effect. However, IL-6 (10 ng/mL) plus a subthreshold concentration of human recombinant IL-1 beta significantly suppressed 3H release, and this was abolished by adding anti-IL-6 antibody or an IL-1 receptor antagonist. CONCLUSIONS Because 3H release reflects [3H]norepinephrine release, our results show that IL-6 exerts a dual effect on norepinephrine release. Furthermore, there is synergism between IL-1 beta and IL-6 resulting in suppression of norepinephrine release. Therefore, both cytokines may contribute to the suppression of norepinephrine release observed in the inflamed intestine.
Collapse
Affiliation(s)
- A Rühl
- Intestinal Diseases Research Program, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
32
|
|
33
|
Wilkinson MF, Mathieson WB, Pittman QJ. Interleukin-1 beta has excitatory effects on neurons of the bed nucleus of the stria terminalis. Brain Res 1993; 625:342-6. [PMID: 8275318 DOI: 10.1016/0006-8993(93)91079-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Arginine vasopressin (AVP) is an endogenous antipyretic which acts in the ventral septal area (VSA) of the brain following its release from terminals of neurons from the bed nucleus of the stria terminalis (BST). The neurochemical mechanisms involved in the activation of these BST neurons are unknown. The present study was conducted to determine whether a naturally occurring brain cytokine (interleukin-1 beta, IL-1) selectively activates the population of BST neurons projecting to the VSA or another locus known to receive vasopressinergic input from the BST, the habenular nuclei (HAB). Single unit extracellular recordings were made from identified BST neurons in urethane-anesthetized rats. Human recombinant IL-1 applied iontophoretically or by micropressure, evoked marked excitations of long duration in 24% of all BST cells observed (n = 102 cells). Iontophoresis of sodium salicylate attenuated or reversed the effects of the cytokine in all cases tested. The selective and long-lasting excitatory actions of IL-1 on BST neurons are consistent with a direct CNS function for this cytokine. In addition, these results are compatible with a role for IL-1 in evoking AVP release from BST neurons during fever.
Collapse
Affiliation(s)
- M F Wilkinson
- Department of Medical Physiology, University of Calgary Health Sciences Research Centre, Alta., Canada
| | | | | |
Collapse
|
34
|
Luheshi G, Hopkins SJ, Lefeuvre RA, Dascombe MJ, Ghiara P, Rothwell NJ. Importance of brain IL-1 type II receptors in fever and thermogenesis in the rat. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:E585-91. [PMID: 8238334 DOI: 10.1152/ajpendo.1993.265.4.e585] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Interleukin-1 (IL-1) acts centrally to induce fever and thermogenesis in rodents. The central actions of IL-1 alpha and IL-1 beta apparently involve different mechanisms, and the effects of IL-1 beta are not consistent with interaction with a type I (IL-1RI) 80-kDa receptor. In the present study the involvement of the type II IL-1 receptor (IL-1RII) was tested in the rat by examining the effects of central injection of a monoclonal antibody (ALVA-42), which blocks the IL-1RII. Pretreatment of rats with ALVA-42 (6 micrograms icv) inhibited the thermogenic and pyrogenic responses to intracerebroventricular injection of 5 ng (but not 50 ng) of IL-1 beta in conscious rats but did not significantly modify responses to IL-1 alpha. ALVA-42 also failed to modify the responses to peripherally administered IL-1 beta (1 microgram) but significantly attenuated the pyrogenic and thermogenic responses to peripheral (125 micrograms) or central (1 microgram) injection of endotoxin. These data indicate that IL-1RII mediates the central effects of a low dose of IL-1 beta, but not IL-1 alpha, on fever and thermogenesis in the rat. They also imply that responses to endotoxin are due, at least in part, to the activation of IL-1RII by IL-1 beta released within the brain and that effects of peripherally injected IL-1 beta involve different mechanisms, probably associated with IL-1RI.
Collapse
Affiliation(s)
- G Luheshi
- Department of Physiological Sciences, University of Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Whitnall MH. Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 1993; 40:573-629. [PMID: 8484004 DOI: 10.1016/0301-0082(93)90035-q] [Citation(s) in RCA: 423] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M H Whitnall
- Department of Physiology, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5145
| |
Collapse
|
36
|
Abstract
IL-1ra is the first described naturally occurring receptor antagonist of any cytokine or hormone-like molecule. IL-1ra is a member of the IL-1 family by three criteria: amino acid sequence homology of 26 to 30% to IL-1 beta and 19% to IL-1 alpha; similarities in gene structure; and common gene localization to human chromosome 2q14. Two structural variants of IL-1ra exist: sIL-1ra, a secretory molecule produced by monocytes, macrophages, neutrophils, fibroblasts, and other cells; and icIL-1ra, an intracellular molecule produced by keratinocytes and other epithelial cells, macrophages, and fibroblasts. IL-1ra production by monocytes, macrophages, and neutrophils may be regulated in a differential fashion with IL-1 beta. Human IL-1ra binds to both human IL-1RIs and IL-1RIIs on cell surfaces, although with 100-fold greater avidity to IL-1RIs. IL-1ra may bind preferentially to soluble IL-1RIs and not at all to soluble IL-1RIIs. IL-1ra competitively inhibits binding of both IL-1 alpha and IL-1 beta to cell surface receptors without inducing any discernible intracellular responses. All three forms of IL-1 may bind to IL-1 receptors in a similar fashion but IL-1ra may lack the secondary interactions necessary to trigger cell responses. A 100-fold or greater excess of IL-1ra over IL-1 may be necessary to inhibit biological responses to IL-1 both in vitro and in vivo. The roles of sIL-1ra and icIL-1ra in normal physiology or in host defense mechanisms remain unclear. The administration of IL-1ra blocks the effects of IL-1 in some animal models of septic shock, inflammatory arthritis, graft-versus-host disease, and inflammatory bowel disease. The preliminary results of clinical trials in humans indicate possible efficacy of IL-1ra in sepsis syndrome, rheumatoid arthritis, and GVHD.
Collapse
Affiliation(s)
- W P Arend
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262
| |
Collapse
|