1
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 PMCID: PMC12011104 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
2
|
Thapak P, Gomez-Pinilla F. The bioenergetics of traumatic brain injury and its long-term impact for brain plasticity and function. Pharmacol Res 2024; 208:107389. [PMID: 39243913 DOI: 10.1016/j.phrs.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
O’Day DH. Calcium and Non-Penetrating Traumatic Brain Injury: A Proposal for the Implementation of an Early Therapeutic Treatment for Initial Head Insults. Biomolecules 2024; 14:853. [PMID: 39062567 PMCID: PMC11274459 DOI: 10.3390/biom14070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Finding an effective treatment for traumatic brain injury is challenging for multiple reasons. There are innumerable different causes and resulting levels of damage for both penetrating and non-penetrating traumatic brain injury each of which shows diverse pathophysiological progressions. More concerning is that disease progression can take decades before neurological symptoms become obvious. Currently, the primary treatment for non-penetrating mild traumatic brain injury, also called concussion, is bed rest despite the fact the majority of emergency room visits for traumatic brain injury are due to this mild form. Furthermore, one-third of mild traumatic brain injury cases progress to long-term serious symptoms. This argues for the earliest therapeutic intervention for all mild traumatic brain injury cases which is the focus of this review. Calcium levels are greatly increased in damaged brain regions as a result of the initial impact due to tissue damage as well as disrupted ion channels. The dysregulated calcium level feedback is a diversity of ways to further augment calcium neurotoxicity. This suggests that targeting calcium levels and function would be a strong therapeutic approach. An effective calcium-based traumatic brain injury therapy could best be developed through therapeutic programs organized in professional team sports where mild traumatic brain injury events are common, large numbers of subjects are involved and professional personnel are available to oversee treatment and documentation. This review concludes with a proposal with that focus.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
4
|
Kingsford O, Yehya M, Zieman G, Knievel KL. Can Long-Term Outcomes of Posttraumatic Headache be Predicted? Curr Pain Headache Rep 2024; 28:535-545. [PMID: 38713368 DOI: 10.1007/s11916-024-01254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE OF REVIEW Headache is one of the most common symptoms of traumatic brain injury, and it is more common in patients with mild, rather than moderate or severe, traumatic brain injury. Posttraumatic headache can be the most persistent symptom of traumatic brain injury. In this article, we review the current understanding of posttraumatic headache, summarize the current knowledge of its pathophysiology and treatment, and review the research regarding predictors of long-term outcomes. RECENT FINDINGS To date, posttraumatic headache has been treated based on the semiology of the primary headache disorder that it most resembles, but the pathophysiology is likely to be different, and the long-term prognosis differs as well. No models exist to predict long-term outcomes, and few studies have highlighted risk factors for the development of acute and persistent posttraumatic headaches. Further research is needed to elucidate the pathophysiology and identify specific treatments for posttraumatic headache to be able to predict long-term outcomes. In addition, the effect of managing comorbid traumatic brain injury symptoms on posttraumatic headache management should be further studied. Posttraumatic headache can be a persistent symptom of traumatic brain injury, especially mild traumatic brain injury. It has traditionally been treated based on the semiology of the primary headache disorder it most closely resembles, but further research is needed to elucidate the pathophysiology of posttraumatic headache and determine risk factors to better predict long-term outcomes.
Collapse
Affiliation(s)
- Olivia Kingsford
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA
| | - Mustafa Yehya
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA
| | - Glynnis Zieman
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA
| | - Kerry L Knievel
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
5
|
Krieg JL, Leonard AV, Turner RJ, Corrigan F. Identifying the Phenotypes of Diffuse Axonal Injury Following Traumatic Brain Injury. Brain Sci 2023; 13:1607. [PMID: 38002566 PMCID: PMC10670443 DOI: 10.3390/brainsci13111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Diffuse axonal injury (DAI) is a significant feature of traumatic brain injury (TBI) across all injury severities and is driven by the primary mechanical insult and secondary biochemical injury phases. Axons comprise an outer cell membrane, the axolemma which is anchored to the cytoskeletal network with spectrin tetramers and actin rings. Neurofilaments act as space-filling structural polymers that surround the central core of microtubules, which facilitate axonal transport. TBI has differential effects on these cytoskeletal components, with axons in the same white matter tract showing a range of different cytoskeletal and axolemma alterations with different patterns of temporal evolution. These require different antibodies for detection in post-mortem tissue. Here, a comprehensive discussion of the evolution of axonal injury within different cytoskeletal elements is provided, alongside the most appropriate methods of detection and their temporal profiles. Accumulation of amyloid precursor protein (APP) as a result of disruption of axonal transport due to microtubule failure remains the most sensitive marker of axonal injury, both acutely and chronically. However, a subset of injured axons demonstrate different pathology, which cannot be detected via APP immunoreactivity, including degradation of spectrin and alterations in neurofilaments. Furthermore, recent work has highlighted the node of Ranvier and the axon initial segment as particularly vulnerable sites to axonal injury, with loss of sodium channels persisting beyond the acute phase post-injury in axons without APP pathology. Given the heterogenous response of axons to TBI, further characterization is required in the chronic phase to understand how axonal injury evolves temporally, which may help inform pharmacological interventions.
Collapse
Affiliation(s)
| | | | | | - Frances Corrigan
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (J.L.K.)
| |
Collapse
|
6
|
Badarni K, Harush N, Andrawus E, Bahouth H, Bar-Lavie Y, Raz A, Roimi M, Epstein D. Association Between Admission Ionized Calcium Level and Neurological Outcome of Patients with Isolated Severe Traumatic Brain Injury: A Retrospective Cohort Study. Neurocrit Care 2023; 39:386-398. [PMID: 36854866 DOI: 10.1007/s12028-023-01687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Pathophysiological processes following initial insult are complex and not fully understood. Ionized calcium (Ca++) is an essential cofactor in the coagulation cascade and platelet aggregation, and hypocalcemia may contribute to the progression of intracranial bleeding. On the other hand, Ca++ is an important mediator of cell damage after TBI and cellular hypocalcemia may have a neuroprotective effect after brain injury. We hypothesized that early hypocalcemia might have an adverse effect on the neurological outcome of patients suffering from isolated severe TBI. In this study, we aimed to evaluate the relationship between admission Ca++ level and the neurological outcome of these patients. METHODS This was a retrospective, single-center, cohort study of all patients admitted between January 2014 and December 2020 due to isolated severe TBI, which was defined as head abbreviated injury score ≥ 4 and an absence of severe (abbreviated injury score > 2) extracranial injuries. The primary outcome was a favorable neurological status at discharge, defined by a modified Rankin Scale of 0-2. Multivariable logistic regression was performed to determine whether admission hypocalcemia (Ca++ < 1.16 mmol L-1) is an independent predictor of neurological status at discharge. RESULTS The final analysis included 201 patients. Hypocalcemia was common among patients with isolated severe TBI (73.1%). Most of the patients had mild hypocalcemia (1 < Ca++ < 1.16 mmol L-1), and only 13 (6.5%) patients had Ca++ ≤ 1.00 mmol L-1. In the entire cohort, hypocalcemia was independently associated with higher rates of good neurological status at discharge (adjusted odds ratio of 3.03, 95% confidence interval 1.11-8.33, p = 0.03). In the subgroup of 81 patients with an admission Glasgow Coma Scale > 8, 52 (64.2%) had hypocalcemia. Good neurological status at discharge was recorded in 28 (53.8%) of hypocalcemic patients compared with 14 (17.2%) of those with normal Ca++ (p = 0.002). In multivariate analyses, hypocalcemia was independently associated with good neurological status at discharge (adjusted odds ratio of 6.67, 95% confidence interval 1.39-33.33, p = 0.02). CONCLUSIONS Our study demonstrates that among patients with isolated severe TBI, mild admission hypocalcemia is associated with better neurological status at hospital discharge. The prognostic value of Ca++ may be greater among patients with admission Glasgow Coma Scale > 8. Trials are needed to investigate the role of hypocalcemia in brain injury.
Collapse
Affiliation(s)
- Karawan Badarni
- Critical Care Division, Rambam Health Care Campus, Haifa, Israel.
| | - Noi Harush
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Elias Andrawus
- Critical Care Division, Rambam Health Care Campus, Haifa, Israel
| | - Hany Bahouth
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Trauma and Emergency Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Yaron Bar-Lavie
- Critical Care Division, Rambam Health Care Campus, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Aeyal Raz
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Anesthesiology, Rambam Health Care Campus, Haifa, Israel
| | - Michael Roimi
- Critical Care Division, Rambam Health Care Campus, Haifa, Israel
| | - Danny Epstein
- Critical Care Division, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
7
|
Flavin WP, Hosseini H, Ruberti JW, Kavehpour HP, Giza CC, Prins ML. Traumatic brain injury and the pathways to cerebral tau accumulation. Front Neurol 2023; 14:1239653. [PMID: 37638180 PMCID: PMC10450935 DOI: 10.3389/fneur.2023.1239653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Tau is a protein that has received national mainstream recognition for its potential negative impact to the brain. This review succinctly provides information on the structure of tau and its normal physiological functions, including in hibernation and changes throughout the estrus cycle. There are many pathways involved in phosphorylating tau including diabetes, stroke, Alzheimer's disease (AD), brain injury, aging, and drug use. The common mechanisms for these processes are put into context with changes observed in mild and repetitive mild traumatic brain injury (TBI). The phosphorylation of tau is a part of the progression to pathology, but the ability for tau to aggregate and propagate is also addressed. Summarizing both the functional and dysfunctional roles of tau can help advance our understanding of this complex protein, improve our care for individuals with a history of TBI, and lead to development of therapeutic interventions to prevent or reverse tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- William P. Flavin
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Helia Hosseini
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
| | - Jeffrey W. Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - H. Pirouz Kavehpour
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA, United States
| | - Christopher C. Giza
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Mayumi L. Prins
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
8
|
Aychman MM, Goldman DL, Kaplan JS. Cannabidiol's neuroprotective properties and potential treatment of traumatic brain injuries. Front Neurol 2023; 14:1087011. [PMID: 36816569 PMCID: PMC9932048 DOI: 10.3389/fneur.2023.1087011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Cannabidiol (CBD) has numerous pharmacological targets that initiate anti-inflammatory, antioxidative, and antiepileptic properties. These neuroprotective benefits have generated interest in CBD's therapeutic potential against the secondary injury cascade from traumatic brain injury (TBI). There are currently no effective broad treatment strategies for combating the damaging mechanisms that follow the primary injury and lead to lasting neurological consequences or death. However, CBD's effects on different neurotransmitter systems, the blood brain barrier, oxidative stress mechanisms, and the inflammatory response provides mechanistic support for CBD's clinical utility in TBI. This review describes the cascades of damage caused by TBI and CBD's neuroprotective mechanisms to counter them. We also present challenges in the clinical treatment of TBI and discuss important future clinical research directions for integrating CBD in treatment protocols. The mechanistic evidence provided by pre-clinical research shows great potential for CBD as a much-needed improvement in the clinical treatment of TBI. Upcoming clinical trials sponsored by major professional sport leagues are the first attempts to test the efficacy of CBD in head injury treatment protocols and highlight the need for further clinical research.
Collapse
|
9
|
Shireen T, Sachs F, Hua SZ. Physical memory of astrocytes. Brain Res 2022; 1796:148076. [PMID: 36084692 DOI: 10.1016/j.brainres.2022.148076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/02/2022]
Abstract
Traumatic brain injury (TBI) is a major risk factor for development of neurodegenerative disorders later in life. Short, repetitive, mechanical impacts can lead to pathology that appears days or months later. The cells have a physical "memory" of mechanical events. The origin of this memory is not known. To examine the properties of this memory, we used a microfluidic chip to apply programmed fluid shear pulses to adherent adult rat astrocytes. These caused a transient rise in intracellular Ca2+. In response to repeated stimuli, 6 to 24 hrs apart, the Ca2+ response increased. This effect lasted longer than 24 hrs. The Ca2+ responses were more sensitive to the number of repetitions than to the rest time between stimuli. We found that inhibiting the Ca2+ influx during conditioning stimulus did not eliminate the stress potentiation, suggesting that mechanical deformation during the primary injury is accountable for the later response. The mechanical mechanism that triggers this long term "memory" may act by plastic deformation of the cytoskeleton.
Collapse
Affiliation(s)
- Tasnim Shireen
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY 14260, USA
| | - Susan Z Hua
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA; Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
10
|
Abstract
This work is aimed to give an electrochemical insight into the ionic transport phenomena in the cellular environment of organized brain tissue. The Nernst–Planck–Poisson (NPP) model is presented, and its applications in the description of electrodiffusion phenomena relevant in nanoscale neurophysiology are reviewed. These phenomena include: the signal propagation in neurons, the liquid junction potential in extracellular space, electrochemical transport in ion channels, the electrical potential distortions invisible to patch-clamp technique, and calcium transport through mitochondrial membrane. The limitations, as well as the extensions of the NPP model that allow us to overcome these limitations, are also discussed.
Collapse
|
11
|
Walrand S, Gaulmin R, Aubin R, Sapin V, Coste A, Abbot M. Nutritional factors in sport-related concussion. Neurochirurgie 2021; 67:255-258. [PMID: 33582206 DOI: 10.1016/j.neuchi.2021.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/06/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Sports concussion is a major problem that affects thousands of people every year. Concussion-related neurometabolic changes are thought to underlie neurophysiological alterations and post-concussion symptoms, such as headaches and sensitivity to light and noise, disabilities of concentration and tiredness. The injury triggers a complex neurometabolic cascade involving multiple mechanisms. There are pharmaceutical treatments that target one mechanism, but specific nutrients have been found to impact several pathways, thus offering a broader approach. This has prompted intensive research into the use of nutrient supplements as a concussion prevention and treatment strategy. METHOD We realised a bibliographic state of art providing a contemporary clinical and preclinical studies dealing with nutritional factors in sport-related concussion. RESULTS Numerous supplements, including n-3 polyunsaturated fatty acids, sulfur amino acids, antioxidants and minerals, have shown promising results as aids to concussion recovery or prevention in animal studies, most of which use a fluid percussion technique to cause brain injury, and in a few human studies of severe or moderate traumatic brain injury. Current ongoing human trials can hopefully provide us with more information, in particular, on new options, i.e. probiotics, lactate or amino acids, for the use of nutritional supplements for concussed athletes. CONCLUSION Nutritional supplementation has emerged as a potential strategy to prevent and/or reduce the deleterious effects of sports-related concussion and subconcussive impacts.
Collapse
Affiliation(s)
- S Walrand
- Service de Nutrition Clinique, CHU Clermont-Ferrand, Université Clermont-Auvergne, 63000 Clermont-Ferrand, France.
| | - R Gaulmin
- Service médical, ASM Clermont-Auvergne Rugby, 63028 Clermont-Ferrand cedex 2, France
| | - R Aubin
- Service médical, ASM Clermont-Auvergne Rugby, 63028 Clermont-Ferrand cedex 2, France
| | - V Sapin
- Service de Biochimie & Génétique Moléculaire, CHU Clermont-Ferrand, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - A Coste
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - M Abbot
- Service médical, ASM Clermont-Auvergne Rugby, 63028 Clermont-Ferrand cedex 2, France; Service de Médecine du Sport, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Abstract
After a concussion, a series of complex, overlapping, and disruptive events occur within the brain, leading to symptoms and behavioral dysfunction. These events include ionic shifts, damaged neuronal architecture, higher concentrations of inflammatory chemicals, increased excitatory neurotransmitter release, and cerebral blood flow disruptions, leading to a neuronal crisis. This review summarizes the translational aspects of the pathophysiologic cascade of postconcussion events, focusing on the role of excitatory neurotransmitters and ionic fluxes, and their role in neuronal disruption. We review the relationship between physiologic disruption and behavioral alterations, and proposed treatments aimed to restore the balance of disrupted processes.
Collapse
Affiliation(s)
- David R Howell
- Sports Medicine Center, Children's Hospital Colorado, 13123 East 16th Avenue, B060, Aurora, CO 80045, USA; Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Julia Southard
- Sports Medicine Center, Children's Hospital Colorado, 13123 East 16th Avenue, B060, Aurora, CO 80045, USA; Department of Psychology and Neuroscience, Regis University, 3333 Regis Boulevard, Denver, CO 80221, USA
| |
Collapse
|
13
|
Precipitation of Inorganic Salts in Mitochondrial Matrix. MEMBRANES 2020; 10:membranes10050081. [PMID: 32349446 PMCID: PMC7281443 DOI: 10.3390/membranes10050081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022]
Abstract
In the mitochondrial matrix, there are insoluble, osmotically inactive complexes that maintain a constant pH and calcium concentration. In the present paper, we examine the properties of insoluble calcium and magnesium salts, such as phosphates, carbonates and polyphosphates, which might play this role. We find that non-stoichiometric, magnesium-rich carbonated apatite, with very low crystallinity, precipitates in the matrix under physiological conditions. Precipitated salt acts as pH buffer, and, hence, can contribute in maintaining ATP production in ischemic conditions, which delays irreversible damage to heart and brain cells after stroke.
Collapse
|
14
|
Yang A, Liu B. May sevoflurane prevent the development of neurogenic pulmonary edema and improve the outcome? Or as a new sedation method for severe brain injury patients. Med Hypotheses 2020; 137:109538. [PMID: 31911369 DOI: 10.1016/j.mehy.2019.109538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/05/2023]
Abstract
Neurogenic pulmonary edema (NPE) is a life-threatening complication that develops rapidly and dramatically after injury to the central nervous system (CNS). Severe primary brain injury and subsequent secondary brain injury cascade events are thought to be involved in the development of NPE. Activation of the sympathetic nervous system and release of vasoactive substances are also essential prerequisites for NPE. We hypothesize that sevoflurane may be an effective treatment for preventing the development of NPE. Sevoflurane may play a role in protecting brain and lung tissue after acute brain injury through its sympatholytic, antioxidative, ion channel stabilizing, anti-inflammatory, anti-apoptotic, and pulmonary protection effects. It has the potential to be used as a sedative in the neurosurgical intensive care unit (NICU), which can help maintain nervous system and cardiopulmonary function in patients with acute brain injury to improve prognosis. Sevoflurane also has the advantages of fast induction of anesthesia, rapid drug metabolism, little interference to the cardiovascular system, and controllable depth of anesthesia. If our hypothesis is supported by further experiments, use of sevoflurane may open a new door for the treatment of acute brain injury and NPE.
Collapse
Affiliation(s)
- Aobing Yang
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Bin Liu
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China.
| |
Collapse
|
15
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
16
|
Xu S, Sun Q, Fan J, Jiang Y, Yang W, Cui Y, Yu Z, Jiang H, Li B. Role of Astrocytes in Post-traumatic Epilepsy. Front Neurol 2019; 10:1149. [PMID: 31798512 PMCID: PMC6863807 DOI: 10.3389/fneur.2019.01149] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury, a common cause of acquired epilepsy, is typical to find necrotic cell death within the injury core. The dynamic changes in astrocytes surrounding the injury core contribute to epileptic seizures associated with intense neuronal firing. However, little is known about the molecular mechanisms that activate astrocytes during traumatic brain injury or the effect of functional changes of astrocytes on seizures. In this comprehensive review, we present our cumulated understanding of the complex neurological affection in astrocytes after traumatic brain injury. We approached the problem through describing the changes of cell morphology, neurotransmitters, biochemistry, and cytokines in astrocytes during post-traumatic epilepsy. In addition, we also discussed the relationship between dynamic changes in astrocytes and seizures and the current pharmacologic agents used for treatment. Hopefully, this review will provide a more detailed knowledge from which better therapeutic strategies can be developed to treat post-traumatic epilepsy.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Qihan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yuanyuan Jiang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yifeng Cui
- Department of Pediatrics, Yanbian Maternal and Child Health Hospital, Yanji, China
| | - Zhenxiang Yu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Huiyi Jiang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Emery Joseph Crownover J, Holland AM. Therapeutic ketosis for mild traumatic brain injury. TRANSLATIONAL SPORTS MEDICINE 2019. [DOI: 10.1002/tsm2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Angelia Maleah Holland
- Nutrition, Exercise, and Stress Laboratory, Department of Kinesiology Augusta University Augusta Georgia
| |
Collapse
|
18
|
Feldmann LK, Le Prieult F, Felzen V, Thal SC, Engelhard K, Behl C, Mittmann T. Proteasome and Autophagy-Mediated Impairment of Late Long-Term Potentiation (l-LTP) after Traumatic Brain Injury in the Somatosensory Cortex of Mice. Int J Mol Sci 2019; 20:ijms20123048. [PMID: 31234472 PMCID: PMC6627835 DOI: 10.3390/ijms20123048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) can lead to impaired cognition and memory consolidation. The acute phase (24–48 h) after TBI is often characterized by neural dysfunction in the vicinity of the lesion, but also in remote areas like the contralateral hemisphere. Protein homeostasis is crucial for synaptic long-term plasticity including the protein degradation systems, proteasome and autophagy. Still, little is known about the acute effects of TBI on synaptic long-term plasticity and protein degradation. Thus, we investigated TBI in a controlled cortical impact (CCI) model in the motor and somatosensory cortex of mice ex vivo-in vitro. Late long-term potentiation (l-LTP) was induced by theta-burst stimulation in acute brain slices after survival times of 1–2 days. Protein levels for the plasticity related protein calcium/calmodulin-dependent protein kinase II (CaMKII) was quantified by Western blots, and the protein degradation activity by enzymatical assays. We observed missing maintenance of l-LTP in the ipsilateral hemisphere, however not in the contralateral hemisphere after TBI. Protein levels of CaMKII were not changed but, interestingly, the protein degradation revealed bidirectional changes with a reduced proteasome activity and an increased autophagic flux in the ipsilateral hemisphere. Finally, LTP recordings in the presence of pharmacologically modified protein degradation systems also led to an impaired synaptic plasticity: bath-applied MG132, a proteasome inhibitor, or rapamycin, an activator of autophagy, both administered during theta burst stimulation, blocked the induction of LTP. These data indicate that alterations in protein degradation pathways likely contribute to cognitive deficits in the acute phase after TBI, which could be interesting for future approaches towards neuroprotective treatments early after traumatic brain injury.
Collapse
Affiliation(s)
- Lucia K Feldmann
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Florie Le Prieult
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Vanessa Felzen
- Institute for Pathobiochemistry, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Serge C Thal
- Clinics for Anaesthesiology, UMC of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Kristin Engelhard
- Clinics for Anaesthesiology, UMC of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Christian Behl
- Institute for Pathobiochemistry, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Thomas Mittmann
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
19
|
La Fountaine MF. An anatomical and physiological basis for the cardiovascular autonomic nervous system consequences of sport-related brain injury. Int J Psychophysiol 2018; 132:155-166. [DOI: 10.1016/j.ijpsycho.2017.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 11/14/2017] [Accepted: 11/23/2017] [Indexed: 01/11/2023]
|
20
|
Honda M, Ichibayashi R, Suzuki G, Yokomuro H, Seiki Y, Sase S, Kishi T. Consideration of the Intracranial Pressure Threshold Value for the Initiation of Traumatic Brain Injury Treatment: A Xenon CT and Perfusion CT Study. Neurocrit Care 2018; 27:308-315. [PMID: 28762185 DOI: 10.1007/s12028-017-0432-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Monitoring of intracranial pressure (ICP) is considered to be fundamental for the care of patients with severe traumatic brain injury (TBI) and is routinely used to direct medical and surgical therapy. Accordingly, some guidelines for the management of severe TBI recommend that treatment be initiated for ICP values >20 mmHg. However, it remained to be accounted whether there is a scientific basis to this instruction. The purpose of the present study was to clarify whether the basis of ICP values >20 mmHg is appropriate. SUBJECT AND METHODS We retrospectively reviewed 25 patients with severe TBI who underwent neuroimaging during ICP monitoring within the first 7 days. We measured cerebral blood flow (CBF), mean transit time (MTT), cerebral blood volume (CBV), and ICP 71 times within the first 7 days. RESULTS Although the CBF, MTT, and CBV values were not correlated with the ICP value at ICP values ≤20 mmHg, the CBF value was significantly negatively correlated with the ICP value (r = -0.381, P < 0.05) at ICP values >20 mmHg. The MTT value was also significantly positively correlated with the ICP value (r = 0.638, P < 0.05) at ICP values >20 mmHg. CONCLUSION The cerebral circulation disturbance increased with the ICP value. We demonstrated the cerebral circulation disturbance at ICP values >20 mmHg. This study suggests that an ICP >20 mmHg is the threshold to initiate treatments. An active treatment intervention would be required for severe TBI when the ICP was >20 mmHg.
Collapse
Affiliation(s)
- Mitsuru Honda
- Department of Critical Care Center, Toho University Medical Center Omori Hospital, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan.
| | - Ryo Ichibayashi
- Department of Critical Care Center, Toho University Medical Center Omori Hospital, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Ginga Suzuki
- Department of Critical Care Center, Toho University Medical Center Omori Hospital, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Hiroki Yokomuro
- Department of Critical Care Center, Toho University Medical Center Omori Hospital, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Yoshikatsu Seiki
- Department of Neurosurgery, Toho University Medical Center Omori Hospital, Tokyo, Japan
| | - Shigeru Sase
- Department of Neurosurgery, Toho University Medical Center Omori Hospital, Tokyo, Japan
| | - Taichi Kishi
- Department of Education Planning and Development, Faculty of Medicine, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
21
|
DeDominicis KE, Hwang H, Cartagena CM, Shear DA, Boutté AM. Cerebrospinal Fluid Biomarkers Are Associated With Glial Fibrillary Acidic Protein and αII-spectrin Breakdown Products in Brain Tissues Following Penetrating Ballistic-Like Brain Injury in Rats. Front Neurol 2018; 9:490. [PMID: 30022967 PMCID: PMC6039567 DOI: 10.3389/fneur.2018.00490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/05/2018] [Indexed: 11/21/2022] Open
Abstract
Treatments to improve outcomes following severe traumatic brain injury (TBI) are limited but may benefit from understanding subacute-chronic brain protein profiles and identifying biomarkers suitable for use in this time. Acute alterations in the well-known TBI biomarkers glial fibrillary acidic protein (GFAP), αII-spectrin, and their breakdown products (BDPs) have been well established, but little is known about the subacute-chronic post-injury profiles of these biomarkers. Thus, the current study was designed to determine the extended profile of these TBI-specific biomarkers both in brain tissue and cerebral spinal fluid (CSF). Protein abundance was evaluated in brain tissue samples taken from regions of interest and in CSF at 24 h, 3 days, 7 days, 1 month, and 3 months following severe TBI in rats. Results showed increased full length GFAP (GFAP-FL) and GFAP-BDPs starting at 24 h that remained significantly elevated in most brain regions out to 3 months post-injury. However, in CSF, neither GFAP-FL nor GFAP-BDPs were elevated as a consequence of injury. Regional-specific reduction in αII-spectrin was evident in brain tissue samples from 24 h through 3 months. In contrast, SBDP-145/150 was robustly elevated in most brain regions and in CSF from 24 h through 7 days. Correlation analyses revealed numerous significant relationships between proteins in CSF and brain tissue or neurological deficits. This work indicates that TBI results in chronic changes in brain protein levels of well-known TBI biomarkers GFAP, αII-spectrin, and their BDPs and that SBDP-145/150 may have utility as an acute-chronic biomarker.
Collapse
Affiliation(s)
- Kristen E DeDominicis
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Hye Hwang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Casandra M Cartagena
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah A Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Angela M Boutté
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
22
|
Giza C, Greco T, Prins ML. Concussion: pathophysiology and clinical translation. HANDBOOK OF CLINICAL NEUROLOGY 2018; 158:51-61. [PMID: 30482375 DOI: 10.1016/b978-0-444-63954-7.00006-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The majority of the 3.8 million estimated annual traumatic brain injuries (TBI) in the United States are mild TBIs, or concussions, and they occur primarily in adolescents and young adults. A concussion is a brain injury associated with rapid brain movement and characteristic clinical symptoms, with no associated objective biomarkers or overt pathologic brain changes, thereby making it difficult to diagnose by neuroimaging or other objective diagnostic tests. Most concussion symptoms are transient and resolve within 1-2 weeks. Concussions share similar acute pathophysiologic perturbations to more severe TBI: there is a rapid release of neurotransmitters, which causes ionic disequilibrium across neuronal membranes. Re-establishing ionic homeostasis consumes energy and leads to dynamic changes in cerebral glucose uptake. The magnitude and duration of these changes are related to injury severity, with milder injuries showing faster normalization. Cerebral sex differences add further variation to concussion manifestation. Relative to the male brain, the female brain has higher overall cerebral blood flow, and demonstrates regional differences in glucose metabolism, inflammatory responses, and connectivity. Understanding the pathophysiology and clinical translation of concussion can move research towards management paradigms that will minimize the risk for prolonged recovery and repeat injury.
Collapse
Affiliation(s)
- Christopher Giza
- Department of Neurosurgery, University of California, Los Angeles, CA, United States
| | - Tiffany Greco
- Department of Neurosurgery, University of California, Los Angeles, CA, United States
| | - Mayumi Lynn Prins
- Department of Neurosurgery, University of California, Los Angeles, CA, United States.
| |
Collapse
|
23
|
Dollé JP, Jaye A, Anderson SA, Ahmadzadeh H, Shenoy VB, Smith DH. Newfound sex differences in axonal structure underlie differential outcomes from in vitro traumatic axonal injury. Exp Neurol 2017; 300:121-134. [PMID: 29104114 DOI: 10.1016/j.expneurol.2017.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 12/29/2022]
Abstract
Since traumatic axonal injury (TAI) is implicated as a prominent pathology of concussion, we examined potential sex differences in axon structure and responses to TAI. Rat and human neurons were used to develop micropatterned axon tracts in vitro that were genetically either male or female. Ultrastructural analysis revealed for the first time that female axons were consistently smaller with fewer microtubules than male axons. Computational modeling of TAI showed that these structural differences place microtubules in female axons at greater risk of failure during trauma under the same applied loads than in male axons. Likewise, in an in vitro model of TAI, dynamic stretch-injury to axon tracts induced greater pathophysiology of female axons than male axons, including more extensive undulation formations resulting from mechanical breaking of microtubules, and greater calcium influx shortly after the same level of injury. At 24h post-injury, female axons exhibited significantly more swellings and greater loss of calcium signaling function than male axons. Accordingly, sexual dimorphism of axon structure in the brain may also contribute to more extensive axonal pathology in females compared to males exposed to the same mechanical injury.
Collapse
Affiliation(s)
- Jean-Pierre Dollé
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, 220 South 33rd Street, 283 Towne Building, Philadelphia, PA 19104, USA.
| | - Andrew Jaye
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, 220 South 33rd Street, 283 Towne Building, Philadelphia, PA 19104, USA.
| | - Stewart A Anderson
- Department of Psychiatry, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Hossein Ahmadzadeh
- Department of Materials Science and Engineering, 3231 Walnut Street, Room 309, The Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, 3231 Walnut Street, Room 309, The Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, 3320 Smith Walk Hayden Hall 105, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Kim S, Han SC, Gallan AJ, Hayes JP. Neurometabolic indicators of mitochondrial dysfunction in repetitive mild traumatic brain injury. Concussion 2017; 2:CNC48. [PMID: 30202587 PMCID: PMC6128012 DOI: 10.2217/cnc-2017-0013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is a significant national health concern and there is growing evidence that repetitive mTBI (rmTBI) can cause long-term change in brain structure and function. The mitochondrion has been suggested to be involved in the mechanism of TBI. There are noninvasive methods of determining mitochondrial dysfunction through biomarkers and spectroscopy. Mitochondrial dysfunction has been implicated in a variety of neurological consequences secondary to rmTBI through activation of caspases and calpains. The purpose of this review is to examine the mechanism of mitochondrial dysfunction in rmTBI and its downstream effects on neuronal cell death, axonal injury and blood–brain barrier compromise.
Collapse
Affiliation(s)
- Susan Kim
- Boston University School of Medicine, Boston, MA 02118, USA.,Boston University School of Medicine, Boston, MA 02118, USA
| | - Steve C Han
- Boston University School of Medicine, Boston, MA 02118, USA.,Boston University School of Medicine, Boston, MA 02118, USA
| | - Alexander J Gallan
- Department of Pathology, University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jasmeet P Hayes
- National Center for PTSD, VA Boston Healthcare System, Jamaica Plain, MA 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA.,National Center for PTSD, VA Boston Healthcare System, Jamaica Plain, MA 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
25
|
The Effects of Blast Exposure on Protein Deimination in the Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28626499 PMCID: PMC5463117 DOI: 10.1155/2017/8398072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oxidative stress and calcium excitotoxicity are hallmarks of traumatic brain injury (TBI). While these early disruptions may be corrected over a relatively short period of time, long-lasting consequences of TBI including impaired cognition and mood imbalances can persist for years, even in the absence of any evidence of overt injury based on neuroimaging. This investigation examined the possibility that disordered protein deimination occurs as a result of TBI and may thus contribute to the long-term pathologies of TBI. Protein deimination is a calcium-activated, posttranslational modification implicated in the autoimmune diseases rheumatoid arthritis and multiple sclerosis, where aberrant deimination creates antigenic epitopes that elicit an autoimmune attack. The present study utilized proteomic analyses to show that blast TBI alters the deimination status of proteins in the porcine cerebral cortex. The affected proteins represent a small subset of the entire brain proteome and include glial fibrillary acidic protein and vimentin, proteins reported to be involved in autoimmune-based pathologies. The data also indicate that blast injury is associated with an increase in immunoglobulins in the brain, possibly representing autoantibodies directed against novel protein epitopes. These findings indicate that aberrant protein deimination is a biomarker for blast TBI and may therefore underlie chronic neuropathologies of head injury.
Collapse
|
26
|
Sahyouni R, Gutierrez P, Gold E, Robertson RT, Cummings BJ. Effects of concussion on the blood-brain barrier in humans and rodents. JOURNAL OF CONCUSSION 2017; 1. [PMID: 30828466 PMCID: PMC6391889 DOI: 10.1177/2059700216684518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury and the long-term consequences of repeated concussions constitute mounting concerns in the United States, with 5.3 million individuals living with a traumatic brain injury-related disability. Attempts to understand mechanisms and possible therapeutic approaches to alleviate the consequences of repeat mild concussions or traumatic brain injury on cerebral vasculature depend on several aspects of the trauma, including: (1) the physical characteristics of trauma or insult that result in damage; (2) the time “window” after trauma in which neuropathological features develop; (3) methods to detect possible breakdown of the blood–brain barrier; and (4) understanding different consequences of a single concussion as compared with multiple concussions. We review the literature to summarize the current understanding of blood–brain barrier and endothelial cell changes post-neurotrauma in concussions and mild traumatic brain injury. Attention is focused on concussion and traumatic brain injury in humans, with a goal of pointing out the gaps in our knowledge and how studies of rodent model systems of concussion may help in filling these gaps. Specifically, we focus on disruptions that concussion causes to the blood–brain barrier and its multifaceted consequences. Importantly, the magnitude of post-concussion blood–brain barrier dysfunction may influence the time course and extent of neuronal recovery; hence, we include in this review comparisons of more severe traumatic brain injury to concussion where appropriate. Finally, we address the important, and still unresolved, issue of how best to detect possible breakdown in the blood–brain barrier following neurotrauma by exploring intravascular tracer injection in animal models to examine leakage into the brain parenchyma.
Collapse
Affiliation(s)
- Ronald Sahyouni
- School of Medicine, University of California, Irvine, CA, USA
| | - Paula Gutierrez
- School of Medicine, University of California, Irvine, CA, USA
| | - Eric Gold
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Richard T Robertson
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Brian J Cummings
- School of Medicine, University of California, Irvine, CA, USA.,Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Division of Physical Medicine and Rehabilitation/Neurological Surgery, University of California, Irvine, CA, USA
| |
Collapse
|
27
|
Mcintosh TK, Saatman KE, Raghupathi R. REVIEW ■ : Calcium and the Pathogenesis of Traumatic CNS Injury: Cellular and Molecular Mechanisms. Neuroscientist 2016. [DOI: 10.1177/107385849700300310] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Under normal conditions in the central nervous system (CNS), the calcium ion (Ca2+) is known to mediate a variety of neuronal functions, including synaptic neurotransmitter release, neuronal plasticity, protein phos phorylation, and gene expression. Whereas intracellular calcium concentrations ([Ca2+]i) are precisely reg ulated through intracellular buffering, binding, and sequestration, alterations in calcium ion homeostasis and influx of Ca 2+ have been implicated in the pathogenesis of neuronal death and degeneration, as well as cerebral vasospasm associated with multiple types of CNS injury. This review revisits the "calcium hypoth esis" of neuronal death associated with traumatic injury to the CNS and examines both the direct and indirect molecular and cellular evidence for calcium-mediated neuropathology, as well as the potential for novel therapeutic strategies targeted at the downstream intracellular effects of calcium signaling and calcium- activated neutral protease (calpain) activation. NEUROSCIENTIST 3:169-175, 1997
Collapse
Affiliation(s)
- Tracy K. Mcintosh
- Head Injury Center Department of Neurosurgery University
of Pennsylvania Philadelphia, Pennsylvania
| | - Kathryn E. Saatman
- Head Injury Center Department of Neurosurgery University
of Pennsylvania Philadelphia, Pennsylvania
| | - Ramesh Raghupathi
- Head Injury Center Department of Neurosurgery University
of Pennsylvania Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Honda M, Ichibayashi R, Yokomuro H, Yoshihara K, Masuda H, Haga D, Seiki Y, Kudoh C, Kishi T. Early Cerebral Circulation Disturbance in Patients Suffering from Severe Traumatic Brain Injury (TBI): A Xenon CT and Perfusion CT Study. Neurol Med Chir (Tokyo) 2016; 56:501-9. [PMID: 27356957 PMCID: PMC4987450 DOI: 10.2176/nmc.oa.2015-0341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Traumatic brain injury (TBI) is widely known to cause dynamic changes in cerebral blood flow (CBF). Ischemia is a common and deleterious secondary injury following TBI. Detecting early ischemia in TBI patients is important to prevent further advancement and deterioration of the brain tissue. The purpose of this study was to clarify the cerebral circulatory disturbance during the early phase and whether it can be used to predict patient outcome. A total of 90 patients with TBI underwent a xenon-computed tomography (Xe-CT) and subsequently perfusion CT to evaluate the cerebral circulation on days 1–3. We measured CBF using Xe-CT and mean transit time (MTT: the width between two inflection points [maximum upward slope and maximum downward slope from inflow to outflow of the contrast agent]) using perfusion CT and calculated the cerebral blood volume (CBV) using the AZ-7000W98 computer system. The relationships of the hemodynamic parameters CBF, MTT, and CBV to the Glasgow Coma Scale (GCS) score and the Glasgow Outcome Scale (GOS) score were examined. There were no significant differences in CBF, MTT, and CBV among GCS3–4, GCS5–6, and GCS7–8 groups. The patients with a favorable outcome (GR and MD) had significantly higher CBF and lower MTT than those with an unfavorable one (SD, VS, or D). The discriminant analysis of these parameters could predict patient outcome with a probability of 70.6%. During the early phase, CBF reduction and MTT prolongation might influence the clinical outcome of TBI. These parameters are helpful for evaluating the severity of cerebral circulatory disturbance and predicting the outcome of TBI patients.
Collapse
Affiliation(s)
- Mitsuru Honda
- Department of Critical Care Center, Toho University Medical Center Omori Hospital
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ziegler D, Cravens G, Poche G, Gandhi R, Tellez M. Use of Transcranial Doppler in Patients with Severe Traumatic Brain Injuries. J Neurotrauma 2016; 34:121-127. [PMID: 26913374 DOI: 10.1089/neu.2015.3967] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Severe traumatic brain injuries (TBI) are associated with a high rate of mortality and disability. Transcranial Doppler (TCD) sonography permits a noninvasive measurement of cerebral blood flow. The purpose of this study is to determine the usefulness of TCD in patients with severe TBI. TCD was performed, from April 2008 to April 2013, on 255 patients with severe TBI, defined as a Glasgow Coma Scale score of ≤8 on admission. TCD was performed on hospital days 1, 2, 3, and 7. Hypoperfusion was defined by having two out of three of the following: 1) mean velocity (Vm) of the middle cerebral artery <35 cm/sec, 2) diastolic velocity (Vd) of the middle cerebral artery <20 cm/sec, or 3) pulsatility index (PI) of >1.4. Vasospasm was defined by the following: Vm of the middle cerebral artery >120 cm/sec and/or a Lindegaard index (LI) >3. One hundred fourteen (45%) had normal measurements. Of these, 92 (80.7%) had a good outcome, 6 (5.3%) had moderate disability, and 16 (14%) died, 4 from brain death. Seventy-two patients (28%) had hypoperfusion and 71 (98.6%) died, 65 from brain death, and 1 patient survived with moderate disability. Sixty-nine patients (27%) had vasospasm, 31 (44.9%) had a good outcome, 16 (23.2%) had severe disability, and 22 (31.9%) died, 13 from brain death. The vasospasm was detected on hospital day 1 in 8 patients, on day 2 in 23 patients, on day 3 in 22 patients, and on day 7 in 16 patients. Patients with normal measurements can be expected to survive. Patients with hypoperfusion have a poor prognosis. Patients with vasospasm have a high incidence of mortality and severe disability. TCD is useful in determining early prognosis.
Collapse
Affiliation(s)
- Daniel Ziegler
- 1 Department of Surgery, John Peter Smith Hospital , Fort Worth, Texas
| | - George Cravens
- 2 Department of Neurosurgery, John Peter Smith Hospital , Fort Worth, Texas
| | - Gerard Poche
- 2 Department of Neurosurgery, John Peter Smith Hospital , Fort Worth, Texas
| | - Raj Gandhi
- 1 Department of Surgery, John Peter Smith Hospital , Fort Worth, Texas
| | - Mark Tellez
- 1 Department of Surgery, John Peter Smith Hospital , Fort Worth, Texas
| |
Collapse
|
30
|
The interplay between neuropathology and activity based rehabilitation after traumatic brain injury. Brain Res 2016; 1640:152-163. [DOI: 10.1016/j.brainres.2016.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 02/07/2023]
|
31
|
Yousuf MA, Tan C, Torres-Altoro MI, Lu FM, Plautz E, Zhang S, Takahashi M, Hernandez A, Kernie SG, Plattner F, Bibb JA. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury. J Neurochem 2016; 138:317-27. [PMID: 26998748 DOI: 10.1111/jnc.13620] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 11/27/2022]
Abstract
Traumatic brain injury (TBI) is associated with adverse effects on brain functions, including sensation, language, emotions and/or cognition. Therapies for improving outcomes following TBI are limited. A better understanding of the pathophysiological mechanisms of TBI may suggest novel treatment strategies to facilitate recovery and improve treatment outcome. Aberrant activation of cyclin-dependent kinase 5 (Cdk5) has been implicated in neuronal injury and neurodegeneration. Cdk5 is a neuronal protein kinase activated via interaction with its cofactor p35 that regulates numerous neuronal functions, including synaptic remodeling and cognition. However, conversion of p35 to p25 via Ca(2+) -dependent activation of calpain results in an aberrantly active Cdk5/p25 complex that is associated with neuronal damage and cell death. Here, we show that mice subjected to controlled cortical impact (CCI), a well-established experimental TBI model, exhibit increased p25 levels and consistently elevated Cdk5-dependent phosphorylation of microtubule-associated protein tau and retinoblastoma (Rb) protein in hippocampal lysates. Moreover, CCI-induced neuroinflammation as indicated by increased astrocytic activation and number of reactive microglia. Brain-wide conditional Cdk5 knockout mice (Cdk5 cKO) subjected to CCI exhibited significantly reduced edema, ventricular dilation, and injury area. Finally, neurophysiological recordings revealed that CCI attenuated excitatory post-synaptic potential field responses in the hippocampal CA3-CA1 pathway 24 h after injury. This neurophysiological deficit was attenuated in Cdk5 cKO mice. Thus, TBI induces increased levels of p25 generation and aberrant Cdk5 activity, which contributes to pathophysiological processes underlying TBI progression. Hence, selectively preventing aberrant Cdk5 activity may be an effective acute strategy to improve recovery from TBI. Traumatic brain injury (TBI) increases astrogliosis and microglial activation. Moreover, TBI deregulates Ca(2+) -homeostasis triggering p25 production. The protein kinase Cdk5 is aberrantly activated by p25 leading to phosphorylation of substrates including tau and Rb protein. Loss of Cdk5 attenuates TBI lesion size, indicating that Cdk5 is a critical player in TBI pathogenesis and thus may be a suitable therapeutic target for TBI.
Collapse
Affiliation(s)
- Mohammad A Yousuf
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunfeng Tan
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Melissa I Torres-Altoro
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fang-Min Lu
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Erik Plautz
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shanrong Zhang
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Masaya Takahashi
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Adan Hernandez
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Steven G Kernie
- Department of Pediatrics and Pathology & Cell Biology, Columbia University, New York, New York, USA
| | - Florian Plattner
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James A Bibb
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
32
|
Pevzner A, Izadi A, Lee DJ, Shahlaie K, Gurkoff GG. Making Waves in the Brain: What Are Oscillations, and Why Modulating Them Makes Sense for Brain Injury. Front Syst Neurosci 2016; 10:30. [PMID: 27092062 PMCID: PMC4823270 DOI: 10.3389/fnsys.2016.00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/22/2016] [Indexed: 01/19/2023] Open
Abstract
Traumatic brain injury (TBI) can result in persistent cognitive, behavioral and emotional deficits. However, the vast majority of patients are not chronically hospitalized; rather they have to manage their disabilities once they are discharged to home. Promoting recovery to pre-injury level is important from a patient care as well as a societal perspective. Electrical neuromodulation is one approach that has shown promise in alleviating symptoms associated with neurological disorders such as in Parkinson’s disease (PD) and epilepsy. Consistent with this perspective, both animal and clinical studies have revealed that TBI alters physiological oscillatory rhythms. More recently several studies demonstrated that low frequency stimulation improves cognitive outcome in models of TBI. Specifically, stimulation of the septohippocampal circuit in the theta frequency entrained oscillations and improved spatial learning following TBI. In order to evaluate the potential of electrical deep brain stimulation for clinical translation we review the basic neurophysiology of oscillations, their role in cognition and how they are changed post-TBI. Furthermore, we highlight several factors for future pre-clinical and clinical studies to consider, with the hope that it will promote a hypothesis driven approach to subsequent experimental designs and ultimately successful translation to improve outcome in patients with TBI.
Collapse
Affiliation(s)
- Aleksandr Pevzner
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| | - Ali Izadi
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| | - Darrin J Lee
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| |
Collapse
|
33
|
Prins ML, Matsumoto J. Metabolic Response of Pediatric Traumatic Brain Injury. J Child Neurol 2016; 31:28-34. [PMID: 25336427 PMCID: PMC4405388 DOI: 10.1177/0883073814549244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/21/2014] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) in the pediatric brain presents unique challenges as the complex cascades of metabolic and biochemical responses to TBI are further complicated ongoing maturational changes of the developing brain. TBIs of all severities have been shown to significantly alter metabolism and hormones which impair the ability of the brain to process glucose for cellular energy. Under these conditions, the brain's primary fuel (glucose) becomes a less favorable fuel and the ability of the younger brain to revert to ketone metabolism can an advantage. This review addresses the potential of alternative substrate metabolic intervention as a logical pediatric TBI neuroprotective strategy.
Collapse
Affiliation(s)
- Mayumi L Prins
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA Brain Injury Research Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Joyce Matsumoto
- Department of Pediatrics, Division of Pediatric Neurology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
34
|
Lazarus RC, Buonora JE, Flora MN, Freedy JG, Holstein GR, Martinelli GP, Jacobowitz DM, Mueller GP. Protein Citrullination: A Proposed Mechanism for Pathology in Traumatic Brain Injury. Front Neurol 2015; 6:204. [PMID: 26441823 PMCID: PMC4585288 DOI: 10.3389/fneur.2015.00204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/07/2015] [Indexed: 11/23/2022] Open
Abstract
Protein citrullination is a calcium-driven post-translational modification proposed to play a causative role in the neurodegenerative disorders of Alzheimer’s disease, multiple sclerosis (MS), and prion disease. Citrullination can result in the formation of antigenic epitopes that underlie pathogenic autoimmune responses. This phenomenon, which is best understood in rheumatoid arthritis, may play a role in the chronic dysfunction following traumatic brain injury (TBI). Despite substantial evidence of aberrations in calcium signaling following TBI, there is little understanding of how TBI alters citrullination in the brain. The present investigation addressed this gap by examining the effects of TBI on the distribution of protein citrullination and on the specific cell types involved. Immunofluorescence revealed that controlled cortical impact in rats profoundly up-regulated protein citrullination in the cerebral cortex, external capsule, and hippocampus. This response was exclusively seen in astrocytes; no such effects were observed on the status of protein citrullination in neurons, oligodendrocytes or microglia. Further, proteomic analyses demonstrated that the effects of TBI on citrullination were confined to a relatively small subset of neural proteins. Proteins most notably affected were those also reported to be citrullinated in other disorders, including prion disease and MS. In vivo findings were extended in an in vitro model of simulated TBI employing normal human astrocytes. Pharmacologically induced calcium excitotoxicity was shown to activate the citrullination and breakdown of glial fibrillary acidic protein, producing a novel candidate TBI biomarker and potential target for autoimmune recognition. In summary, these findings demonstrate that the effects of TBI on protein citrullination are selective with respect to brain region, cell type, and proteins modified, and may contribute to a role for autoimmune dysfunction in chronic pathology following TBI.
Collapse
Affiliation(s)
- Rachel C Lazarus
- Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - John E Buonora
- US Army Graduate Program in Anesthesia Nursing , Fort Sam Houston, TX , USA
| | - Michael N Flora
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - James G Freedy
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - David M Jacobowitz
- Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Gregory P Mueller
- Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
35
|
Abstract
PRIMARY OBJECTIVE The aim of this literature review was to systematically describe the sequential metabolic changes that occur following concussive injury, as well as identify and characterize the major concepts associated with the neurochemical cascade. RESEARCH DESIGN Narrative literature review. CONCLUSIONS Concussive injury initiates a complex cascade of pathophysiological changes that include hyper-acute ionic flux, indiscriminant excitatory neurotransmitter release, acute hyperglycolysis and sub-acute metabolic depression. Additionally, these metabolic changes can subsequently lead to impaired neurotransmission, alternate fuel usage and modifications in synaptic plasticity and protein expression. The combination of these metabolic alterations has been proposed to cause the transient and prolonged neurological deficits that typically characterize concussion. Consequently, understanding the implications of the neurochemical cascade may lead to treatment and return-to-play guidelines that can minimize the chronic effects of concussive injury.
Collapse
|
36
|
Salvador E, Burek M, Förster CY. Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade. Front Cell Neurosci 2015; 9:323. [PMID: 26347611 PMCID: PMC4543908 DOI: 10.3389/fncel.2015.00323] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/03/2015] [Indexed: 11/13/2022] Open
Abstract
The blood-brain barrier (BBB), made up of endothelial cells of capillaries in the brain, maintains the microenvironment of the central nervous system. During ischemia and traumatic brain injury (TBI), cellular disruption leading to mechanical insult results to the BBB being compromised. Oxygen glucose deprivation (OGD) is the most commonly used in vitro model for ischemia. On the other hand, stretch injury is currently being used to model TBI in vitro. In this paper, the two methods are used alone or in combination, to assess their effects on cerebrovascular endothelial cells cEND in the presence or absence of astrocytic factors. Applying severe stretch and/or OGD to cEND cells in our experiments resulted to cell swelling and distortion. Damage to the cells induced release of lactate dehydrogenase enzyme (LDH) and nitric oxide (NO) into the cell culture medium. In addition, mRNA expression of inflammatory markers interleukin (I L)-6, IL-1α, chemokine (C-C motif) ligand 2 (CCL2) and tumor necrosis factor (TNF)-α also increased. These events could lead to the opening of calcium ion channels resulting to excitotoxicity. This could be demonstrated by increased calcium level in OGD-subjected cEND cells incubated with astrocyte-conditioned medium. Furthermore, reduction of cell membrane integrity decreased tight junction proteins claudin-5 and occludin expression. In addition, permeability of the endothelial cell monolayer increased. Also, since cell damage requires an increased uptake of glucose, expression of glucose transporter glut1 was found to increase at the mRNA level after OGD. Overall, the effects of OGD on cEND cells appear to be more prominent than that of stretch with regards to TJ proteins, NO, glut1 expression, and calcium level. Astrocytes potentiate these effects on calcium level in cEND cells. Combining both methods to model TBI in vitro shows a promising improvement to currently available models.
Collapse
Affiliation(s)
- Ellaine Salvador
- Klinik und Poliklinik für Anästhesiologie, Zentrum für Operative Medizin der Universität Würzburg Würzburg, Germany
| | - Malgorzata Burek
- Klinik und Poliklinik für Anästhesiologie, Zentrum für Operative Medizin der Universität Würzburg Würzburg, Germany
| | - Carola Y Förster
- Klinik und Poliklinik für Anästhesiologie, Zentrum für Operative Medizin der Universität Würzburg Würzburg, Germany
| |
Collapse
|
37
|
Griesbach GS, Hovda DA. Cellular and molecular neuronal plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2015; 128:681-90. [DOI: 10.1016/b978-0-444-63521-1.00042-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Miller NR, Yasen AL, Maynard LF, Chou LS, Howell DR, Christie AD. Acute and longitudinal changes in motor cortex function following mild traumatic brain injury. Brain Inj 2014; 28:1270-6. [PMID: 24841536 DOI: 10.3109/02699052.2014.915987] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVE To evaluate excitability and inhibition of the motor cortex acutely and longitudinally following mild traumatic brain injury (mTBI). RESEARCH DESIGN A longitudinal paired case-control design was used to examine cortical excitability and inhibition in 15 adults who had sustained an mTBI (mean age = 20.8 ± 1.2 years) and 15 matched control participants (mean age = 21.1 ± 1.3 years). METHODS AND PROCEDURES Participants visited the lab within 72 hours of injury and again at 1, 2, 4 and 8 weeks post-injury. During each visit, transcranial magnetic stimulation was used to examine resting motor threshold (RMT), motor evoked potential peak-to-peak amplitude (MEPamp) and cortical silent period (CSP) duration of the first dorsal interosseous muscle. MAIN OUTCOMES AND RESULTS There were no differences between groups in RMT (p = 0.10) or MEPamp (p = 0.22) at 72 hours post-injury or across the 2-month testing period (p ≥ 0.68), indicating similar cortical excitability. However, the CSP duration was higher in individuals with mTBI, indicating greater intra-cortical inhibition compared with the control group at 72 hours post-injury (p = 0.03) and throughout the 2 months of recovery (p = 0.009). CONCLUSIONS mTBI appeared to have little effect on cortical excitability, but an acute and long-lasting effect on intra-cortical inhibition.
Collapse
Affiliation(s)
- Nick R Miller
- Department of Human Physiology, University of Oregon , Eugene, OR , USA
| | | | | | | | | | | |
Collapse
|
39
|
Serial serum leukocyte apoptosis levels as predictors of outcome in acute traumatic brain injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:720870. [PMID: 24864256 PMCID: PMC4016848 DOI: 10.1155/2014/720870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/26/2014] [Indexed: 11/17/2022]
Abstract
Background. Apoptosis associates with secondary brain injury after traumatic brain injury (TBI). This study posits that serum leukocyte apoptosis levels in acute TBI are predictive of outcome. Methods. Two hundred and twenty-nine blood samples from 88 patients after acute TBI were obtained on admission and on Days 4 and 7. Serial apoptosis levels of different leukocyte subsets were examined in 88 TBI patients and 27 control subjects. Results. The leukocyte apoptosis was significantly higher in TBI patients than in controls. Brief unconsciousness (P = 0.009), motor deficits (P ≤ 0.001), GCS (P ≤ 0.001), ISS (P = 0.001), WBC count (P = 0.015), late apoptosis in lymphocytes and monocytes on Day 1 (P = 0.004 and P = 0.022, resp.), subdural hemorrhage on initial brain CT (P = 0.002), neurosurgical intervention (P ≤ 0.001), and acute posttraumatic seizure (P = 0.046) were significant risk factors of outcome. Only motor deficits (P = 0.033) and late apoptosis in monocytes on Day 1 (P = 0.037) were independently associated with outcome. A cutoff value of 5.72% of late apoptosis in monocytes was associated with poor outcome in acute TBI patients. Conclusion. There are varying degrees of apoptosis in patients following TBI and in healthy individuals. Such differential expression suggests that apoptosis in different leukocyte subsets plays an important role in outcome following injury.
Collapse
|
40
|
Prins ML, Matsumoto JH. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury. J Lipid Res 2014; 55:2450-7. [PMID: 24721741 DOI: 10.1194/jlr.r046706] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans.
Collapse
Affiliation(s)
- Mayumi L Prins
- Department of Neurosurgery, Brain Injury Research Center University of California, Los Angeles, Los Angeles, CA
| | - Joyce H Matsumoto
- Department of Pediatrics, Division of Pediatric Neurology, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
41
|
Sun D, McGinn M, Hankins JE, Mays KM, Rolfe A, Colello RJ. Aging- and injury-related differential apoptotic response in the dentate gyrus of the hippocampus in rats following brain trauma. Front Aging Neurosci 2013; 5:95. [PMID: 24385964 PMCID: PMC3866524 DOI: 10.3389/fnagi.2013.00095] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/04/2013] [Indexed: 11/24/2022] Open
Abstract
The elderly are among the most vulnerable to traumatic brain injury (TBI) with poor functional outcomes and impaired cognitive recovery. Of the pathological changes that occur following TBI, apoptosis is an important contributor to the secondary insults and subsequent morbidity associated with TBI. The current study investigated age-related differences in the apoptotic response to injury, which may represent a mechanistic underpinning of the heightened vulnerability of the aged brain to TBI. This study compared the degree of TBI-induced apoptotic response and changes of several apoptosis-related proteins in the hippocampal dentate gyrus (DG) of juvenile and aged animals following injury. Juvenile (p28) and aged rats (24 months) were subjected to a moderate fluid percussive injury or sham injury and sacrificed at 2 days post-injury. One group of rats in both ages was sacrificed and brain sections were processed for TUNEL and immunofluorescent labeling to assess the level of apoptosis and to identify cell types which undergo apoptosis. Another group of animals was subjected to proteomic analysis, whereby proteins from the ipsilateral DG were extracted and subjected to 2D-gel electrophoresis and mass spectrometry analysis. Histological studies revealed age- and injury-related differences in the number of TUNEL-labeled cells in the DG. In sham animals, juveniles displayed a higher number of TUNEL+ apoptotic cells located primarily in the subgranular zone of the DG as compared to the aged brain. These apoptotic cells expressed the early neuronal marker PSA-NCAM, suggestive of newly generated immature neurons. In contrast, aged rats had a significantly higher number of TUNEL+ cells following TBI than injured juveniles, which were NeuN-positive mature neurons located predominantly in the granule cell layer. Fluorescent triple labeling revealed that microglial cells were closely associated to the apoptotic cells. In concert with these cellular changes, proteomic studies revealed both age-associated and injury-induced changes in the expression levels of three apoptotic-related proteins: hippocalcin, leucine-rich acidic nuclear protein and heat shock protein 27. Taken together, this study revealed distinct apoptotic responses following TBI in the juvenile and aged brain which may contribute to the differential cognitive recovery observed.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosurgery, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Melissa McGinn
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Jeanette E Hankins
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Katherine M Mays
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Andrew Rolfe
- Department of Neurosurgery, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Raymond J Colello
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| |
Collapse
|
42
|
Abstract
There are more than 3.17 million people coping with long-term disabilities due to traumatic brain injury (TBI) in the United States. The majority of TBI research is focused on developing acute neuroprotective treatments to prevent or minimize these long-term disabilities. Therefore, chronic TBI survivors represent a large, underserved population that could significantly benefit from a therapy that capitalizes on the endogenous recovery mechanisms occurring during the weeks to months following brain trauma. Previous studies have found that the hippocampus is highly vulnerable to brain injury, in both experimental models of TBI and during human TBI. Although often not directly mechanically injured by the head injury, in the weeks to months following TBI, the hippocampus undergoes atrophy and exhibits deficits in long-term potentiation (LTP), a persistent increase in synaptic strength that is considered to be a model of learning and memory. Decoding the chronic hippocampal LTP and cell signaling deficits after brain trauma will provide new insights into the molecular mechanisms of hippocampal-dependent learning impairments caused by TBI and facilitate the development of effective therapeutic strategies to improve hippocampal-dependent learning for chronic survivors of TBI.
Collapse
Affiliation(s)
- Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
43
|
Bartnik-Olson BL, Harris NG, Shijo K, Sutton RL. Insights into the metabolic response to traumatic brain injury as revealed by (13)C NMR spectroscopy. FRONTIERS IN NEUROENERGETICS 2013; 5:8. [PMID: 24109452 PMCID: PMC3790078 DOI: 10.3389/fnene.2013.00008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/12/2013] [Indexed: 12/11/2022]
Abstract
The present review highlights critical issues related to cerebral metabolism following traumatic brain injury (TBI) and the use of (13)C labeled substrates and nuclear magnetic resonance (NMR) spectroscopy to study these changes. First we address some pathophysiologic factors contributing to metabolic dysfunction following TBI. We then examine how (13)C NMR spectroscopy strategies have been used to investigate energy metabolism, neurotransmission, the intracellular redox state, and neuroglial compartmentation following injury. (13)C NMR spectroscopy studies of brain extracts from animal models of TBI have revealed enhanced glycolytic production of lactate, evidence of pentose phosphate pathway (PPP) activation, and alterations in neuronal and astrocyte oxidative metabolism that are dependent on injury severity. Differential incorporation of label into glutamate and glutamine from (13)C labeled glucose or acetate also suggest TBI-induced adaptations to the glutamate-glutamine cycle.
Collapse
|
44
|
Gupta RK, Prasad S. Early down regulation of the glial Kir4.1 and GLT-1 expression in pericontusional cortex of the old male mice subjected to traumatic brain injury. Biogerontology 2013; 14:531-41. [PMID: 24026668 DOI: 10.1007/s10522-013-9459-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
Astroglia play multiple roles in brain function by providing matrix to neurons, secreting neurotrophic factors, maintaining K(+) and glutamate homeostasis and thereby controlling synaptic plasticity which undergoes alterations during aging. K(+) and glutamate homeostasis is maintained by astrocytes membrane bound inwardly rectifying K(+) channel (Kir4.1) and glutamate transporter-1 (GLT-1 or EAAT-2) proteins, respectively in the synapse and their expression may be altered due to traumatic brain injury (TBI). Also, it is not well understood whether this change is age dependent. To find out this, TBI was experimentally induced in adult and old male AKR strain mice using CHI technique, and expression of the Kir4.1 and GLT-1 in the pericontusional cortex at various time intervals was studied by Western blotting and semi quantitative RT-PCR techniques. Here, we report that expression of both Kir4.1 and GLT-1 genes at transcript and protein levels is significantly down regulated in the pericontusional ipsi-lateral cortex of old TBI mice as compared to that in the adult TBI mice as function of time after injury. Further, expression of both the genes starts decreasing early in old mice i.e., from the first hour after TBI as compared to that starts from fourth hour in adult TBI mice. Thus TBI affects expression of Kir4.1 and GLT-1 genes in age- and time dependent manner and it may lead to accumulations of more K(+) and glutamate early in the synapse of old mice as compared to adult. This may be implicated in the TBI induced early and severe neuronal depolarization and excito-neurotoxicity in old age.
Collapse
Affiliation(s)
- R K Gupta
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | | |
Collapse
|
45
|
Prins M, Greco T, Alexander D, Giza CC. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech 2013; 6:1307-15. [PMID: 24046353 PMCID: PMC3820255 DOI: 10.1242/dmm.011585] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is defined as an impact, penetration or rapid movement of the brain within the skull that results in altered mental state. TBI occurs more than any other disease, including breast cancer, AIDS, Parkinson's disease and multiple sclerosis, and affects all age groups and both genders. In the US and Europe, the magnitude of this epidemic has drawn national attention owing to the publicity received by injured athletes and military personnel. This increased public awareness has uncovered a number of unanswered questions concerning TBI, and we are increasingly aware of the lack of treatment options for a crisis that affects millions. Although each case of TBI is unique and affected individuals display different degrees of injury, different regional patterns of injury and different recovery profiles, this review and accompanying poster aim to illustrate some of the common underlying neurochemical and metabolic responses to TBI. Recognition of these recurrent features could allow elucidation of potential therapeutic targets for early intervention.
Collapse
Affiliation(s)
- Mayumi Prins
- Department of Neurosurgery, UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
46
|
Gurkoff G, Shahlaie K, Lyeth B, Berman R. Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals (Basel) 2013; 6:788-812. [PMID: 24276315 PMCID: PMC3816709 DOI: 10.3390/ph6070788] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the United States. Despite more than 30 years of research, no pharmacological agents have been identified that improve neurological function following TBI. However, several lines of research described in this review provide support for further development of voltage gated calcium channel (VGCC) antagonists as potential therapeutic agents. Following TBI, neurons and astrocytes experience a rapid and sometimes enduring increase in intracellular calcium ([Ca2+]i). These fluxes in [Ca2+]i drive not only apoptotic and necrotic cell death, but also can lead to long-term cell dysfunction in surviving cells. In a limited number of in vitro experiments, both L-type and N-type VGCC antagonists successfully reduced calcium loads as well as neuronal and astrocytic cell death following mechanical injury. In rodent models of TBI, administration of VGCC antagonists reduced cell death and improved cognitive function. It is clear that there is a critical need to find effective therapeutics and rational drug delivery strategies for the management and treatment of TBI, and we believe that further investigation of VGCC antagonists should be pursued before ruling out the possibility of successful translation to the clinic.
Collapse
Affiliation(s)
- Gene Gurkoff
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
- NSF Center for Biophotonics Science and Technology, Suite 2700 Stockton Blvd, Suite 1400, Sacramento, CA, 95817, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-530-754-7501; Fax: +1-530-754-5125
| | - Kiarash Shahlaie
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| | - Bruce Lyeth
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| | - Robert Berman
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| |
Collapse
|
47
|
Meehan WP, Zhang J, Mannix R, Whalen MJ. Increasing recovery time between injuries improves cognitive outcome after repetitive mild concussive brain injuries in mice. Neurosurgery 2013; 71:885-91. [PMID: 22743360 DOI: 10.1227/neu.0b013e318265a439] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although previous evidence suggests that the cognitive effects of concussions are cumulative, the effect of time interval between repeat concussions is largely unknown. OBJECTIVE To determine the effect of time interval between repeat concussions on the cognitive function of mice. METHODS We used a weight-drop model of concussion to subject anesthetized mice to 1, 3, 5, or 10 concussions, each a day apart. Additional mice were subjected to 5 concussions at varying time intervals: daily, weekly, and monthly. Morris water maze performance was measured 24 hours, 1 month, and 1 year after final injury. RESULTS After 1 concussion, injured and sham-injured mice performed similarly in the Morris water maze. As the number of concussions increased, injured mice performed worse than sham-injured mice. Mice sustaining 5 concussions either 1 day or 1 week apart performed worse than sham-injured mice. When 5 concussions were delivered at 1-month time intervals, no difference in Morris water maze performance was observed between injured and sham-injured mice. After a 1-month recovery period, mice that sustained 5 concussions at daily and weekly time intervals continued to perform worse than sham-injured mice. One year after the final injury, mice sustaining 5 concussions at a daily time interval still performed worse than sham-injured mice. CONCLUSION When delivered within a period of vulnerability, the cognitive effects of multiple concussions are cumulative, persistent, and may be permanent. Increasing the time interval between concussions attenuates the effects on cognition. When multiple concussions are sustained by mice daily, the effects on cognition are long term.
Collapse
Affiliation(s)
- William P Meehan
- Sports Concussion Clinic, Division of Sports Medicine, Department of Orthopedics and Brain Injury Center, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
48
|
Weber JT. Altered calcium signaling following traumatic brain injury. Front Pharmacol 2012; 3:60. [PMID: 22518104 PMCID: PMC3324969 DOI: 10.3389/fphar.2012.00060] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 03/24/2012] [Indexed: 01/10/2023] Open
Abstract
Cell death and dysfunction after traumatic brain injury (TBI) is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.
Collapse
Affiliation(s)
- John T. Weber
- School of Pharmacy and Division of BioMedical Sciences, Faculty of Medicine, Memorial University of NewfoundlandSt. John’s, NL, Canada
| |
Collapse
|
49
|
von Reyn CR, Mott RE, Siman R, Smith DH, Meaney DF. Mechanisms of calpain mediated proteolysis of voltage gated sodium channel α-subunits following in vitro dynamic stretch injury. J Neurochem 2012; 121:793-805. [PMID: 22428606 DOI: 10.1111/j.1471-4159.2012.07735.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although enhanced calpain activity is well documented after traumatic brain injury (TBI), the pathways targeting specific substrate proteolysis are less defined. Our past work demonstrated that calpain cleaves voltage gated sodium channel (NaCh) α-subunits in an in vitro TBI model. In this study, we investigated the pathways leading to NaCh cleavage utilizing our previously characterized in vitro TBI model, and determined the location of calpain activation within neuronal regions following stretch injury to micropatterned cultures. Calpain specific breakdown products of α-spectrin appeared within axonal, dendritic, and somatic regions 6 h after injury, concurrent with the appearance of NaCh α-subunit proteolysis in both whole cell or enriched axonal preparations. Direct pharmacological activation of either NMDA receptors (NMDArs) or NaChs resulted in NaCh proteolysis. Likewise, a chronic (6 h) dual inhibition of NMDArs/NaChs but not L-type voltage gated calcium channels significantly reduced NaCh proteolysis 6 h after mechanical injury. Interestingly, an early, transient (30 min) inhibition of NMDArs alone significantly reduced NaCh proteolysis. Although a chronic inhibition of calpain significantly reduced proteolysis, a transient inhibition of calpain immediately after injury failed to significantly attenuate NaCh proteolysis. These data suggest that both NMDArs and NaChs are key contributors to calpain activation after mechanical injury, and that a larger temporal window of sustained calpain activation needs consideration in developing effective treatments for TBI.
Collapse
|
50
|
Abstract
This article discusses brain trauma and impaired consciousness. It reviews the various states of impaired consciousness related to trauma, with an historical and current literature viewpoint. The causes and pathophysiology of impaired consciousness in concussion, diffuse axonal injury, and focal brain lesions are discussed and management options evaluated.
Collapse
Affiliation(s)
- Sandrine de Ribaupierre
- Division of Neurosurgery, Department of Clinical Neurological Sciences, University of Western Ontario, Victoria Hospital, 800 Commissioners Road East, London, ON N6A 5W9, Canada.
| |
Collapse
|