1
|
Kwaśniewska A, Miazga K, Majczyński H, Jordan LM, Zawadzka M, Sławińska U. Noradrenergic Components of Locomotor Recovery Induced by Intraspinal Grafting of the Embryonic Brainstem in Adult Paraplegic Rats. Int J Mol Sci 2020; 21:ijms21155520. [PMID: 32752261 PMCID: PMC7432907 DOI: 10.3390/ijms21155520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/24/2022] Open
Abstract
Intraspinal grafting of serotonergic (5-HT) neurons was shown to restore plantar stepping in paraplegic rats. Here we asked whether neurons of other phenotypes contribute to the recovery. The experiments were performed on adult rats after spinal cord total transection. Grafts were injected into the sub-lesional spinal cord. Two months later, locomotor performance was tested with electromyographic recordings from hindlimb muscles. The role of noradrenergic (NA) innervation was investigated during locomotor performance of spinal grafted and non-grafted rats using intraperitoneal application of α2 adrenergic receptor agonist (clonidine) or antagonist (yohimbine). Morphological analysis of the host spinal cords demonstrated the presence of tyrosine hydroxylase positive (NA) neurons in addition to 5-HT neurons. 5-HT fibers innervated caudal spinal cord areas in the dorsal and ventral horns, central canal, and intermediolateral zone, while the NA fiber distribution was limited to the central canal and intermediolateral zone. 5-HT and NA neurons were surrounded by each other’s axons. Locomotor abilities of the spinal grafted rats, but not in control spinal rats, were facilitated by yohimbine and suppressed by clonidine. Thus, noradrenergic innervation, in addition to 5-HT innervation, plays a potent role in hindlimb movement enhanced by intraspinal grafting of brainstem embryonic tissue in paraplegic rats.
Collapse
Affiliation(s)
- Anna Kwaśniewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
| | - Krzysztof Miazga
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
| | - Henryk Majczyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
| | - Larry M. Jordan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Małgorzata Zawadzka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
| | - Urszula Sławińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
- Correspondence:
| |
Collapse
|
2
|
Ganzer PD, Beringer CR, Shumsky JS, Nwaobasi C, Moxon KA. Serotonin receptor and dendritic plasticity in the spinal cord mediated by chronic serotonergic pharmacotherapy combined with exercise following complete SCI in the adult rat. Exp Neurol 2018. [PMID: 29526741 DOI: 10.1016/j.expneurol.2018.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe spinal cord injury (SCI) damages descending motor and serotonin (5-HT) fiber projections leading to paralysis and serotonin depletion. 5-HT receptors (5-HTRs) subsequently upregulate following 5-HT fiber degeneration, and dendritic density decreases indicative of atrophy. 5-HT pharmacotherapy or exercise can improve locomotor behavior after SCI. One might expect that 5-HT pharmacotherapy acts on upregulated spinal 5-HTRs to enhance function, and that exercise alone can influence dendritic atrophy. In the current study, we assessed locomotor recovery and spinal proteins influenced by SCI and therapy. 5-HT, 5-HT2AR, 5-HT1AR, and dendritic densities were quantified both early (1 week) and late (9 weeks) after SCI, and also following therapeutic interventions (5-HT pharmacotherapy, bike therapy, or a combination). Interestingly, chronic 5-HT pharmacotherapy largely normalized spinal 5-HTR upregulation following injury. Improvement in locomotor behavior was not correlated to 5-HTR density. These results support the hypothesis that chronic 5-HT pharmacotherapy can mediate recovery following SCI, despite acting on largely normal spinal 5-HTR levels. We next assessed spinal dendritic plasticity and its potential role in locomotor recovery. Single therapies did not normalize the loss of dendritic density after SCI. Groups displaying significantly atrophied dendritic processes were rarely able to achieve weight supported open-field locomotion. Only a combination of 5-HT pharmacotherapy and bike therapy enabled significant open-field weigh-supported stepping, mediated in part by restoring spinal dendritic density. These results support the use of combined therapies to synergistically impact multiple markers of spinal plasticity and improve motor recovery.
Collapse
Affiliation(s)
- Patrick D Ganzer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States.
| | - Carl R Beringer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States
| | - Jed S Shumsky
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, United States
| | - Chiemela Nwaobasi
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States
| | - Karen A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States; Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, United States
| |
Collapse
|
3
|
Onifer SM, Cannon AB, Whittemore SR. Altered Differentiation of Cns Neural Progenitor Cells after Transplantation into the Injured Adult Rat Spinal Cord. Cell Transplant 2017; 6:327-38. [PMID: 9171165 DOI: 10.1177/096368979700600315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Denervation of CNS neurons and peripheral organs is a consequence of traumatic SCI. Intraspinal transplantation of embryonic CNS neurons is a potential strategy for reinnervating these targets. Neural progenitor cell lines are being investigated as alternates to embryonic CNS neurons. RN33B is an immortalized neural progenitor cell line derived from embryonic rat raphé nuclei following infection with a retrovirus encoding the temperature-sensitive mutant of SV40 large T-antigen. Transplantation studies have shown that local epigenetic signals in intact or partially neuron-depleted adult rat hippocampal formation or striatum direct RN33B cell differentiation to complex multipolar morphologies resembling endogenous neurons. After transplantation into neuron-depleted regions of the hippocampal formation or striatum, RN33B cells were relatively undifferentiated or differentiated with bipolar morphologies. The present study examines RN33B cell differentiation after transplantation into normal spinal cord and under different lesion conditions. Adult rats underwent either unilateral lesion of lumbar spinal neurons by intraspinal injection of kainic acid or complete transection at the T10 spinal segment. Neonatal rats underwent either unilateral lesion of lumbar motoneurons by sciatic nerve crush or complete transection at the T10 segment. At 2 or 6-7 wk postinjury, lacZ-labeled RN33B cells were transplanted into the lumbar enlargement of injured and age-matched normal rats. At 2 wk posttransplantation, bipolar and some multipolar RN33B cells were found throughout normal rat gray matter. In contrast, only bipolar RN33B cells were seen in gray matter of kainic acid lesioned, sciatic nerve crush, or transection rats. These observations suggest that RN33B cell multipolar morphological differentiation in normal adult spinal cord is mediated by direct cell-cell interaction through surface molecules on endogenous neurons and may be suppressed by molecules released after SCI. They also indicate that the fate of immortalized neural progenitor cell lines in injured CNS must be stringently characterized.
Collapse
Affiliation(s)
- S M Onifer
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, FL 33136, USA
| | | | | |
Collapse
|
4
|
Noga BR, Johnson DMG, Riesgo MI, Pinzon A. Locomotor-activated neurons of the cat. II. Noradrenergic innervation and colocalization with NEα 1a or NEα 2b receptors in the thoraco-lumbar spinal cord. J Neurophysiol 2011; 105:1835-49. [PMID: 21307324 DOI: 10.1152/jn.00342.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Norepinephrine (NE) is a strong modulator and/or activator of spinal locomotor networks. Thus noradrenergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the noradrenergic innervation of functionally related, locomotor-activated neurons within the thoraco-lumbar spinal cord. This was accomplished by immunohistochemical colocalization of noradrenergic fibers using dopamine-β-hydroxylase or NEα(1A) and NEα(2B) receptors with cells expressing the c-fos gene activity-dependent marker Fos. Experiments were performed on paralyzed, precollicular-postmamillary decerebrate cats, in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. The majority of Fos labeled neurons, especially abundant in laminae VII and VIII throughout the thoraco-lumbar (T13-L7) region of locomotor animals, showed close contacts with multiple noradrenergic boutons. A small percentage (10-40%) of Fos neurons in the T7-L7 segments showed colocalization with NEα(1A) receptors. In contrast, NEα(2B) receptor immunoreactivity was observed in 70-90% of Fos cells, with no obvious rostrocaudal gradient. In comparison with results obtained from our previous study on the same animals, a significantly smaller proportion of Fos labeled neurons were innervated by noradrenergic than serotonergic fibers, with significant differences observed for laminae VII and VIII in some segments. In lamina VII of the lumbar segments, the degree of monoaminergic receptor subtype/Fos colocalization examined statistically generally fell into the following order: NEα(2B) = 5-HT(2A) ≥ 5-HT(7) = 5-HT(1A) > NEα(1A). These results suggest that noradrenergic modulation of locomotion involves NEα(1A)/NEα(2B) receptors on noradrenergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments. Further study of the functional role of these receptors in locomotion is warranted.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
5
|
An adenovirus vector encoding tyrosine hydroxylase activity may enter human CNS cells in primary dissociated cultures. Int J Dev Neurosci 2004. [DOI: 10.1016/0736-5748(96)00030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Giménez y Ribotta M, Gaviria M, Menet V, Privat A. Strategies for regeneration and repair in spinal cord traumatic injury. PROGRESS IN BRAIN RESEARCH 2002; 137:191-212. [PMID: 12440369 DOI: 10.1016/s0079-6123(02)37017-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Spinal cord injury is frequently followed by the loss of supraspinal control of sensory, autonomic and motor functions at the sublesional level. In order to enhance recovery in spinal cord-injured patients, we have developed three fundamental strategies in experimental models. These strategies define in turn three chronological levels of postlesional intervention in the spinal cord. Neuroprotection soon after injury using pharmacological tools to reduce the progressive secondary injury processes that follow during the first week after the initial lesion. This strategy was conducted up to clinical trials, showing that a pharmacological therapy can reduce the permanent neurological deficit that usually follows an acute injury of the central nervous system (CNS). A second strategy, which is initiated not long after the lesion, aims at promoting axonal regeneration by acting on the main barrier to regeneration of lesioned axons: the glial scar. Finally a mid-term substitutive strategy is the management of the sublesional spinal cord by sensorimotor stimulation and/or supply of missing key afferents, such as monoaminergic systems. These three strategies are reviewed. Only a combination of these different approaches will be able to provide an optimal basis for potential therapeutic interventions directed to functional recovery after spinal cord injury.
Collapse
|
7
|
Activation of locomotion in adult chronic spinal rats is achieved by transplantation of embryonic raphe cells reinnervating a precise lumbar level. J Neurosci 2000. [PMID: 10864971 DOI: 10.1523/jneurosci.20-13-05144.2000] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Traumatic lesions of the spinal cord yield a loss of supraspinal control of voluntary locomotor activity, although the spinal cord contains the necessary circuitry to generate the basic locomotor pattern. In spinal rats, this network, known as central pattern generator (CPG), was shown to be sensitive to serotonergic pharmacological stimulation. In previous works we have shown that embryonic raphe cells transplanted into the sublesional cord of adult rats can reinnervate specific targets, restore the lesion-induced increase in receptor densities of neurotransmitters, promote hindlimb weight support, and trigger a locomotor activity on a treadmill without any other pharmacological treatment or training. With the aim of discriminating whether the action of serotonin on CPG is associated to a specific level of the cord, we have transplanted embryonic raphe cells at two different levels of the sublesional cord (T9 and T11) and then performed analysis of the kinematic and EMG activity synchronously recorded during locomotion. Locomotor performances were correlated to the reinnervated level of the cord and compared to that of intact and transected nontransplanted animals. The movements expressed by T11 transplanted animals correspond to a well defined locomotor pattern comparable to that of the intact animals. On the contrary, T9 transplanted animals developed limited and disorganized movements as those of nontransplanted animals. The correlation of the locomotor performances with the level of reinnervation of the spinal cord suggests that serotonergic reinnervation of the L1-L2 level constitutes a key element in the genesis of this locomotor rhythmic activity. This is the first in vivo demonstration that transplanted embryonic raphe cells reinnervating a specific level of the cord activate a locomotor behavior.
Collapse
|
8
|
Pulford BE, Whalen LR, Ishii DN. Peripherally administered insulin-like growth factor-I preserves hindlimb reflex and spinal cord noradrenergic circuitry following a central nervous system lesion in rats. Exp Neurol 1999; 159:114-23. [PMID: 10486180 DOI: 10.1006/exnr.1999.7143] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The blood-central nervous system-barrier (B-CNS-B) is widely considered a significant impediment to the use of protein neurotrophic factors for the treatment of brain diseases and disorders. In this study, we tested the hypothesis that systemic administration of insulin-like growth factor I (IGF-I) can ameliorate functional damage to the central nervous system. Intracisternal injection of 6-hydroxydopamine (6-OHDA) normally results in loss of both the descending spinal cord noradrenergic (NA) fibers and the hindlimb withdrawal reflex. Ten minutes after 6-OHDA or solvent injection, 1 week duration osmotic minipumps containing IGF-I or vehicle were implanted subcutaneously in the mid-back of adult rats. Three weeks post-surgery, the maximum stimulus-evoked withdrawal force of the hindlimb was measured. This withdrawal reflex was significantly reduced in 6-OHDA lesioned vs. nonlesioned rats (P <.0002). The mean maximum reflex force was significantly larger in IGF-I vs. vehicle-treated lesioned rats (P < 0.008). Following reflex testing, serial sections of the spinal cord were taken through the lumbar enlargement containing the motoneurons mediating the hindlimb reflexes. The interspersed NA axons and their bead-like varicosities were stained with an anti-dopamine-beta-hydroxylase antibody. The mean number of NA varicosities per unit area in the ventral horn was profoundly reduced in lesioned vs. nonlesioned rats (P < 0.0002), but significant numbers (51%) were retained in lesioned rats treated with IGF-I vs. vehicle (P < 0.02). These data suggest that blood-borne IGF-I preserves both reflex function and spinal cord circuitry following injury to NA axons and that the blood-CNS fluid barriers may not be an impediment for IGF-I entry into the CNS.
Collapse
Affiliation(s)
- B E Pulford
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | | | | |
Collapse
|
9
|
Leanza G, Cataudella T, Dimauro R, Monaco S, Stanzani S. Release properties and functional integration of noradrenergic-rich tissue grafted to the denervated spinal cord of the adult rat. Eur J Neurosci 1999; 11:1789-99. [PMID: 10215931 DOI: 10.1046/j.1460-9568.1999.00595.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Noradrenaline- (NA-) containing grafts of central (embryonic locus coeruleus, LC) or peripheral (juvenile adrenal medullary, AM, autologous superior cervical ganglionic, SCG) tissue were implanted unilaterally into rat lumbar spinal cord previously depleted of its NA content by 6-hydroxydopamine (6-OHDA) intraventricularly. A microdialysis probe was implanted in the spinal cord 3-4 months after transplantation, and extracellular levels of noradrenaline were monitored in freely moving animals during basal conditions and following administration of pharmacological or behavioural stimuli. Age-matched normal and lesioned animals both served as controls. Morphometric analyses were carried out on horizontal spinal sections processed for dopamine-beta-hydroxylase (DBH) immunocitochemistry, in order to assess lesion- or graft-induced changes in the density of spinal noradrenergic innervation, relative to the normal patterns. In lesioned animals, the entire spinal cord was virtually devoid of DBH-positive fibers, resulting in a dramatic 88% reduction in baseline NA, compared with that in controls, which did not change in response to the various stimuli. LC and SCG grafts reinstated approximately 80% and 50% of normal innervation density, respectively, but they differed strikingly in their release ability. Thus, LC grafts restored baseline NA levels up to 60% of those in controls, and responded with significantly increased NA release to KCl-induced depolarization, neuronal uptake blockade and handling. In contrast, very low NA levels and only poor and inconsistent responses to the various stimuli were observed in the SCG-grafted animals. In AM-grafted animals, spinal extracellular NA levels were restored up to 45% of those in controls, probably as a result of nonsynaptic, endocrine-like release, as grafted AM cells retained the chromaffine phenotype, showed no detectable fibre outgrowth and did not respond to any of the pharmacological or behavioural challenges. Thus, both a regulated, impulse-dependent, and a diffuse, paracrine-like, NA outflow may play roles in the recovery of lesion-induced sensory and/or motor impairments previously reported with these types of grafts following transplantation into the severed spinal cord.
Collapse
Affiliation(s)
- G Leanza
- Department of Physiological Sciences, University of Catania, Italy.
| | | | | | | | | |
Collapse
|
10
|
Gimenez y Ribotta M, Orsal D, Feraboli-Lohnherr D, Privat A. Recovery of locomotion following transplantation of monoaminergic neurons in the spinal cord of paraplegic rats. Ann N Y Acad Sci 1998; 860:393-411. [PMID: 9928327 DOI: 10.1111/j.1749-6632.1998.tb09064.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Severe traumatic lesions of the spinal cord yield a permanent deficit of motricity in adult mammals and specifically a loss of locomotor activity of hindlimbs when the lesion is located at the lower thoracic level. To restore this function, we have developed a paradigm of transplantation in rats based on a transection model of the spinal cord and the subsequent injection at the sublesional level of a suspension of embryonic brainstem monoaminergic neurons which play a key role in the modulation of locomotion. A genuine locomotion was characterized in transplanted animals by electromyographic and electroneurographic recordings. This correlated with a specific reinnervation pattern of targets, where typical synapses were found, and with the normalization of biochemical parameters.
Collapse
Affiliation(s)
- M Gimenez y Ribotta
- INSERM U. 336, Développement, Plasticité et Vieillissement du Système Nerveux, Université Montpellier II, France.
| | | | | | | |
Collapse
|
11
|
Abstract
Pieces of fetal spinal tissue were transplanted into the site of complete midthoracic spinal transections in neonatal rat pups (transplant rats). The development of locomotion in these animals was compared with that of unoperated control rats and rats that received spinal transections alone (spinal rats). Reflex, treadmill and overground locomotion, staircase descent, and horizontal ladder crossing for a water reward were tested in control, spinal, and transplant rats from 3 weeks to adulthood. All tests were readily performed by control animals. Most spinal rats were unable to make many linked weight-supported steps on these tasks. Transplant rats were variable in their locomotor capabilities, but a subset of rats were able to demonstrate coordinated and adaptable locomotion on these tasks. Some transplant rats performed better on more challenging tasks, suggesting that motor strategies for these tasks used different information, perhaps from descending systems. Transplanted tissue survived, and in most cases there was immunocytochemical staining of serotonergic fibers passing into and caudal to the transplant, supporting the conclusion that descending systems grew through the transplanted tissue. Integration with the host tissue was often poor, suggesting that nonspecific or trophic effects of the transplant might also contribute to the development of locomotor function. Therefore several mechanisms may contribute to the repair of injured spinal cord provided by transplants that permit the development of useful locomotion.
Collapse
|
12
|
Cassam AK, Llewellyn-Smith IJ, Weaver LC. Catecholamine enzymes and neuropeptides are expressed in fibres and somata in the intermediate gray matter in chronic spinal rats. Neuroscience 1997; 78:829-41. [PMID: 9153661 DOI: 10.1016/s0306-4522(96)00599-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Spinal cord injury disrupts control of sympathetic preganglionic neurons because bulbospinal input has been lost and the remaining regulation is accomplished by spinal circuits consisting of dorsal root afferent and spinal neurons. Moreover, an initial retraction and regrowth of dendrites of preganglionic neurons in response to deafferentation creates the potential for remodelling of spinal circuits that control them. Although catecholamines and neuropeptide Y are found in descending inputs to the preganglionic neurons, their presence in spinal circuits has not been established. Spinal circuits controlling preganglionic neurons contain substance P but participation of these peptidergic neurons in remodelling responses has not been examined. Therefore, we compared immunoreactivity for the catecholamine-synthesizing enzyme dopamine beta-hydroxylase, for neuropeptide Y and for substance P in the intermediate gray matter of the spinal cord in control rats and in rats seven or fourteen days after transection at the fourth thoracic cord segment. Sympathetic preganglionic neurons were retrogradely labelled by intraperitoneal injection of the tracer FluoroGold. These experiments yielded three original findings. 1) At one and two weeks after cord transection, fibres and terminals immunoreactive for dopamine beta-hydroxylase and neuropeptide Y were consistently found in the intermediolateral cell column in segments caudal to the transection. The area of fibres and terminals containing these immunoreactivities was markedly reduced compared to control rats or to segments rostral to the transection in the spinal rats. 2) Immunoreactivity for substance P was increased after cord transection and the distribution of fibres immunoreactive for this peptide in segments caudal to the transection extended more widely through the intermediate gray matter. These reactions demonstrated a plastic reaction to cord transection by spinal neurons expressing substance P. 3) Dopamine beta-hydroxylase expression was up-regulated in somata within the intermediate gray matter of spinal segments caudal to the transection. The numbers of somata immunoreactive for this enzyme increased six-fold by 14 days after cord transection, compared to the few somata counted in control rats. In conclusion, the presence of a catecholamine synthesizing enzyme and neuropeptides in fibres surrounding sympathetic preganglionic neurons caudal to a cord transection suggests a source of catecholamines and these peptides within spinal circuits in the chronic spinal rat. The presence of dopamine beta-hydroxylase in a markedly greater number of neuronal somata after cord transection reflects significant up-regulation of gene expression and may indicate a switch by these neurons to an adrenergic phenotype, revealing a plastic response to injury within the spinal cord.
Collapse
Affiliation(s)
- A K Cassam
- The Department of Physiology and Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
13
|
Roudet C, Gimenez Ribotta M, Privat A, Feuerstein C, Savasta M. Regional study of spinal alpha 2-adrenoceptor densities after intraspinal noradrenergic-rich implants on adult rats bearing complete spinal cord transection or selective chemical noradrenergic denervation. Neurosci Lett 1996; 208:89-92. [PMID: 8859897 DOI: 10.1016/0304-3940(96)12547-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the challenges of restorative neuronal transplantation in the CNS of mammals is the appropriate integration of grafted cells in the host circuitry. One key parameter is the specific influence of grafted cells upon corresponding receptors. In order to test this issue on the lesioned spinal cord of adult rats, two models of spinal cord denervation were used: the first one consisted of a complete transection 1 week prior to an intraspinal transplantation of embryonic locus coeruleus (LC) primordia cell suspension; the second one was a chemical destruction of the spinal noradrenergic (NA) system 1 month prior to a similar transplantation. Five weeks after transplantation, spinal sections were processed for autoradiographic quantification of alpha 2-adrenoceptor binding sites densities. In most regions, alpha 2-adrenoceptor densities remained comparable or higher than before graft; interestingly, in lumbar dorsal horn, lumbar intermediate zone and sacral distal dorsal horn of transected-grafted rats, they returned to control level. Results are discussed in relation to the parallel study performed concerning alpha 1-adrenoceptors.
Collapse
Affiliation(s)
- C Roudet
- INSERM U.318, LAPSEN, Departement des Neurosciences Cliniques et Biologiques, Universite Joseph Fourier, CHU, Pavilion de Neurologie, Grenoble, France
| | | | | | | | | |
Collapse
|
14
|
Gimenez y Ribotta MG, Roudet C, Sandillon F, Privat A. Transplantation of embryonic noradrenergic neurons in two models of adult rat spinal cord injury: ultrastructural immunocytochemical study. Brain Res 1996; 707:245-55. [PMID: 8919302 DOI: 10.1016/0006-8993(95)01266-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The synaptic connections established by grafted noradrenergic (NA) neurons into the lesioned adult rat spinal cord were analysed using immunocytochemistry at the electron microscopic level. An embryonic cell suspension of the locus coeruleus region from E-13 rat embryos was transplanted into the spinal cord following either: (1) spinal cord transection or (2), partial selective denervation by 6-hydroxy dopamine (6-OH DA). One month after grafting, the NA-neurons established, in the two models, an innervation pattern similar to that found in the intact spinal cord. In both models, the transplanted NA-immunoreactive neurons formed extensive synaptic contacts with dendrites, spines and perikarya. The proportion of axodendritic and axospinous contacts was inverse in the two models. The first model thus reproduced more closely the normal synaptic pattern prefering dendritic targets, which could correspond to a better integration of the graft. In the second model, a partially NA-denervated spinal cord, there existed a competition between residual intrinsic and grafted neuron-derived fibres, which presumably affects synaptogenesis. In conclusion, the present study illustrate the complexity of cell interations conducting to the formation of a specific circuitry. Recognition phenomenon are likely modulated by space constraints, which ultimately shape-up the geometry of synaptic contacts.
Collapse
|