1
|
Wang J, Gao X, Gao P, Liu J. A Cross-Sectional Study on the Relationship Among Cytokines, 5-HT2A Receptor Polymorphisms, and Sleep Quality of Non-manual Workers in Xinjiang, China. Front Psychiatry 2022; 13:777566. [PMID: 35463508 PMCID: PMC9019505 DOI: 10.3389/fpsyt.2022.777566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Studies have shown that cytokine activity changes during the sleep-wake process, suggesting that inflammatory factors may be involved in a mechanism affecting sleep quality. Furthermore, the serotonergic system is also one of the essential components of airway relaxation during sleep, especially the serotonin 2A receptor (5-HTR2A) type that plays an important role in the sleep-wake process. Therefore, this research aimed to investigate the effects of cytokines and 5-HTR2A polymorphisms on sleep quality in non-manual workers in Urumqi, Xinjiang in order to explore the relationship between the three. METHODS This study used a cluster sampling method to randomly select non-manual workers who worked in Urumqi, Xinjiang for at least 1 year. From July 2016 and December 2017, this study recruited 1,500 non-manual workers for physical examination in the First Affiliated Hospital of Xinjiang Medical University. According to the inclusion and exclusion criteria, 1,329 non-manual workers were finally included in the questionnaire study. It used the Pittsburgh Sleep Quality Index questionnaire to assess sleep quality. Moreover, another 15% of respondents were randomly selected as the experimental study group. The polymerase chain reaction restriction fragment length polymorphism was used to detect 5-HTR2A gene genotypes. Simultaneously, the cytokine (IL-1β, IL-2, IL-6, and TNF-α) content was evaluated using an enzyme-linked immunoassay. RESULTS The results showed that among the 1,329 respondents, 870 had sleep quality problems, and the detection rate was 65.46%. The distribution of -1438G/A genotypes in the 5-HTR2A gene was significantly different among different sleep quality groups (p < 0.05), with no statistical significance present when comparing to T102C (p > 0.05). Logistic regression analysis showed that the AG [odds ratio (OR) = 2.771, 95% confidence interval (CI): 1.054-7.287] and GG (OR = 4.037, 95% CI: 1.244-13.105) genotypes at -1438G/A loci were both associated with poor sleep quality and were thus considered the susceptibility genotypes for sleep problems. Furthermore, IL-1β was shown to be a protective factor for sleep quality (OR = 0.949, 95% CI: 0.925-0.974). The interaction results showed that AG × IL-1β (OR = 0.952, 95% CI: 0.918-0.987) was associated with a lower risk of sleep problems than AA × IL-1β. CONCLUSION Cytokines and 5-HTR2A polymorphisms not only have independent effects on sleep but also may have cumulative effects. Therefore, it is necessary to further explore the related mechanisms affecting sleep quality to improve the sleep quality of non-manual workers.
Collapse
Affiliation(s)
- Juan Wang
- Department of Public Health, Xinjiang Medical University, Urumqi, China
| | - Xiaoyan Gao
- Department of Public Health, Xinjiang Medical University, Urumqi, China
| | - Pengcheng Gao
- Department of Public Health, Xinjiang Medical University, Urumqi, China
| | - Jiwen Liu
- Department of Public Health, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Efficacy of Antidepressants in the Treatment of Obstructive Sleep Apnea Compared to Placebo. A Systematic Review with Meta-Analyses. Sleep Breath 2019; 24:443-453. [DOI: 10.1007/s11325-019-01954-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/19/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
|
3
|
Relationship between Job Stress and 5-HT2A Receptor Polymorphisms on Self-Reported Sleep Quality in Physicians in Urumqi (Xinjiang, China): A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15051034. [PMID: 29883419 PMCID: PMC5982073 DOI: 10.3390/ijerph15051034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/07/2023]
Abstract
The serotonin receptor (5-HTR) plays a key role in sleep quality regulation. Job-related stress is an important factor that influences sleep quality. However, few reports on the interaction between 5-HTR2A polymorphisms and job stress, and how they may impact upon sleep quality are available. Therefore this study investigated the effects of job stress, 5-HTR2A polymorphisms, and their interaction on sleep quality, in physicians. Using a two-stage stratified sampling method, 918 participants were initially invited to participate in the study. After screening for study inclusion and exclusion criteria, 504 subjects were eventually included in the study. Job stress and sleep quality were assessed using the Job Stress Survey (JSS) and Pittsburgh Sleep Quality Index (PSQI), respectively. The 5-HTR2A receptor gene polymorphisms T102C and -1438G/A of were determined using polymerase chain reaction-restriction fragment length polymorphism. Job stress was significantly associated with sleep quality. High levels of job stress were linked to a higher risk of poor sleep quality compared to low or moderate levels [odds ratio (OR) = 2.909, 95% confidence interval (CI): 1.697–4.986]. High levels of stress may reduce subjects’ sleep quality, leading to an increase the likelihood of sleep disturbances and subsequent daytime dysfunction. The 5-HTR2A receptor gene polymorphism T102C was not significantly associated with sleep quality in this study, however, the -1438G/A polymorphism was significantly associated with sleep quality. The GG genotype of the -1438G/A polymorphism was linked to poorer sleep quality. When compared with subjects with low job-related stress levels×AG/AA genotype (OR = 2.106, 95% CI: 1.278–3.471), physicians with high job-related stress levels×GG genotype had a higher risk of experiencing poor sleep quality (OR = 13.400, 95% CI: 3.143–57.137). The findings of our study indicate that job stress and 5-HTR2A receptor gene polymorphisms are associated with sleep quality in physicians. Subjects with high job stress level or/and the -1438G/A GG genotype were more likely to report poor sleep quality, and furthermore, their combination effect on sleep quality was higher than their independent effects, so it may be suggested that job-related stress and genes have a cumulative effect on sleep quality; that is, stress can increase the risk of poor sleep quality, but this effect is worse in a group of people with specific gene polymorphisms.
Collapse
|
4
|
Kubin L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr Physiol 2016; 6:1801-1850. [PMID: 27783860 DOI: 10.1002/cphy.c160002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upper airway muscles subserve many essential for survival orofacial behaviors, including their important role as accessory respiratory muscles. In the face of certain predisposition of craniofacial anatomy, both tonic and phasic inspiratory activation of upper airway muscles is necessary to protect the upper airway against collapse. This protective action is adequate during wakefulness, but fails during sleep which results in recurrent episodes of hypopneas and apneas, a condition known as the obstructive sleep apnea syndrome (OSA). Although OSA is almost exclusively a human disorder, animal models help unveil the basic principles governing the impact of sleep on breathing and upper airway muscle activity. This article discusses the neuroanatomy, neurochemistry, and neurophysiology of the different neuronal systems whose activity changes with sleep-wake states, such as the noradrenergic, serotonergic, cholinergic, orexinergic, histaminergic, GABAergic and glycinergic, and their impact on central respiratory neurons and upper airway motoneurons. Observations of the interactions between sleep-wake states and upper airway muscles in healthy humans and OSA patients are related to findings from animal models with normal upper airway, and various animal models of OSA, including the chronic-intermittent hypoxia model. Using a framework of upper airway motoneurons being under concurrent influence of central respiratory, reflex and state-dependent inputs, different neurotransmitters, and neuropeptides are considered as either causing a sleep-dependent withdrawal of excitation from motoneurons or mediating an active, sleep-related inhibition of motoneurons. Information about the neurochemistry of state-dependent control of upper airway muscles accumulated to date reveals fundamental principles and may help understand and treat OSA. © 2016 American Physiological Society. Compr Physiol 6:1801-1850, 2016.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Lan F, Cao C, Liu J, Li W. Obstructive sleep apnea syndrome susceptible genes in the Chinese population: a meta-analysis of 21 case-control studies. Sleep Breath 2015; 19:1441-8. [PMID: 25917830 DOI: 10.1007/s11325-015-1176-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/10/2015] [Accepted: 03/31/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Numbers of single nucleotide polymorphisms (SNPs) were identified as risk factors for obstructive sleep apnea syndrome (OSAS) in the Chinese population; however, published articles drew incompatible or even contradictory results. OBJECTIVE The aim of this study was to investigate the susceptible SNPs and risk of OSAS in the Chinese population. METHODS We conducted a meta-analysis of seven polymorphisms and risk of OSAS based on 21 case-control studies. RESULTS The results of our study showed that tumor necrosis factor-α (TNF-α) -308 G/A (OR = 3.70, 95 % CI = 1.39-9.83), gene-linked polymorphic region (LPR) (OR = 0.57, 95 % CI = 0.41-0.79), and variable number tandem repeat (VNTR) of the 5-hydroxytryptamine transporter gene (5-HTT) (OR = 3.44, 95 % CI = 1.49-7.95) polymorphisms were associated with OSAS risk in the Chinese population, while there was no significant association between 5-hydroxytryptamine 2A receptor (5-HTR2A) 102C/T, 5-HTR2A A1438G, angiotensin-converting enzyme (ACE) insertion (I)/deletion (D), or leptin receptor (LEPR)-Gln 223Arg polymorphism and risk of OSAS in the Chinese population. CONCLUSIONS Our study demonstrated that TNF-α 308 G/A, 5-HTT LPR, and 5-HTT-VNTR polymorphisms were associated with OSAS risk, whereas little association was observed between 5-HTR2A 102C/T, 5-HTR2A A1438G, ACE I/D, or LEPR-Gln 223Arg polymorphism and risk of OSAS in the Chinese population.
Collapse
Affiliation(s)
- Fen Lan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, College of Medicine and Institute of Respiratory Diseases, Zhejiang University, Hangzhou, 310009, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, College of Medicine and Institute of Respiratory Diseases, Zhejiang University, Hangzhou, 310009, China.,Department of Respiratory Medicine, Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, 315020, China
| | - Jinkai Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, College of Medicine and Institute of Respiratory Diseases, Zhejiang University, Hangzhou, 310009, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, College of Medicine and Institute of Respiratory Diseases, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
6
|
Horner RL. Neural control of the upper airway: integrative physiological mechanisms and relevance for sleep disordered breathing. Compr Physiol 2013; 2:479-535. [PMID: 23728986 DOI: 10.1002/cphy.c110023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The various neural mechanisms affecting the control of the upper airway muscles are discussed in this review, with particular emphasis on structure-function relationships and integrative physiological motor-control processes. Particular foci of attention include the respiratory function of the upper airway muscles, and the various reflex mechanisms underlying their control, specifically the reflex responses to changes in airway pressure, reflexes from pulmonary receptors, chemoreceptor and baroreceptor reflexes, and postural effects on upper airway motor control. This article also addresses the determinants of upper airway collapsibility and the influence of neural drive to the upper airway muscles, and the influence of common drugs such as ethanol, sedative hypnotics, and opioids on upper airway motor control. In addition to an examination of these basic physiological mechanisms, consideration is given throughout this review as to how these mechanisms relate to integrative function in the intact normal upper airway in wakefulness and sleep, and how they may be involved in the pathogenesis of clinical problems such obstructive sleep apnea hypopnea.
Collapse
|
7
|
Association between the -1438G/A and T102C polymorphisms of 5-HT2A receptor gene and obstructive sleep apnea: a meta-analysis. Mol Biol Rep 2013; 40:6223-31. [PMID: 24065538 DOI: 10.1007/s11033-013-2734-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 09/14/2013] [Indexed: 01/12/2023]
Abstract
The serotonin 2A (5-HT2A) receptor has been implicated in obstructive sleep apnea (OSA). Single nucleotide polymorphisms (SNPs) in the 5-HT2A gene have been found in OSA, the most common being -1438G/A and T102C; however, studies of the association between 5-HT2A SNPs and OSA risk have reported inconsistent findings. A meta-analysis was performed to quantitatively review the association between -1438G/A and T102C SNPs and OSA. Five studies, including 791 subjects for -1438G/A genotype and 1,068 subjects for T102C genotype, were selected. Pooled data analysis of the -1438G/A genotype indicated a significantly increased OSA risk was associated with two variant genotypes (AA vs. AG+GG: OR 3.023, 95 % CI 2.169-4.213, P = 0.506 for heterogeneity; A allele carriers vs. GG: OR 1.938, 95 % CI 0.879-4.274, P = 0.012 for heterogeneity). Stratification analysis by gender supported the association in males, but not females. For the T102C genotype, no significantly increased OSA risk was associated with the two variant genotypes (CC vs. CT+TT: OR 1.065, 95 % CI 0.787-1.442, P = 0.361 for heterogeneity; C allele carriers vs. TT: OR 0.979, 95 % CI 0.737-1.3, P = 0.9 for heterogeneity).In conclusions, meta-analysis indicated that the -1438G/A, and not T102C, polymorphism of 5-HT2A is a positive risk factor of OSA, especially in males.
Collapse
|
8
|
de Carvalho TBO, Suman M, Molina FD, Piatto VB, Maniglia JV. Relationship of obstructive sleep apnea syndrome with the 5-HT2A receptor gene in Brazilian patients. Sleep Breath 2012; 17:57-62. [PMID: 22281949 DOI: 10.1007/s11325-012-0645-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 01/04/2012] [Accepted: 01/09/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Serotonin (5-HT) regulates a variety of visceral and physiological functions, including sleep. Polymorphisms in the 5-HT2A receptor gene can alter its transcription, affecting the number of receptors in the serotoninergic system, contributing to obstructive sleep apnea syndrome (OSAS). OBJECTIVE The aim of this study was to determine the prevalence of the 102T-C and -1438G-A polymorphisms in the 5-HTR2A gene in Brazilian patients with and without OSAS. SUBJECTS AND METHODS A cross-sectional study performed at the Otorhinolaryngology and Sleep Disorder Out Clinics, São José do Rio Preto Medical School, FAMERP. One hundred patients were examined as index cases and 100 persons as controls, of both genders to both groups. DNA was extracted from peripheral blood leukocytes, and the sites that encompassed both polymorphisms were amplified by PCR-RFLP. RESULTS There was a significant prevalence of the male gender in index cases compared with the control group gender (p < 0.0001). There was no significant genotypic difference in the 102T-C polymorphism between the case and control groups (p = 1.000). The AA genotype of the -1438G-A polymorphism was more prevalent in the patients with OSAS compared with the controls (OR, 2.3; CI 95% 1.20-4.38; p = 0.01). CONCLUSIONS There was no difference in the prevalence of the 102T-C polymorphism between patients with OSAS and the control group. Serotoninergic system dysfunction appeared to be related to OSAS. The -1438G-A polymorphism and OSAS are related in this studied Brazilian population.
Collapse
|
9
|
Abstract
Sleep-induced apnea and disordered breathing refers to intermittent, cyclical cessations or reductions of airflow, with or without obstructions of the upper airway (OSA). In the presence of an anatomically compromised, collapsible airway, the sleep-induced loss of compensatory tonic input to the upper airway dilator muscle motor neurons leads to collapse of the pharyngeal airway. In turn, the ability of the sleeping subject to compensate for this airway obstruction will determine the degree of cycling of these events. Several of the classic neurotransmitters and a growing list of neuromodulators have now been identified that contribute to neurochemical regulation of pharyngeal motor neuron activity and airway patency. Limited progress has been made in developing pharmacotherapies with acceptable specificity for the treatment of sleep-induced airway obstruction. We review three types of major long-term sequelae to severe OSA that have been assessed in humans through use of continuous positive airway pressure (CPAP) treatment and in animal models via long-term intermittent hypoxemia (IH): 1) cardiovascular. The evidence is strongest to support daytime systemic hypertension as a consequence of severe OSA, with less conclusive effects on pulmonary hypertension, stroke, coronary artery disease, and cardiac arrhythmias. The underlying mechanisms mediating hypertension include enhanced chemoreceptor sensitivity causing excessive daytime sympathetic vasoconstrictor activity, combined with overproduction of superoxide ion and inflammatory effects on resistance vessels. 2) Insulin sensitivity and homeostasis of glucose regulation are negatively impacted by both intermittent hypoxemia and sleep disruption, but whether these influences of OSA are sufficient, independent of obesity, to contribute significantly to the "metabolic syndrome" remains unsettled. 3) Neurocognitive effects include daytime sleepiness and impaired memory and concentration. These effects reflect hypoxic-induced "neural injury." We discuss future research into understanding the pathophysiology of sleep apnea as a basis for uncovering newer forms of treatment of both the ventilatory disorder and its multiple sequelae.
Collapse
Affiliation(s)
- Jerome A Dempsey
- The John Rankin Laboratory of Pulmonary Medicine, Departments of Population Health Sciences and of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
10
|
Broderick M, Guilleminault C. Neurological Aspects of Obstructive Sleep Apnea. Ann N Y Acad Sci 2008; 1142:44-57. [DOI: 10.1196/annals.1444.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Jordan AS, White DP. Pharyngeal motor control and the pathogenesis of obstructive sleep apnea. Respir Physiol Neurobiol 2007; 160:1-7. [PMID: 17869188 PMCID: PMC2705920 DOI: 10.1016/j.resp.2007.07.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 07/25/2007] [Accepted: 07/27/2007] [Indexed: 10/23/2022]
Abstract
The upper airway in patients with obstructive sleep apnea (OSA) is thought to collapse during sleep at least in part, because of a sleep related reduction in upper airway dilator muscle activity. Therefore, a comprehensive understanding of the neural regulation of these muscles is warranted. The dilator muscles can be classified in two broad categories; those that have respiratory related activity and those that fire constantly throughout the respiratory cycle. The motor control of these two groups likely differs with the former receiving input from respiratory neurons and negative pressure reflex circuits. The activity of both muscle groups is reduced shortly after sleep onset, indicating that both receive input from brainstem neurons involved in sleep regulation. In the apnea patient, this may lead to pharyngeal airway collapse. This review briefly describes the currently proposed sleep and respiratory neural pathways and how these circuits interact with the upper airway dilator muscle motorneurones, including recent evidence from animal studies.
Collapse
Affiliation(s)
- Amy S Jordan
- Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - David P White
- Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| |
Collapse
|
12
|
White DP. The pathogenesis of obstructive sleep apnea: advances in the past 100 years. Am J Respir Cell Mol Biol 2006; 34:1-6. [PMID: 16354749 DOI: 10.1165/rcmb.2005-0317oe] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- David P White
- Division of Sleep Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Sood S, Morrison JL, Liu H, Horner RL. Role of Endogenous Serotonin in Modulating Genioglossus Muscle Activity in Awake and Sleeping Rats. Am J Respir Crit Care Med 2005; 172:1338-47. [PMID: 16020803 DOI: 10.1164/rccm.200502-258oc] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Exogenous serotonin at the hypoglossal motor nucleus (HMN) stimulates genioglossus (GG) muscle activity. However, whether endogenous serotonin contributes to GG activation across natural sleep-wake states has not been determined, but is relevant given that serotonergic neurons have decreased activity in sleep and project to pharyngeal motoneurons. OBJECTIVES To determine the role of endogenous serotonin at the HMN in modulating GG activity across natural sleep-wake states. METHODS Ten rats were implanted with electroencephalogram and neck muscle electrodes to record sleep-wake states, and GG and diaphragm wires for respiratory muscle recordings. Microdialysis probes were implanted into the HMN for perfusion of artificial cerebrospinal fluid and the serotonin receptor antagonist mianserin (100 microM). MEASUREMENTS AND MAIN RESULTS In room air, there was no effect of mianserin on respiratory-related or tonic GG activities across sleep-wake states (p > 0.300). In hypercapnia, however, the normal declines in GG activity from non-REM to REM sleep, and wakefulness to REM sleep, were reduced with mianserin (p < 0.005). These data demonstrate a normally low endogenous serotonergic drive modulating GG activity unless augmented by reflex inputs. We also demonstrated a significant serotonergic drive modulating GG activity in vagotomized rats, but not in vagi-intact rats, under anesthesia, suggesting that previous results in reduced preparations may have been influenced by vagotomy. CONCLUSIONS The results show a minimal endogenous serotonergic drive at the HMN modulating GG activity across sleep-wake states, unless augmented by reflex inputs. This result has implications for pharmacologic strategies aiming to increase GG activity by manipulating endogenous serotonin in patients with obstructive sleep apnea.
Collapse
Affiliation(s)
- Sandeep Sood
- Department of Medicine, University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
14
|
Dehkordi O, Millis RM, Dennis GC, Coleman BR, Johnson SM, Changizi L, Ovid Trouth C. Alpha-7 and alpha-4 nicotinic receptor subunit immunoreactivity in genioglossus muscle motoneurons. Respir Physiol Neurobiol 2005; 145:153-61. [PMID: 15705531 DOI: 10.1016/j.resp.2004.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2004] [Indexed: 11/26/2022]
Abstract
In the present study, immunohistochemistry combined with retrograde labeling techniques were used to determine if hypoglossal motoneurons (HMNs), retrogradely labeled after cholera toxin B subunit (CTB) injection to the genioglossus muscle in rats, show immunoreactivity for alpha-7 and alpha-4 subunits of nicotinic acetylcholine receptors (nAChRs). CTB-positive HMNs projecting to the genioglossus muscle were consistently labeled throughout the rostrocaudal extent of the hypoglossal nuclei with the greatest labeling at and caudal to area postrema. Alpha-7 subunit immunoreactivity was found in 39.44+/-5.10% of 870 CTB-labeled motoneurons and the alpha-4 subunit in 51.01+/-3.71% of 983 CTB-positive neurons. Rostrally, the number of genioglossal motoneurons demonstrating immunoreactivity for the alpha-7 subunit was 45.85+/-10.04% compared to 34.96+/-5.11% at and caudal to area postrema (P>0.1). The number of genioglossal motoneurons that showed immunoreactivity for the alpha-4 subunit was 55.03+/-4.83% at and caudal to area postrema compared to 42.98+/-3.90% in rostral areas (P=0.074). These results demonstrate that nAChR immunoreactivity is present in genioglossal motoneurons and suggest a role for alpha-7 and alpha-4 subunits containing nAChRs in the regulation of upper airway patency.
Collapse
Affiliation(s)
- Ozra Dehkordi
- Department of Surgery, Howard University Hospital, 2041 Georgia Avenue, NW, Washington, DC 20060, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ogasa T, Ray AD, Michlin CP, Farkas GA, Grant BJB, Magalang UJ. Systemic Administration of Serotonin 2A/2C Agonist Improves Upper Airway Stability in Zucker Rats. Am J Respir Crit Care Med 2004; 170:804-10. [PMID: 15256396 DOI: 10.1164/rccm.200312-1674oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effects of [+/-]-2,5-dimethoxy-4-iodoaminophentamine, a serotonin(2A/2C) receptor agonist, on pharyngeal airflow mechanics were examined in isoflurane-anesthetized lean and obese Zucker rats. The pharyngeal pressure associated with flow limitation, maximum inspiratory flow, oronasal resistance, genioglossus muscle activity, and arterial blood pressure (BP) were measured before and after the intravenous administration of the agonist. A robust activation of the genioglossus muscle in all lean and obese rats was associated with decreased upper airway (UA) collapsibility (p < 0.05), unchanged maximum flow, and increased oronasal resistance (p < 0.05) in both groups. The changes in UA mechanics and BP after the drug were similar in lean and obese rats. The serotonin agonist had no effect on UA mechanics in a group of paralyzed (pancuronium bromide) rats, despite similar elevations in BP. There was a smaller decrease (p < 0.05) in UA collapsibility that was also associated with increased upstream resistance when the drug was administered after bilateral hypoglossal nerve transection. We conclude that systemic administration of a serotonin(2A/2C) receptor agonist improves UA collapsibility predominantly, but not exclusively, via stimulation of the hypoglossal nerves and also increases upstream resistance, at least in part, through activation of nonhypoglossal motoneuronal pools innervating the UA muscles.
Collapse
MESH Headings
- Airway Resistance/drug effects
- Amphetamines/pharmacology
- Amphetamines/therapeutic use
- Analysis of Variance
- Animals
- Blood Pressure/drug effects
- Denervation
- Diastole
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Hypoglossal Nerve/physiology
- Motor Neurons/drug effects
- Obesity/complications
- Pharyngeal Muscles/drug effects
- Pharyngeal Muscles/innervation
- Pharyngeal Muscles/physiopathology
- Rats
- Rats, Zucker
- Receptor, Serotonin, 5-HT2A/physiology
- Receptor, Serotonin, 5-HT2C/physiology
- Respiratory Mechanics/drug effects
- Serotonin 5-HT2 Receptor Agonists
- Serotonin Receptor Agonists/pharmacology
- Serotonin Receptor Agonists/therapeutic use
- Sleep Apnea, Obstructive/drug therapy
- Sleep Apnea, Obstructive/etiology
- Sleep Apnea, Obstructive/physiopathology
- Systole
- Thinness/complications
Collapse
Affiliation(s)
- Toshiyuki Ogasa
- Division of Pulmonary, Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | | | | | | | | | | |
Collapse
|
16
|
Veasey SC. Serotonin agonists and antagonists in obstructive sleep apnea: therapeutic potential. ACTA ACUST UNITED AC 2004; 2:21-9. [PMID: 14720019 DOI: 10.1007/bf03256636] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obstructive sleep apnea hypopnea syndrome (OSAHS) is a prevalent disorder associated with substantial cardiovascular and neurobehavioral morbidity. Yet this is a disorder for which there are no widely effective pharmacotherapies. The pathophysiology of obstructive sleep apnea namely, normal respiration in waking with disordered breathing only in sleep, suggests that this disorder should be readily amenable to drug therapy. Over the past 10 years, we have gained tremendous insight into the neurochemical mechanisms involved in state-dependent control of respiration. It is apparent from this work that there are many potential avenues for pharmacotherapies, including several seemingly conflicting directions for serotonergic therapies. Serotonin delivery is reduced to upper airway dilator motor neurons in sleep, and this contributes, at least in part, to sleep-related reductions in dilator muscle activity and upper airway obstruction. The dilator motor neuron post-synaptic serotonin receptors are 5-HT(2A) and 5-HT(2C) subtypes, and in adults the presynaptic 5-HT receptor in motor nuclei is 5-HT(1B), an inhibitory receptor. Serotonin receptors are also found within central respiratory neuronal groups, and these receptor subtypes include 5-HT(1A) (inhibitory) and 5-HT(2) receptors. Peripherally, stimulation of 5-HT(2A), 5-HT(2C) and 5-HT(3) receptor subtypes have an inhibitory effect on respiration via action at the nodose ganglion. Many of these receptor subtypes and their signal transduction pathways may be affected by oxidative stress in obstructive sleep apnea. These alterations will make finding drug therapies for sleep apnea more challenging, but not insurmountable. Future directions are suggested for elucidating safe, well-tolerated serotonergic drugs for this disorder. Tryptophan was one of the first serotonergic drugs tested for OSAHS. This drug was withdrawn from the market as a result of reports linking tryptophan use with eosinophilic myalgia syndrome and life-threatening pulmonary hypertension. Newer drugs with serotonergic activity tested in persons with sleep-disordered breathing include buspirone, fluoxetine and paroxetine. Trials are presently being conducted to evaluate the effects of 5-HT(2A) and 5-HT(3) antagonists on OSAHS. Many of the drugs tested have not shown significant improvement in sleep apnea. However, with continued effort to elucidate the pharmacology of neurochemical control of state-dependent changes in respiratory control, the availability of pharmacological therapy for this disorder is not too far away.
Collapse
Affiliation(s)
- Sigrid C Veasey
- Department of Medicine, Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104-4283, USA.
| |
Collapse
|
17
|
Sood S, Liu X, Liu H, Nolan P, Horner RL. 5-HT at hypoglossal motor nucleus and respiratory control of genioglossus muscle in anesthetized rats. Respir Physiol Neurobiol 2004; 138:205-21. [PMID: 14609511 DOI: 10.1016/j.resp.2003.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Serotonin (5-HT) from medullary raphe neurons excites hypoglossal motoneurons innervating genioglossus (GG) muscle. Since some raphe neurons also show increased activity in hypercapnia, we tested the hypothesis that serotonergic mechanisms at the hypoglossal motor nucleus (HMN) modulate GG activity and responses to CO2. Seventeen urethane-anesthetized, tracheotomized and vagotomized rats were studied. Microdialysis probes were used to deliver mianserin (5-HT receptor antagonist, 0 and 0.1 mM) or 5-HT (eight doses, 0-50 mM) to the HMN during room air or CO2-stimulated breathing. Mianserin decreased respiratory-related GG activity during room air and CO2-stimulated breathing (P<0.001), and also suppressed GG responses to CO2 (P=0.05). In contrast, GG activity was increased by 5-HT at the HMN, and was further increased in hypercapnia (P<0.02). However, 5-HT increased respiratory-related GG activity at levels lower (1 mM) than those eliciting tonic GG activity (10-30 mM 5-HT). The results show that 5-HT at the HMN contributes to the respiratory control of GG muscle.
Collapse
Affiliation(s)
- Sandeep Sood
- Department of Medicine, University of Toronto, Room 6368, Medical Sciences Building, 1 Kings College Circle, Toronto, Ont., Canada M5S 1A8
| | | | | | | | | |
Collapse
|
18
|
Behan M, Zabka AG, Thomas CF, Mitchell GS. Sex steroid hormones and the neural control of breathing. Respir Physiol Neurobiol 2003; 136:249-63. [PMID: 12853015 DOI: 10.1016/s1569-9048(03)00086-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review evidence that sex steroid hormones including estrogen, progesterone and testosterone are involved in the central neural control of breathing. Sex hormones may exert their effects on respiratory motoneurons via neuromodulators, in particular, the serotonergic system. Recent studies have shown that levels of serotonin (5HT) in the hypoglossal and phrenic nuclei are greater in female than in male rats. Serotonin-dependent plasticity in hypoglossal and phrenic motor output also differs in male and female rats. Changing levels of gonadal hormones throughout the estrus cycle coincide with changing levels of 5HT in respiratory motor nuclei, and gonadectomy in male rats results in a decrease in 5HT-dependent plasticity in respiratory motor output. We speculate that sex steroid hormones are critically involved in adaptations in the neural control of breathing throughout life, and that decreasing levels of these hormones with increasing age may have a negative influence on the respiratory control system in response to challenge.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
Obstructive sleep apnea-hypopnea syndrome occurs because of various combinations of anatomic, mechanical, and neurologic anomalies that jeopardize ventilation only when normal state-dependent reductions in drive to upper airway respiratory muscles and pump muscles occur. A well thought out and carefully described infrastructure of the normal and abnormal physiology in persons with OSAHS has been developed over the past few decades, which enables the development of innovative and largely effective therapies. The most recent data complement the infrastructure with the neurochemical changes underlying the state-dependent respiratory disorder and observations that the disease process itself can impair muscles, neural inputs, and soft tissue in a manner that has the potential to worsen disease. Oxidative and nitrosative stress from the repeated oxyhemoglobin desaturations and re-oxygenations is implicated in the injury to these tissues. An improved understanding of the mechanisms through which OSAHS progresses may lead to alternative therapies and aid in the identification of persons at risk for disease progression.
Collapse
Affiliation(s)
- Sigrid Carlen Veasey
- Division of Sleep Medicine, University of Pennsylvania School of Medicine, 3600 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Chamberlin NL, Bocchiaro CM, Greene RW, Feldman JL. Nicotinic excitation of rat hypoglossal motoneurons. Neuroscience 2003; 115:861-70. [PMID: 12435424 DOI: 10.1016/s0306-4522(02)00454-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hypoglossal motoneurons (HMNs), which innervate the tongue muscles, are involved in several important physiological functions, including the maintenance of upper airway patency. The neural mechanisms that affect HMN excitability are therefore important determinants of effective breathing. Obstructive sleep apnea is a disorder characterized by recurrent collapse of the upper airway that is likely due to decline of pharyngeal motoneuron activity during sleep. Because cholinergic neuronal activity is closely coupled to wake and sleep states, we tested the effects and pharmacology of nicotinic acetylcholine receptor (nAChR) activation on HMNs. We made intracellular recordings from HMNs in medullary slices from neonatal rats and found that local application of the nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium iodide, excited HMNs by a Ca(2+)-sensitive, and TTX-insensitive inward current that was blocked by dihydro-beta-erythroidine (IC(50): 19+/-3 nM), methyllycaconitine (IC(50): 32+/-7 nM), and mecamylamine (IC(50): 88+/-11 nM), but not by alpha-bungarotoxin (10 nM). This is consistent with responses being mediated by postsynaptic nAChRs that do not contain the alpha7 subunit. These results suggest that nAChR activation may contribute to central maintenance of upper airway patency and that the decline in firing rate of cholinergic neurons during sleep could potentially disfacilitate airway dilator muscle activity, contributing to airway obstruction.
Collapse
Affiliation(s)
- N L Chamberlin
- Department of Neurology, Beth Israel Deaconess Medical Center, 77 Ave Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
21
|
Berry RB, Hayward LF. Selective augmentation of genioglossus electromyographic activity by L-5-hydroxytryptophan in the rat. Pharmacol Biochem Behav 2003; 74:877-82. [PMID: 12667902 DOI: 10.1016/s0091-3057(03)00016-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study was undertaken to determine the effects of intravenous L-5 hydroxytryptophan (5HTP), the immediate precursor of serotonin, on the electromyographic (EMG) activity of the genioglossus (gEMG) and diaphragm (dEMG) in the spontaneously breathing, vagotomized anesthetized male Sprague-Dawley rats (urethane 1.2-1.4 g/kg). Sequential administration of saline and 0.05-, 0.1-, 0.2-, 1-, and 5-mg/kg doses of 5HTP were given intravenously every 15 min. There was a significant increase (percent change from predrug) in both gEMG and dEMG amplitude at 1.0 and 5.0 mg/kg of 5HTP compared to saline. The percent increase in gEMG induced by 1.0 and 5.0 mg/kg 5HTP however was significantly greater than the increase in dEMG. There was no significant change in heart rate (HR), mean arterial blood pressure (MAP), or respiratory rate at any of the doses of 5HTP tested. These results suggest that intravenous 5HTP at doses of 1 and 5 mg/kg preferentially increased the gEMG in the anesthetized rat compared to the dEMG. We hypothesize that at appropriate doses serotonin precursors could increase genioglossus activity in humans during sleep and help maintain upper-airway patency.
Collapse
Affiliation(s)
- Richard B Berry
- Malcom Randall VAMC, University of Florida College of Medicine, Gainesville, FL, USA.
| | | |
Collapse
|
22
|
Fenik P, Veasey SC. Pharmacological characterization of serotonergic receptor activity in the hypoglossal nucleus. Am J Respir Crit Care Med 2003; 167:563-9. [PMID: 12406845 DOI: 10.1164/rccm.200202-107oc] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
State-dependent reductions in serotonin delivery to upper airway dilator motoneuron activity may contribute to sleep apnea. The functional significance of serotonin receptor subtypes implicated in excitation of dilator motor neurons was evaluated in anesthetized, paralyzed, mechanically ventilated adult rats (n = 108). The effects of antagonists selective for serotonin receptor subtypes 2A, 2C, or 7 on intrinsic hypoglossal activity and on serotonin agonist (serotonin, 5-carboxamidotryptamine maleate, and RO-600175) dose responses were characterized. All drugs were injected unilaterally into the hypoglossal nucleus. The 2A antagonist, MDL-100907, dropped intrinsic hypoglossal nerve respiratory activity by 61 +/- 6% (p < 0.001) and suppressed serotonin excitation of hypoglossal nerve activity (p < 0.05). The 2C antagonist, SB-242084, dropped hypoglossal nerve activity 17 +/- 6% (p < 0.05) and suppressed the dose-response curve for the 2C agonist. Rapid desensitization occurred with the 2C agonist only (p < 0.05). The 7 antagonist, SB-269970, had no effect on either intrinsic activity or agonist responses. We conclude that serotonin 2A is the predominant excitatory serotonin receptor subtype at hypoglossal motor neurons. The serotonin 2C excitatory effects are of lower magnitude and are associated with rapid desensitization. There is no evidence for serotonin 7 activity in the hypoglossal nucleus. This characterization of serotonin receptor subtypes in the hypoglossal nucleus provides a focus for the development of pharmacotherapies for sleep apnea.
Collapse
Affiliation(s)
- Polina Fenik
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
23
|
Zhan G, Shaheen F, Mackiewicz M, Fenik P, Veasey SC. Single cell laser dissection with molecular beacon polymerase chain reaction identifies 2A as the predominant serotonin receptor subtype in hypoglossal motoneurons. Neuroscience 2002; 113:145-54. [PMID: 12123693 DOI: 10.1016/s0306-4522(02)00137-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We hypothesize that sleep state-dependent withdrawal of serotonin (5-hydroxytryptamine, 5-HT) at upper airway (UAW) dilator motoneurons contributes significantly to sleep-related suppression of dilator muscle activity in obstructive sleep apnea. Identification of 5-HT receptor subtypes involved in postsynaptic facilitation of UAW motoneuron activity may provide pharmacotherapies for this prevalent disorder. We have adapted two assays to provide semi-quantitative measurements of mRNA copy numbers for 5-HT receptor subtypes in single UAW motoneurons. Specifically, soma of 111 hypoglossal (XII) motoneurons in 10 adult male rats were captured using a laser dissection microscope, and then used individually in single round molecular beacon polymerase chain reaction (PCR) for real-time quantitation of 5-HT(2A), 5-HT(2C), 5-HT(3), 5-HT(4), 5-HT(5A), 5-HT(5B), 5-HT(6) or 5-HT(7) receptor. Receptor mRNA copy numbers from single XII motoneurons were compared to control samples from within the XII nucleus and lateral medulla. All 20 motoneuronal soma assayed for the 5-HT(2A) receptor had measurable copy numbers (7028+/-2656 copies/cell). In contrast, copy numbers for the 5-HT(2A) receptor in XII non-motoneuronal (n=17) and lateral medulla (n=15) samples were 81+/-51 copies and 83+/-35 copies, respectively, P<0.05. Seven of 13 XII motoneurons assayed had measurable 5-HT(2C) receptor copy numbers of mRNA (287+/-112 copies/cell). XII soma had minimal 5-HT(3), 5-HT(4), 5-HT(5A), 5-HT(5B), 5-HT(6) or 5-HT(7) receptor mRNA. 5-HT(2A) receptor mRNA presence within XII motoneurons was confirmed with digoxigenin-labeled in situ hybridization. In summary, combined use of laser dissection and molecular beacon PCR revealed 5-HT(2A) receptor as the predominant 5-HT receptor mRNA in XII motoneurons, and identified small quantities of 5-HT(2C) receptor. This information will allow a more complete understanding of serotonergic control of respiratory activity.
Collapse
Affiliation(s)
- G Zhan
- Center for Sleep and Respiratory Neurobiology, 972 Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
24
|
Jelev A, Sood S, Liu H, Nolan P, Horner RL. Microdialysis perfusion of 5-HT into hypoglossal motor nucleus differentially modulates genioglossus activity across natural sleep-wake states in rats. J Physiol 2001; 532:467-81. [PMID: 11306665 PMCID: PMC2278543 DOI: 10.1111/j.1469-7793.2001.0467f.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Serotonin (5-hydroxytryptamine, 5-HT) excites hypoglossal (XII) motoneurons in reduced preparations, and it has been suggested that withdrawal of 5-HT may underlie reduced genioglossus (GG) muscle activity in sleep. However, systemic administration of 5-HT agents in humans has limited effects on GG activity. Whether 5-HT applied directly to the XII motor nucleus increases GG activity in an intact preparation either awake or asleep has not been tested. 2. The aim of this study was to develop a novel freely behaving animal model for in vivo microdialysis of the XII motor nucleus across sleep-wake states, and test the hypothesis that 5-HT application will increase GG activity. 3. Eighteen rats were implanted with electroencephalogram and neck muscle electrodes to record sleep-wake states, and GG and diaphragm electrodes for respiratory muscle recording. Microdialysis probes were implanted into the XII motor nucleus and perfused with artificial cerebrospinal fluid (ACSF) or 10 mM 5-HT. 4. Normal decreases in GG activity occurred from wakefulness to non-rapid eye movement (non-REM) and REM sleep with ACSF (P < 0.01). Compared to ACSF, 5-HT caused marked GG activation across all sleep-wake states (increases of 91-251 %, P < 0.015). Importantly, 5-HT increased sleeping GG activity to normal waking levels for as long as 5-HT was applied (3-5 h). Despite tonic stimulation by 5-HT, periods of phasic GG suppression and excitation occurred in REM sleep compared with non-REM. 5. The results show that sleep-wake states differentially modulate GG responses to 5-HT at the XII motor nucleus. This animal model using in vivo microdialysis of the caudal medulla will enable the determination of neural mechanisms underlying pharyngeal motor control in natural sleep.
Collapse
Affiliation(s)
- A Jelev
- Departments of Medicine and Physiology, University of Toronto, Toronto, Canada, M5S 1A8
| | | | | | | | | |
Collapse
|
25
|
Sunderram J, Parisi RA, Strobel RJ. Serotonergic stimulation of the genioglossus and the response to nasal continuous positive airway pressure. Am J Respir Crit Care Med 2000; 162:925-9. [PMID: 10988107 DOI: 10.1164/ajrccm.162.3.9907077] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In obstructive sleep apnea (OSA), abnormal pharyngeal collapsibility may be offset by increased mechanoreflex-mediated activity of dilator muscles while awake, but this reflex is inhibited during sleep and during application of nasal continuous positive airway pressure (CPAP). Direct activation of upper airway (UA) motor neurons in the hypoglossal nucleus by a selective serotonin reuptake inhibitor (SSRI), paroxetine hydrochloride, may increase genioglossal electromyographic (EMG) activity (EMGgg) in a manner resistant to mechanoreflex inhibition. We studied the effects of paroxetine on EMGgg using an intraoral surface electrode during eupnea or room air breathing (RA), hypercapnia (HYP), and CPAP application in the presence of hypercapnia (CPAP + HYP) in 11 normal volunteers, using a double-blind, placebo-controlled crossover design. After 5 d of paroxetine, EMGgg activity increased significantly within each condition (p = 0.02). EMGgg during the conditions of HYP and HYP + CPAP were significantly greater than during RA for both placebo and paroxetine treatments (p = 0.006). EMGgg activity in HYP persisted during HYP + CPAP on paroxetine (183% versus 182% of placebo, respectively). We conclude that paroxetine produces an augmentation in EMGgg in normal subjects during wakefulness and that this effect persists during mechanoreflex inhibition. This is consistent with a central serotonergic effect.
Collapse
Affiliation(s)
- J Sunderram
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | | | | |
Collapse
|
26
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
27
|
Fenik V, Kubin L, Okabe S, Pack AI, Davies RO. Differential sensitivity of laryngeal and pharyngeal motoneurons to iontophoretic application of serotonin. Neuroscience 1997; 81:873-85. [PMID: 9316035 DOI: 10.1016/s0306-4522(97)00215-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Serotonergic neurons decrease their activity during sleep, especially rapid eye movement sleep, thereby reducing their facilitatory effect on upper airway motoneurons. The magnitude of teh sleep-related loss of tone varies among upper airway muscles (e.g., pharyngeal dilator motoneurons are more suppressed than laryngeal motoneurons). We hypothesized that these differences may be related to the sensitivity of different groups of upper airway motoneurons to serotonin. Experiments were done on decerebrate, vagotomized, paralysed and artificially-ventilated cats. Hypoglossal and laryngeal motoneurons were recorded extracellularly using five-barrel pipettes filled with: serotonin, glutamate and methysergide (serotonergic antagonist) for iontophoresis, and NaCl for recording and current balancing. All but two of the 65 hypoglossal motoneurons (45 inspiratory, 10 expiratory, 10 tonic) and 27 out of 32 laryngeal motoneurons (14 inspiratory, 18 expiratory) were excited by serotonin, and the excitation was abolished by methysergide. To compare the magnitude of the excitatory effect among distinct motoneuronal groups, we applied small ejection currents in a standardized manner (+15 nA for 3 min; 10 mM serotonin in 150 NaCl) onto spontaneously active motoneurons (13 inspiratory hypoglossal, 11 inspiratory laryngeal and 11 expiratory laryngeal). Serotonin increased the number of spikes per respiratory burst of inspiratory hypoglossal motoneurons from 19 +/- 4.0 (S.E.M.) to 35 +/- 4.8, of inspiratory laryngeal motoneurons from 44 +/- 8.3 to 55 +/- 8.8, and of expiratory laryngeal motoneurons from 23 +/- 4.8 to 33 +/- 6.2. The relative increases in activity (to 220% +/- 24, 147% +/- 23 and 148% +/- 9 of control, respectively) were significantly higher in hypoglossal than in laryngeal motoneurons. In addition, the excitatory effect developed significantly faster in hypoglossal than in laryngeal motoneurons. Methysergide reduced the spontaneous activity of about half the hypoglossal and laryngeal motoneurons to 66% +/- 5 of control. Thus, the sensitivity to the excitatory effects of serotonin varies among different pools of upper airway motoneurons. These differences correlate with the pattern of airway muscle hypotonia seen during sleep.
Collapse
Affiliation(s)
- V Fenik
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
The activity of brain serotonergic neurons in both the pontine-mesencephalic and medullary groups is positively correlated with the level of behavioral arousal and/or the behavioral state. This, in turn, appears to be related to the level of tonic motor activity, especially as manifested in antigravity muscles and other muscle groups associated with gross motor activity. In addition, a subset of serotonergic neurons displays a further increase in activity in association with repetitive, central pattern generator mediated responses. Accumulating evidence indicates that this relation to motor activity is related both to the co-activation of the sympathetic nervous system and to the modulation of afferent inputs.
Collapse
Affiliation(s)
- B L Jacobs
- Program in Neuroscience, Princeton University, New Jersey 08544-1010, USA.
| | | |
Collapse
|