1
|
Golovchenko VV, Khlopin VA, Patova OA, Vityazev FV, Dmitrenok AS, Shashkov AS. Structural characterization of arabinogalactan-II and pectin from Urtica cannabina. Carbohydr Polym 2025; 348:122868. [PMID: 39562131 DOI: 10.1016/j.carbpol.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Comparative analysis of extracellular and cell wall glycans from Urtica cannabina leaves was performed using chemical methods, GC, GC-MS, 1D, and 2D NMR spectroscopy. The structures of extracellular AG-II and cell wall AG-II are similar. The units are typical for AG-IIs: β-GlcpA-4-OMe-(1→, Rhap-(1 → 4)-β-GlcpA-(1→, attached to β-Galp at O-6, as well as arabinan chains attached to β-Galp at O-3. A single Araf and a trisaccharide formed by 2,5-Araf and two terminal Araf form short arabinan side chains in AG-II. 1,5-arabinan with a backbone substituted by a single Araf at O-3 was identified only in the side chains of cell wall AG-II. The side chains can be attached to O-3 and O-6 of the same β-Galp to form a bifurcated AG side chain. The backbone of AG-II is formed by 1,6- rather than 1,3-linked Galp, although it does include some 1,3-Galp. The high content of 3,6-Galp shows the highly branched nature of the AG carbohydrate chains. From the cell wall, AGP was extracted together with pectin, the simultaneous elution of which from both DEAE-cellulose and Sepharose may indicate a link between them.
Collapse
Affiliation(s)
- Victoria V Golovchenko
- Institute of Physiology of Komi Science Centre of The Urals Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50, Pervomaiskaya str., 167982 Syktyvkar, Russia.
| | - Victor A Khlopin
- Institute of Physiology of Komi Science Centre of The Urals Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50, Pervomaiskaya str., 167982 Syktyvkar, Russia
| | - Olga A Patova
- Institute of Physiology of Komi Science Centre of The Urals Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50, Pervomaiskaya str., 167982 Syktyvkar, Russia
| | - Fedor V Vityazev
- Institute of Physiology of Komi Science Centre of The Urals Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50, Pervomaiskaya str., 167982 Syktyvkar, Russia
| | - Andrey S Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prospect, Moscow 119991, Russia
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prospect, Moscow 119991, Russia
| |
Collapse
|
2
|
Plouhinec L, Zhang L, Pillon A, Haon M, Grisel S, Navarro D, Black I, Neugnot V, Azadi P, Urbanowicz B, Berrin JG, Lafond M. Unlocking soybean meal pectin recalcitrance using a multi-enzyme cocktail approach. Sci Rep 2025; 15:1716. [PMID: 39799163 PMCID: PMC11724913 DOI: 10.1038/s41598-024-83289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
Pectin is a complex plant heteropolysaccharide whose structure and function differ depending on its source. In animal feed, breaking down pectin is essential, as its presence increases feed viscosity and reduces nutrient absorption. Soybean meal, a protein-rich poultry feed ingredient, contains significant amounts of pectin, the structure of which remains unclear. Consequently, the enzyme activities required to degrade soybean meal pectin and how they interact are still open questions. In this study, we produced 15 recombinant fungal carbohydrate-active enzymes (CAZymes) identified from fungal secretomes acting on pectin. After observing that these enzymes were not active on soybean meal pectin when used alone, we developed a semi-miniaturized method to evaluate their effect as multi-activity cocktails. We designed and tested 12 enzyme pools, containing up to 15 different CAZymes, using several hydrolysis markers. Thanks to our multiactivity enzymatic approach combined with a Pearson correlation matrix, we identified 10 fungal CAZymes efficient on soybean meal pectin, 9 of which originate from Talaromyces versatilis. Based on enzyme specificity and linkage analysis, we propose a structural model for soybean meal pectin. Our findings underscore the importance of combining CAZymes to improve the degradation of agricultural co-products.
Collapse
Affiliation(s)
- Lauriane Plouhinec
- BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France
- Adisseo France S.A.S, CINAbio, Toulouse, France
| | - Liang Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Alexandre Pillon
- BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France
- INRAE, Aix-Marseille Univ, 3PE Platform, Marseille, France
| | - Mireille Haon
- BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France
- INRAE, Aix-Marseille Univ, 3PE Platform, Marseille, France
| | - Sacha Grisel
- BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France
- INRAE, Aix-Marseille Univ, 3PE Platform, Marseille, France
| | - David Navarro
- BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France
- INRAE, Aix Marseille Univ, CIRM-CF, Centre International des Ressources Microbiennes- Champignons Filamenteux, Marseille, France
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, Athens, GA, 30602, USA
| | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, Athens, GA, 30602, USA
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Jean-Guy Berrin
- BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France.
| | - Mickael Lafond
- BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France.
| |
Collapse
|
3
|
Most of the rhamnogalacturonan-I from cultured Arabidopsis cell walls is covalently linked to arabinogalactan-protein. Carbohydr Polym 2022; 301:120340. [DOI: 10.1016/j.carbpol.2022.120340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
4
|
Effect of applying elicitors to Vitis vinifera L. cv. Monastrell at different ripening times on the complex carbohydrates of the resulting wines. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04053-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Li SY, Duan CQ, Han ZH. Grape polysaccharides: compositional changes in grapes and wines, possible effects on wine organoleptic properties, and practical control during winemaking. Crit Rev Food Sci Nutr 2021; 63:1119-1142. [PMID: 34342521 DOI: 10.1080/10408398.2021.1960476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Polysaccharides present in grapes interact with wine sensory-active compounds (polyphenols and volatile compounds) via different mechanisms and can affect wine organoleptic qualities such as astringency, color and aroma. Studies on the role that grape polysaccharides play in wines are reviewed in this paper. First, the composition of grape polysaccharides and their changes during grape ripening, winemaking and aging are introduced. Second, different interaction mechanisms of grape polysaccharides and wine sensory-active compounds (flavanols, anthocyanins and volatiles) are introduced, and the possible effects on wine astringency, color and aroma caused by these interactions are illustrated. Finally, the control of the grape polysaccharide content in practice is discussed, including classical winemaking methods (applying different maceration enzymes, temperature control, co-fermentation, blending), modern vinification technologies (pulsed electric field, ultrasound treatment), and the development of new grape polysaccharide products.
Collapse
Affiliation(s)
- Si-Yu Li
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Beijing, China.,College of Horticulture, China Agricultural University, Beijing, China.,Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Zhen-Hai Han
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Beijing, China.,College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Abstract
The human gut microbiota (HGM) contributes to the physiology and health of its host. The health benefits provided by dietary manipulation of the HGM require knowledge of how glycans, the major nutrients available to this ecosystem, are metabolized. Arabinogalactan proteins (AGPs) are a ubiquitous feature of plant polysaccharides available to the HGM. Although the galactan backbone and galactooligosaccharide side chains of AGPs are conserved, the decorations of these structures are highly variable. Here, we tested the hypothesis that these variations in arabinogalactan decoration provide a selection mechanism for specific Bacteroides species within the HGM. The data showed that only a single bacterium, B. plebeius, grew on red wine AGP (Wi-AGP) and seaweed AGP (SW-AGP) in mono- or mixed culture. Wi-AGP thus acts as a privileged nutrient for a Bacteroides species within the HGM that utilizes marine and terrestrial plant glycans. The B. plebeius polysaccharide utilization loci (PULs) upregulated by AGPs encoded a polysaccharide lyase, located in the enzyme family GH145, which hydrolyzed Rha-Glc linkages in Wi-AGP. Further analysis of GH145 identified an enzyme with two active sites that displayed glycoside hydrolase and lyase activities, respectively, which conferred substrate flexibility for different AGPs. The AGP-degrading apparatus of B. plebeius also contained a sulfatase, BpS1_8, active on SW-AGP and Wi-AGP, which played a pivotal role in the utilization of these glycans by the bacterium. BpS1_8 enabled other Bacteroides species to access the sulfated AGPs, providing a route to introducing privileged nutrient utilization into probiotic and commensal organisms that could improve human health. IMPORTANCE Dietary manipulation of the HGM requires knowledge of how glycans available to this ecosystem are metabolized. The variable structures that decorate the core component of plant AGPs may influence their utilization by specific organisms within the HGM. Here, we evaluated the ability of Bacteroides species to utilize a marine and terrestrial AGP. The data showed that a single bacterium, B. plebeius, grew on Wi-AGP and SW-AGP in mono- or mixed culture. Wi-AGP is thus a privileged nutrient for a Bacteroides species that utilizes marine and terrestrial plant glycans. A key component of the AGP-degrading apparatus of B. plebeius is a sulfatase that conferred the ability of the bacterium to utilize these glycans. The enzyme enabled other Bacteroides species to access the sulfated AGPs, providing a route to introducing privileged nutrient utilization into probiotic and commensal organisms that could improve human health.
Collapse
|
7
|
Pascotto K, Leriche C, Caillé S, Violleau F, Boulet JC, Geffroy O, Levasseur-Garcia C, Cheynier V. Study of the relationship between red wine colloidal fraction and astringency by asymmetrical flow field-flow fractionation coupled with multi-detection. Food Chem 2021; 361:130104. [PMID: 34087570 DOI: 10.1016/j.foodchem.2021.130104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/17/2023]
Abstract
Macromolecules including condensed tannins and polysaccharides impact wine taste and especially astringency. Asymmetrical Flow-Field-Flow-Fractionation (AF4) coupled to UV detection (UV), multi-angle light scattering (MALS) and refractive index detection (dRI) has been proposed to separate red wine colloids. The present work aimed at relating AF4-mutidetection profiles with red wine astringency. Fifty commercial red wines characterized by a trained sensory panel were analysed by AF4-UV-MALS-dRI and UV-visible spectroscopy. The analytical data set was built by selecting the three variables most predictive of the astringency score from each table (UV, dRI, MALS, Mw distribution, and UV-visible spectra of whole wine, permeate and retentate A4F fractions) and analysed by principal component analysis. Red wine astringency was more related to variables extracted from the AF4 data than to UV- absorbance of the wine or permeate, confirming the relevance of AF4-multidetection for analysis of the colloidal fraction involved in this perception.
Collapse
Affiliation(s)
- Kevin Pascotto
- Plateforme TFFFC, Université de Toulouse, INP-PURPAN, Toulouse, France; Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, Toulouse, France
| | | | - Soline Caillé
- SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France
| | - Frédéric Violleau
- Plateforme TFFFC, Université de Toulouse, INP-PURPAN, Toulouse, France; Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, Toulouse, France
| | - Jean-Claude Boulet
- SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France; INRAE, PROBE Research Infrastructure, Polyphenol Analytical Facility, Montpellier, France.
| | - Olivier Geffroy
- Plateforme TFFFC, Université de Toulouse, INP-PURPAN, Toulouse, France
| | | | | |
Collapse
|
8
|
Jones-Moore HR, Jelley RE, Marangon M, Fedrizzi B. The polysaccharides of winemaking: From grape to wine. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Přerovská T, Henke S, Bleha R, Spiwok V, Gillarová S, Yvin JC, Ferrières V, Nguema-Ona E, Lipovová P. Arabinogalactan-like Glycoproteins from Ulva lactuca (Chlorophyta) Show Unique Features Compared to Land Plants AGPs. JOURNAL OF PHYCOLOGY 2021; 57:619-635. [PMID: 33338254 DOI: 10.1111/jpy.13121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) encompass a diverse group of plant cell wall proteoglycans, which play an essential role in plant development, signaling, plant-microbe interactions, and many others. Although they are widely distributed throughout the plant kingdom and extensively studied, they remain largely unexplored in the lower plants, especially in seaweeds. Ulva species have high economic potential since various applications were previously described including bioremediation, biofuel production, and as a source of bioactive compounds. This article presents the first experimental confirmation of AGP-like glycoproteins in Ulva species and provides a simple extraction protocol of Ulva lactuca AGP-like glycoproteins, their partial characterization and unique comparison to scarcely described Solanum lycopersicum AGPs. The reactivity with primary anti-AGP antibodies as well as Yariv reagent showed a great variety between Ulva lactuca and Solanum lycopersicum AGP-like glycoproteins. While the amino acid analysis of the AGP-like glycoproteins purified by the β-d-glucosyl Yariv reagent showed a similarity between algal and land plant AGP-like glycoproteins, neutral saccharide analysis revealed unique glycosylation of the Ulva lactuca AGP-like glycoproteins. Surprisingly, arabinose and galactose were not the most prevalent monosaccharides and the most outstanding was the presence of 3-O-methyl-hexose, which has never been described in the AGPs. The exceptional structure of the Ulva lactuca AGP-like glycoproteins implies a specialized adaptation to the marine environment and might bring new insight into the evolution of the plant cell wall.
Collapse
Affiliation(s)
- Tereza Přerovská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000, Rennes, France
| | - Svatopluk Henke
- Department of Carbohydrates and Cerials, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Roman Bleha
- Department of Carbohydrates and Cerials, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Simona Gillarová
- Department of Carbohydrates and Cerials, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Jean-Claude Yvin
- Centre Mondial de l'Innovation Roullier, Laboratoire de Nutrition Végétal, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000, Rennes, France
| | - Eric Nguema-Ona
- Centre Mondial de l'Innovation Roullier, Laboratoire de Nutrition Végétal, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Petra Lipovová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| |
Collapse
|
10
|
Osorio-Macías DE, Song D, Thuvander J, Ferrer-Gallego R, Choi J, Peñarrieta JM, Nilsson L, Lee S, Bergenståhl B. Fractionation of Nanoparticle Matter in Red Wines Using Asymmetrical Flow Field-Flow Fractionation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14564-14576. [PMID: 33236630 PMCID: PMC7735732 DOI: 10.1021/acs.jafc.9b07251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 10/02/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
The particle matter of wine is mainly composed of wine colloids and macromolecules. The present work develops a methodology using asymmetrical flow field-flow fractionation coupled with multi-angle light scattering, differential refractive index detector, and ultraviolet detector (AsFlFFF-MALS-dRI-UV) for the fractionation and determination of the molar mass, the hydrodynamic radius, and the apparent densities of the aggregates and macromolecules present in wine samples. The results from a set of six Argentinian high-altitude wines showed two main populations: the first population composed of wine colloids with higher UV-specific absorptivity and the second population composed of polysaccharides, such as arabinogalactans. The conformation results showed that population 1 consists of small and dense particles, while population 2 showed high molar masses and lower densities. The results demonstrated the use of AsFlFFF as a new, effective method for the fractionation and characterization of wine colloids and wine macromolecules in red wines with further potential applications.
Collapse
Affiliation(s)
- Daniel E. Osorio-Macías
- Department of Food Technology, Engineering and Nutrition, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
- School of Chemistry, Faculty of Pure and Natural Sciences, Universidad Mayor de San Andrés, Post Office Box 303, La Paz, Bolivia
| | - Dongsup Song
- Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea
| | - Johan Thuvander
- Department of Chemical Engineering, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
| | - Raúl Ferrer-Gallego
- Centro Tecnológico del Vino (VITEC), Carretera de Porrera, km. 1, 43730 Falset, Spain
| | - Jaeyeong Choi
- Department of Food Technology, Engineering and Nutrition, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
| | - J. Mauricio Peñarrieta
- School of Chemistry, Faculty of Pure and Natural Sciences, Universidad Mayor de San Andrés, Post Office Box 303, La Paz, Bolivia
| | - Lars Nilsson
- Department of Food Technology, Engineering and Nutrition, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
| | - Seungho Lee
- Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea
| | - Björn Bergenståhl
- Department of Food Technology, Engineering and Nutrition, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
11
|
Leszczuk A, Kalaitzis P, Blazakis KN, Zdunek A. The role of arabinogalactan proteins (AGPs) in fruit ripening-a review. HORTICULTURE RESEARCH 2020; 7:176. [PMID: 33328442 PMCID: PMC7603502 DOI: 10.1038/s41438-020-00397-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) are proteoglycans challenging researchers for decades. However, despite the extremely interesting polydispersity of their structure and essential application potential, studies of AGPs in fruit are limited, and only a few groups deal with this scientific subject. Here, we summarise the results of pioneering studies on AGPs in fruit tissue with their structure, specific localization pattern, stress factors influencing their presence, and a focus on recent advances. We discuss the properties of AGPs, i.e., binding calcium ions, ability to aggregate, adhesive nature, and crosslinking with other cell wall components that may also be implicated in fruit metabolism. The aim of this review is an attempt to associate well-known features and properties of AGPs with their putative roles in fruit ripening. The putative physiological significance of AGPs might provide additional targets of regulation for fruit developmental programme. A comprehensive understanding of the AGP expression, structure, and untypical features may give new information for agronomic, horticulture, and renewable biomaterial applications.
Collapse
Affiliation(s)
- Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, P.O. Box 85, Chania, 73100, Greece
| | - Konstantinos N Blazakis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, P.O. Box 85, Chania, 73100, Greece
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
12
|
Fractionation and characterization of polyphenolic compounds and macromolecules in red wine by asymmetrical flow field-flow fractionation. J Chromatogr A 2020; 1629:461464. [DOI: 10.1016/j.chroma.2020.461464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/17/2023]
|
13
|
Alkaline conditions better extract anti-inflammatory polysaccharides from winemaking by-products. Food Res Int 2020; 131:108532. [DOI: 10.1016/j.foodres.2019.108532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/12/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022]
|
14
|
Brandão E, Silva MS, García-Estévez I, Williams P, Mateus N, Doco T, de Freitas V, Soares S. Inhibition Mechanisms of Wine Polysaccharides on Salivary Protein Precipitation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2955-2963. [PMID: 31690078 DOI: 10.1021/acs.jafc.9b06184] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, high-performance liquid chromatography, fluorescence quenching, nephelometry, and sodium dodecyl sulfate polyacrylamide gel electrophoresis were used to study the effect of polysaccharides naturally present in wine [rhamnogalacturonan II (RG II) and arabinogalactan proteins (AGPs)] on the interaction between salivary proteins (SP) together present in saliva and tannins (punicalagin (PNG) and procyanidin B2). In general, the RG II fraction was more efficient to inhibit SP precipitation by tannins, especially for acidic proline-rich proteins (aPRPs) and statherin/P-B peptide, than AGPs. The RG II fraction can act mainly by a competition mechanism in which polysaccharides compete by tannin binding. However, in the presence of Na+ ions in solution, no RG II effect was observed on SP-tannin interactions. On the other hand, dependent upon the saliva sample as well as the tannin studied, AGPs can act by both mechanisms, competition and ternary (formation of a ternary complex with SP-tannin aggregates enhancing their solubility).
Collapse
Affiliation(s)
- Elsa Brandão
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Mafalda Santos Silva
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ignacio García-Estévez
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pascale Williams
- Joint Research Unit 1083, Sciences for Enology, Institut National de la Recherche Agronomique (INRA), 2 Place Pierre Viala, F-34060 Montpellier, France
| | - Nuno Mateus
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Thierry Doco
- Joint Research Unit 1083, Sciences for Enology, Institut National de la Recherche Agronomique (INRA), 2 Place Pierre Viala, F-34060 Montpellier, France
| | - Victor de Freitas
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Susana Soares
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
15
|
Lei X, Zhu Y, Wang X, Zhao P, Liu P, Zhang Q, Chen T, Yuan H, Guo Y. Wine polysaccharides modulating astringency through the interference on interaction of flavan-3-ols and BSA in model wine. Int J Biol Macromol 2019; 139:896-903. [DOI: 10.1016/j.ijbiomac.2019.08.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
|
16
|
Zhao L, Ren J, Wang L, Li J, Wang M, Wang L, Zhu B, Zhang B. Evolution of sensory attributes and physicochemical indexes of Gouqi fermented wine under different aging treatments and their correlations. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Laiyu Zhao
- Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Technology Beijing Forestry University Beijing China
| | - Jie Ren
- Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Technology Beijing Forestry University Beijing China
| | - Liwei Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Jiajing Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Technology Beijing Forestry University Beijing China
| | - Mengze Wang
- Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Ningxia Senmiao Goji Technology Development Co. Ltd. Yinchuan China
| | - Liying Wang
- Ningxia Senmiao Goji Technology Development Co. Ltd. Yinchuan China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Technology Beijing Forestry University Beijing China
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Technology Beijing Forestry University Beijing China
| |
Collapse
|
17
|
Structure of acid-extractable polysaccharides of tree greenery of Picea abies. Carbohydr Polym 2018; 199:320-330. [DOI: 10.1016/j.carbpol.2018.07.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 11/17/2022]
|
18
|
Structural studies of water-extractable pectic polysaccharides and arabinogalactan proteins from Picea abies greenery. Carbohydr Polym 2018; 195:207-217. [DOI: 10.1016/j.carbpol.2018.04.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/21/2022]
|
19
|
Martínez-Lapuente L, Apolinar-Valiente R, Guadalupe Z, Ayestarán B, Pérez-Magariño S, Williams P, Doco T. Polysaccharides, oligosaccharides and nitrogenous compounds change during the ageing of Tempranillo and Verdejo sparkling wines. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:291-303. [PMID: 28585252 DOI: 10.1002/jsfa.8470] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Verdejo and Tempranillo are traditional varieties for producing still wines; however, they could provide an alternative for the manufacturing of sparkling wines. Sparkling wines were elaborated by the traditional method, followed by ageing on lees for 9 months. A study on the changes that take place in polysaccharides, oligosaccharides and nitrogenous compounds during the ageing on lees of Tempranillo and Verdejo sparkling wines has been undertaken. RESULTS Mannoproteins and the glucose residue of oligosaccharides were the major carbohydrates detected in all vinification stages. Yeast polysaccharides and glucan-like structures of the oligosaccharides increased after 3 months of ageing. The evolution of yeast polysaccharides and the composition of PRAG-like structure were different among grape varieties. A decrease in amino acids and biogenic amines was observed during the ageing. The contents of polysaccharides, oligosaccharides and nitrogenous compound were significantly higher in Tempranillo than in Verdejo sparkling wines at the end of the ageing period. CONCLUSION Polysaccharides and oligosaccharides from yeast were more significant autolysis markers of sparkling wines than the nitrogenous compounds. Our data suggest a potential cultivar effect on the evolution of yeast polysaccharides and on the composition of PRAG, which may influence the physico-chemical and sensory properties of sparkling wines. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leticia Martínez-Lapuente
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Logroño, Spain
| | | | - Zenaida Guadalupe
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Logroño, Spain
| | - Belén Ayestarán
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Logroño, Spain
| | - Silvia Pérez-Magariño
- Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Valladolid, Spain
| | - Pascale Williams
- INRA, Joint Research Unit 1083, Sciences for Enology, Montpellier, France
| | - Thierry Doco
- INRA, Joint Research Unit 1083, Sciences for Enology, Montpellier, France
| |
Collapse
|
20
|
The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach. Carbohydr Polym 2017; 177:77-85. [DOI: 10.1016/j.carbpol.2017.08.075] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 01/20/2023]
|
21
|
Structural characteristics of water-soluble polysaccharides from Norway spruce (Picea abies). Carbohydr Polym 2017; 175:699-711. [DOI: 10.1016/j.carbpol.2017.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/17/2023]
|
22
|
García M, Apolinar-Valiente R, Williams P, Esteve-Zarzoso B, Arroyo T, Crespo J, Doco T. Polysaccharides and Oligosaccharides Produced on Malvar Wines Elaborated with Torulaspora delbrueckii CLI 918 and Saccharomyces cerevisiae CLI 889 Native Yeasts from D.O. "Vinos de Madrid". JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6656-6664. [PMID: 28669180 DOI: 10.1021/acs.jafc.7b01676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polysaccharides and oligosaccharides released into Malvar white wines elaborated through pure, mixed, and sequential cultures with Torulaspora delbrueckii CLI 918 and Saccharomyces cerevisiae CLI 889 native yeasts from D.O. "Vinos de Madrid" were studied. Both fractions from different white wines were separated by high-resolution size-exclusion chromatography. Glycosyl composition and wine polysaccharide linkages were determined by GC-EI-MS chromatography. Molar-mass distributions were determined by SEC-MALLS, and intrinsic viscosity was determined by differential viscometer. Yeast species and type of inoculation have a significant impact on wine carbohydrate composition and structure. Mannose residues from mannoproteins were significantly predominant in those cultures where T. delbrueckii was present in the fermentation process in comparison with when pure cultures of S. cerevisiae were present in the fermenation process. Galactose residues from polysaccharides rich in arabinose and galactose presented greater values in pure cultures of S. cerevisiae, indicating that S. cerevisiae released fewer mannoproteins than T. delbrueckii. Moreover, we reported structural differences between mannoproteins released by T. delbrueckii CLI 918 and those released by S. cerevisiae CLI 889. These findings help to provide important information about the polysaccharides and oligosaccharides released from the cell walls of Malvar grapes and the carbohydrates released from each yeast species.
Collapse
Affiliation(s)
- Margarita García
- Departamento de Agroalimentación, IMIDRA , Ctra. A2 km 38.200, 28800 Alcalá de Henares, Madrid, Spain
| | - Rafael Apolinar-Valiente
- INRA , Joint Research Unit 1083, Sciences for Enology, 2 Place Viala, F-34060 Montpellier, France
| | - Pascale Williams
- INRA , Joint Research Unit 1083, Sciences for Enology, 2 Place Viala, F-34060 Montpellier, France
| | - Braulio Esteve-Zarzoso
- Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili , Marcel li Domingo 1, 43007 Tarragona, Spain
| | - Teresa Arroyo
- Departamento de Agroalimentación, IMIDRA , Ctra. A2 km 38.200, 28800 Alcalá de Henares, Madrid, Spain
| | - Julia Crespo
- Departamento de Agroalimentación, IMIDRA , Ctra. A2 km 38.200, 28800 Alcalá de Henares, Madrid, Spain
| | - Thierry Doco
- INRA , Joint Research Unit 1083, Sciences for Enology, 2 Place Viala, F-34060 Montpellier, France
| |
Collapse
|
23
|
Stipp MC, Bezerra IDL, Corso CR, Dos Reis Livero FA, Lomba LA, Caillot ARC, Zampronio AR, Queiroz-Telles JE, Klassen G, Ramos EAS, Sassaki GL, Acco A. Necroptosis mediates the antineoplastic effects of the soluble fraction of polysaccharide from red wine in Walker-256 tumor-bearing rats. Carbohydr Polym 2017; 160:123-133. [PMID: 28115086 DOI: 10.1016/j.carbpol.2016.12.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/07/2016] [Accepted: 12/18/2016] [Indexed: 12/29/2022]
Abstract
Polysaccharides are substances that modify the biological response to several stressors. The present study investigated the antitumor activity of the soluble fraction of polysaccharides (SFP), extracted from cabernet franc red wine, in Walker-256 tumor-bearing rats. The monosaccharide composition had a complex mixture, suggesting the presence of arabinoglactans, mannans, and pectins. Treatment with SFP (30 and 60mg/kg, oral) for 14days significantly reduced the tumor weight and volume compared with controls. Treatment with 60mg/kg SFP reduced blood monocytes and neutrophils, reduced the tumor activity of N-acetylglucosaminidase, myeloperoxidase, and nitric oxide, increased blood lymphocytes, and increased the levels of tumor necrosis factor α (TNF-α) in tumor tissue. Treatment with SFP also induced the expression of the cell necroptosis-related genes Rip1 and Rip3. The antineoplastic effect of SFP appears to be attributable to its action on the immune system by controlling the tumor microenvironment and stimulating TNF-α production, which may trigger the necroptosis pathway.
Collapse
Affiliation(s)
| | | | - Claudia Rita Corso
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | - Giseli Klassen
- Department of Basic Pathology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Edneia A S Ramos
- Department of Basic Pathology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
24
|
Coelho C, Parot J, Gonsior M, Nikolantonaki M, Schmitt-Kopplin P, Parlanti E, Gougeon RD. Asymmetrical flow field-flow fractionation of white wine chromophoric colloidal matter. Anal Bioanal Chem 2017; 409:2757-2766. [DOI: 10.1007/s00216-017-0221-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
|
25
|
Watrelot AA, Schulz DL, Kennedy JA. Wine polysaccharides influence tannin-protein interactions. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Makarova EN, Shakhmatov EG, Belyy VA. Structural characteristics of oxalate-soluble polysaccharides of Sosnowsky's hogweed ( Heracleum sosnowskyi Manden). Carbohydr Polym 2016; 153:66-77. [DOI: 10.1016/j.carbpol.2016.07.089] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/14/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
27
|
Lopes AL, Costa ML, Sobral R, Costa MM, Amorim MI, Coimbra S. Arabinogalactan proteins and pectin distribution during female gametogenesis in Quercus suber L. ANNALS OF BOTANY 2016; 117:949-61. [PMID: 26994101 PMCID: PMC4866308 DOI: 10.1093/aob/mcw019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/25/2015] [Accepted: 12/18/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Quercus suber L. (cork oak) is one of the most important monoecious tree species in semi-arid regions of Southern Europe, with a high ecological value and economic potential. However, as a result of its long reproductive cycle, complex reproductive biology and recalcitrant seeds, conventional breeding is demanding. In its complex reproductive biology, little is known about the most important changes that occur during female gametogenesis. Arabinogalactan proteins (AGPs) and pectins are the main components of plant cell walls and have been reported to perform common functions in cell differentiation and organogenesis of reproductive plant structures. AGPs have been shown to serve as important molecules in several steps of the reproductive process in plants, working as signalling molecules, associated with the sporophyte-gametophyte transition, and pectins have been implicated in pollen-pistil interactions before double fertilization. In this study, the distribution of AGP and pectin epitopes was assessed during female gametogenesis. METHODS Immunofluorescence labelling of female flower cells was performed with a set of monoclonal antibodies (mAbs) directed to the carbohydrate moiety of AGPs (JIM8 and JIM13) and pectic homogalacturonans (HGs) (mAbs JIM5 and JIM7). KEY RESULTS The selective labelling obtained with AGP and pectin mAbs JIM8, JIM13, JIM5 and JIM7 during Q. suber female gametogenesis shows that AGPs and pectic HG can work as markers for mapping gametophytic cell differentiation in this species. Pectic HG showed different distribution patterns, depending on their levels of methyl esterification. Methyl-esterified HGs showed a uniform distribution in the overall female flower cells before fertilization and a more specific pattern after fertilization. A low methyl-ester pectin distribution pattern during the different developmental stages appears to be related to the pathway that pollen tubes follow to reach the embryo sac. AGPs showed a more sparse distribution in early stages of development, but specific labelling is shown in the synergids and their filiform apparatus. CONCLUSIONS The labelling obtained with anti-AGP and anti-pectin mAbs in Q. suber female flower cells showed a dynamic distribution of AGPs and pectic HGs, which may render these molecules useful molecular markers during female gametogenesis. Changes occurring during development will be determined in order to help describe cork oak ovule structural properties before and after fertilization, providing new insight to better understand Q. suber female gametogenesis.
Collapse
Affiliation(s)
- Ana Lúcia Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Mário Luís Costa
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal, University of Porto, Rua do Campo Alegre, Porto, Portugal and
| | - Rómulo Sobral
- University of Porto, Rua do Campo Alegre, Porto, Portugal and Plant Functional Biology Centre, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Maria Manuela Costa
- University of Porto, Rua do Campo Alegre, Porto, Portugal and Plant Functional Biology Centre, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Maria Isabel Amorim
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal, University of Porto, Rua do Campo Alegre, Porto, Portugal and
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal, University of Porto, Rua do Campo Alegre, Porto, Portugal and
| |
Collapse
|
28
|
Shakhmatov EG, Atukmaev KV, Makarova EN. Structural characteristics of pectic polysaccharides and arabinogalactan proteins from Heracleum sosnowskyi Manden. Carbohydr Polym 2016; 136:1358-69. [DOI: 10.1016/j.carbpol.2015.10.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 01/03/2023]
|
29
|
Price NPJ, Vermillion KE, Eller FJ, Vaughn SF. Frost Grape Polysaccharide (FGP), an Emulsion-Forming Arabinogalactan Gum from the Stems of Native North American Grape Species Vitis riparia Michx. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7286-7293. [PMID: 26234618 DOI: 10.1021/acs.jafc.5b02316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new arabinogalactan is described that is produced in large quantity from the cut stems of the North American grape species Vitis riparia (Frost grape). The sugar composition consists of l-arabinofuranose (l-Araf, 55.2%) and d-galactopyranose (d-Galp 30.1%), with smaller components of d-xylose (11.2%), d-mannose (3.5%), and glucuronic acid (GlcA, ∼2%), the latter linked via a galactosyl residue. Permethylation identified 3-linked Galp residues, some substituted at the 2-position with Galp or Manp, terminal Araf and Xylp, and an internal 3-substituted Araf. NMR (HSQC, TOCSY, HMBC, DOSY) identified βGalp and three αAraf spin systems, in an Araf-α1,3-Araf-α1,2-Araf-α1,2-Galp structural motif. Diffusion-ordered NMR showed that the FGP has a molecular weight of 1-10 MDa. Unlike gum arabic, the FGP does not contain a hydroxyproline-rich protein (HPRP). FGP forms stable gels at >15% w/v and at 1-12% solutions are viscous and are excellent emulsifiers of flavoring oils (grapefruit, clove, and lemongrass), giving stable emulsions for ≥72 h. Lower concentrations (0.1% w/v) were less viscous, yet still gave stable grapefruit oil/water emulsions. Hence, FGP is a β1,3-linked arabinogalactan with potential as a gum arabic replacement in the food and beverage industries.
Collapse
Affiliation(s)
- Neil P J Price
- †Renewable Product Technology and ‡Functional Foods Research Units, U.S. Department of Agriculture, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, Illinois 61604, United States
| | - Karl E Vermillion
- †Renewable Product Technology and ‡Functional Foods Research Units, U.S. Department of Agriculture, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, Illinois 61604, United States
| | - Fred J Eller
- †Renewable Product Technology and ‡Functional Foods Research Units, U.S. Department of Agriculture, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, Illinois 61604, United States
| | - Steven F Vaughn
- †Renewable Product Technology and ‡Functional Foods Research Units, U.S. Department of Agriculture, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, Illinois 61604, United States
| |
Collapse
|
30
|
Van Sluyter SC, McRae JM, Falconer RJ, Smith PA, Bacic A, Waters EJ, Marangon M. Wine protein haze: mechanisms of formation and advances in prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4020-4030. [PMID: 25847216 DOI: 10.1021/acs.jafc.5b00047] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein haze is an aesthetic problem in white wines that can be prevented by removing the grape proteins that have survived the winemaking process. The haze-forming proteins are grape pathogenesis-related proteins that are highly stable during winemaking, but some of them precipitate over time and with elevated temperatures. Protein removal is currently achieved by bentonite addition, an inefficient process that can lead to higher costs and quality losses in winemaking. The development of more efficient processes for protein removal and haze prevention requires understanding the mechanisms such as the main drivers of protein instability and the impacts of various wine matrix components on haze formation. This review covers recent developments in wine protein instability and removal and proposes a revised mechanism of protein haze formation.
Collapse
Affiliation(s)
- Steven C Van Sluyter
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
- §School of BioSciences and the Bio21 Molecular Sciences and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
- #Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jacqui M McRae
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
| | - Robert J Falconer
- ΔDepartment of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield S1 3JD, England
| | - Paul A Smith
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
| | - Antony Bacic
- §School of BioSciences and the Bio21 Molecular Sciences and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Elizabeth J Waters
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
- ⊥Australian Grape and Wine Authority, P.O. Box 2733, Adelaide, South Australia 5000, Australia
| | - Matteo Marangon
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
- ΠPlumpton College, Ditchling Road, Nr Lewes, East Sussex BN7 3AE, England
| |
Collapse
|
31
|
Zietsman AJJ, Moore JP, Fangel JU, Willats WGT, Trygg J, Vivier MA. Following the compositional changes of fresh grape skin cell walls during the fermentation process in the presence and absence of maceration enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2798-2810. [PMID: 25693868 DOI: 10.1021/jf505200m] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cell wall profiling technologies were used to follow compositional changes that occurred in the skins of grape berries (from two different ripeness levels) during fermentation and enzyme maceration. Multivariate data analysis showed that the fermentation process yielded cell walls enriched in hemicellulose components because pectin was solubilized (and removed) with a reduction as well as exposure of cell wall proteins usually embedded within the cell wall structure. The addition of enzymes caused even more depectination, and the enzymes unravelled the cell walls enabling better access to, and extraction of, all cell wall polymers. Overripe grapes had cell walls that were extensively hydrolyzed and depolymerized, probably by natural grape-tissue-ripening enzymes, and this enhanced the impact that the maceration enzymes had on the cell wall monosaccharide profile. The combination of the techniques that were used is an effective direct measurement of the hydrolysis actions of maceration enzymes on the cell walls of grape berry skin.
Collapse
Affiliation(s)
- Anscha J J Zietsman
- †Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - John P Moore
- †Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - Jonatan U Fangel
- ‡Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1001 Copenhagen, Denmark
| | - William G T Willats
- ‡Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1001 Copenhagen, Denmark
| | - Johan Trygg
- §Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå 901 87, Sweden
| | - Melané A Vivier
- †Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
32
|
Guadalupe Z, Ayestarán B, Williams P, Doco T. Determination of Must and Wine Polysaccharides by Gas Chromatography-Mass Spectrometry (GC-MS) and Size-Exclusion Chromatography (SEC). POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Identification of gum Arabic in white wine based on colloid content, colloid composition and multi-element stable isotope analysis. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2395-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Hijazi M, Velasquez SM, Jamet E, Estevez JM, Albenne C. An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture. FRONTIERS IN PLANT SCIENCE 2014; 5:395. [PMID: 25177325 PMCID: PMC4132260 DOI: 10.3389/fpls.2014.00395] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/24/2014] [Indexed: 05/04/2023]
Abstract
Plant cell walls are composite structures mainly composed of polysaccharides, also containing a large set of proteins involved in diverse functions such as growth, environmental sensing, signaling, and defense. Research on cell wall proteins (CWPs) is a challenging field since present knowledge of their role into the structure and function of cell walls is very incomplete. Among CWPs, hydroxyproline (Hyp)-rich O-glycoproteins (HRGPs) were classified into three categories: (i) moderately glycosylated extensins (EXTs) able to form covalent scaffolds; (ii) hyperglycosylated arabinogalactan proteins (AGPs); and (iii) Hyp/proline (Pro)-Rich proteins (H/PRPs) that may be non-, weakly- or highly-glycosylated. In this review, we provide a description of the main features of their post-translational modifications (PTMs), biosynthesis, structure, and function. We propose a new model integrating HRGPs and their partners in cell walls. Altogether, they could form a continuous glyco-network with non-cellulosic polysaccharides via covalent bonds or non-covalent interactions, thus strongly contributing to cell wall architecture.
Collapse
Affiliation(s)
- May Hijazi
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| | - Silvia M. Velasquez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos AiresBuenos Aires, Argentina
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| | - José M. Estevez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos AiresBuenos Aires, Argentina
| | - Cécile Albenne
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| |
Collapse
|
35
|
Botelho de Sousa M, Norberta de Pinho M, Cameira dos Santos P. The role of polysaccharides on the grape must ultrafiltration performance. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2014. [DOI: 10.1051/ctv/20142901016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
36
|
Liang F, Hu C, He Z, Pan Y. An arabinogalactan from flowers of Chrysanthemum morifolium: structural and bioactivity studies. Carbohydr Res 2014; 387:37-41. [DOI: 10.1016/j.carres.2013.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
|
37
|
Structural characteristics of water-soluble polysaccharides from Heracleum sosnowskyi Manden. Carbohydr Polym 2014; 102:521-8. [DOI: 10.1016/j.carbpol.2013.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/18/2013] [Accepted: 12/01/2013] [Indexed: 01/06/2023]
|
38
|
Determination of Must and Wine Polysaccharides by Gas Chromatography–Mass Spectrometry (GC–MS) and Size-Exclusion Chromatography (SEC). POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_56-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
39
|
Guadalupe Z, Ayestarán B, Williams P, Doco T. Determination of Must and Wine Polysaccharides by Gas Chromatography-Mass Spectrometry (GC-MS) and Size-Exclusion Chromatography (SEC). POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_56-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
40
|
Bento JF, Noleto GR, de Oliveira Petkowicz CL. Isolation of an arabinogalactan from Endopleura uchi bark decoction and its effect on HeLa cells. Carbohydr Polym 2014; 101:871-7. [DOI: 10.1016/j.carbpol.2013.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
|
41
|
Neutral sugar side chains of pectins limit interactions with procyanidins. Carbohydr Polym 2013; 99:527-36. [PMID: 24274539 DOI: 10.1016/j.carbpol.2013.08.094] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 11/21/2022]
Abstract
Interactions between seven hairy regions of pectins, rhamnogalacturonans II and arabinogalactan-proteins and procyanidins with different average degrees of polymerization, low (DP9) and high (DP30), were investigated by isothermal titration calorimetry and absorption analysis to study the impact of neutral sugar side chains of pectins on these associations. Associations between pectic fractions and procyanidins involved hydrophobic interactions and hydrogen bonds. No difference in association constants between various hairy regions and procyanidins DP9 was found. Nevertheless, arabinan chains showed lower association constants, and hairy regions of pectins with only monomeric side chains showed higher association with procyanidin DP30. Only very low affinities were obtained with rhamnogalacturonans II and arabinogalactan-proteins. Aggregation could be observed only with the procyanidins of DP30 and the protein-rich arabinogalactan-protein. Associations were obtained at both degrees of polymerization of the procyanidins, but differed depending on neutral sugar composition and the structure of pectic fractions.
Collapse
|
42
|
Pellerin P, Doco T, Scollary GR. The influence of wine polymers on the spontaneous precipitation of calcium tartrate in a model wine solution. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrice Pellerin
- Joint Research Unit 1083 Sciences for Oenology; INRA; 2 Place Viala F-34060 Montpellier France
| | - Thierry Doco
- Joint Research Unit 1083 Sciences for Oenology; INRA; 2 Place Viala F-34060 Montpellier France
| | | |
Collapse
|
43
|
Resende A, Catarino S, Geraldes V, de Pinho M. Separation and Purification by Ultrafiltration of White Wine High Molecular Weight Polysaccharides. Ind Eng Chem Res 2013. [DOI: 10.1021/ie3035493] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ana Resende
- ICEMS, Department of Chemical Engineering,
Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon, Portugal
| | - Sofia Catarino
- UEISTSA, Research Unity of Viticulture and
Enology, Instituto Nacional de Investigação Agrária e Veterinária, I.P., 2565-191
Dois Portos, Portugal
| | - Vítor Geraldes
- ICEMS, Department of Chemical Engineering,
Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon, Portugal
| | - Maria de Pinho
- ICEMS, Department of Chemical Engineering,
Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon, Portugal
| |
Collapse
|
44
|
Tan L, Eberhard S, Pattathil S, Warder C, Glushka J, Yuan C, Hao Z, Zhu X, Avci U, Miller JS, Baldwin D, Pham C, Orlando R, Darvill A, Hahn MG, Kieliszewski MJ, Mohnen D. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. THE PLANT CELL 2013; 25:270-87. [PMID: 23371948 PMCID: PMC3584541 DOI: 10.1105/tpc.112.107334] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/07/2013] [Accepted: 01/15/2013] [Indexed: 05/17/2023]
Abstract
Plant cell walls are comprised largely of the polysaccharides cellulose, hemicellulose, and pectin, along with ∼10% protein and up to 40% lignin. These wall polymers interact covalently and noncovalently to form the functional cell wall. Characterized cross-links in the wall include covalent linkages between wall glycoprotein extensins between rhamnogalacturonan II monomer domains and between polysaccharides and lignin phenolic residues. Here, we show that two isoforms of a purified Arabidopsis thaliana arabinogalactan protein (AGP) encoded by hydroxyproline-rich glycoprotein family protein gene At3g45230 are covalently attached to wall matrix hemicellulosic and pectic polysaccharides, with rhamnogalacturonan I (RG I)/homogalacturonan linked to the rhamnosyl residue in the arabinogalactan (AG) of the AGP and with arabinoxylan attached to either a rhamnosyl residue in the RG I domain or directly to an arabinosyl residue in the AG glycan domain. The existence of this wall structure, named ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1 (APAP1), is contrary to prevailing cell wall models that depict separate protein, pectin, and hemicellulose polysaccharide networks. The modified sugar composition and increased extractability of pectin and xylan immunoreactive epitopes in apap1 mutant aerial biomass support a role for the APAP1 proteoglycan in plant wall architecture and function.
Collapse
Affiliation(s)
- Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Stefan Eberhard
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Clayton Warder
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - Chunhua Yuan
- Campus Chemical Instrument Center, Ohio State University, Columbus, Ohio 43210
| | - Zhangying Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Xiang Zhu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Chemistry, University of Georgia, Athens, Georgia 30602-4712
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Jeffrey S. Miller
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - David Baldwin
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Charles Pham
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
- Division of Biological Sciences, University of Georgia, Athens, Georgia 30602-4712
| | - Ronald Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Alan Darvill
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Marcia J. Kieliszewski
- Department of Chemistry and Biochemistry, Biochemistry Facility, Ohio University, Athens, Ohio 45701
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
- Address correspondence to
| |
Collapse
|
45
|
Study of the retention capacity of anthocyanins by wine polymeric material. Food Chem 2012; 134:957-63. [DOI: 10.1016/j.foodchem.2012.02.214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/10/2012] [Accepted: 02/29/2012] [Indexed: 11/19/2022]
|
46
|
|
47
|
Coelho E, Rocha SM, Coimbra MA. Foamability and foam stability of molecular reconstituted model sparkling wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8770-8778. [PMID: 21736312 DOI: 10.1021/jf2010657] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The present work aims at identifying the contribution of the different wine components to the foaming properties of wines. Twelve fractions were isolated from wine, and foam aptitude of each fraction was measured individually at the concentration at which it was recovered, using wine model solutions. For these concentrations, the maximum foam height (HM) was 8.4-11.7 cm, foam height on stability was 6.9-7.5 cm, and foam stability (TS) was 3.0-6.5 s. Moreover, foam measurements were also performed using 2-, 5-, and 10-fold concentrations of these compounds in wine. The HM increased linearly with the concentration of mannoproteins having low content of protein (MP1), and TS increased exponentially. The fractions that individually showed higher foaming properties were mixed in binary and ternary combinations, demonstrating that MP1 when mixed with low molecular weight hydrophobic compounds strengthens the air/water interface of these solutions, a characteristic that is on the basis of sparkling wines' foamability and foam stability.
Collapse
Affiliation(s)
- Elisabete Coelho
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | | | | |
Collapse
|
48
|
Smith MR, Penner MH, Bennett SE, Bakalinsky AT. Quantitative colorimetric assay for total protein applied to the red wine Pinot noir. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6871-6876. [PMID: 21627320 DOI: 10.1021/jf200547u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A standard method for assaying protein in red wine is currently lacking. The method described here is based on protein precipitation followed by dye binding quantification. Improvements over existing approaches include minimal sample processing prior to protein precipitation with cold trichloroacetic acid/acetone and quantification based on absorbance relative to a commercially available standard representative of proteins likely to be found in wine, the yeast mannoprotein invertase. The precipitation method shortened preparation time relative to currently published methods and the mannoprotein standard yielded values comparable to those obtained by micro-Kjeldahl analysis. The assay was used to measure protein in 48 Pinot noir wines from 6 to 32 years old. The protein content of these wines was found to range from 50 to 102 mg/L with a mean value of 70 mg/L. The availability of a simple and relatively rapid procedure for assaying protein provides a practical tool to quantify a wine component that has been overlooked in routine analyses of red wines.
Collapse
Affiliation(s)
- Mark R Smith
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331-6602, USA
| | | | | | | |
Collapse
|
49
|
Ducasse MA, Williams P, Canal-Llauberes RM, Mazerolles G, Cheynier V, Doco T. Effect of macerating enzymes on the oligosaccharide profiles of Merlot red wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6558-67. [PMID: 21557619 DOI: 10.1021/jf2003877] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Commercial pectinase preparations are applied in winemaking to improve wine processing and final quality. These preparations contain pectolytic enzyme activities such as polygalacturonases, pectin esterases, pectin lyases, and rhamnogalacturonases. These enzymes modify the polysaccharide and oligosaccharide composition of wines. The influence of various commercial enzyme preparations on wine oligosaccharide composition was studied, on Merlot wines from the Bordeaux area. Wine oligosaccharides were isolated by high-resolution size-exclusion chromatography on a Superdex-30 HR column. The glycosyl residue and glycosyl linkage compositions of the oligosaccharide fractions obtained were determined. The MS spectra of the Merlot oligosaccharide fractions from control and enzyme-treated wines were recorded on an AccuTOF mass spectrometer equipped with an electrospray ionization (ESI) source and a time-of-flight (TOF) mass analyzer. Oligosaccharides in the control wines were partly methylated homogalacturonans, corresponding to smooth regions of pectins, whereas those of the enzyme-treated wines were mostly rhamnogalacturonan-like structures linked with neutral lateral chains, arising from the hairy regions. The enzyme preparations used thus cleaved the rhamnogalacturonan backbone of the hairy zones and demethylated and hydrolyzed the smooth regions. Besides, different structures were detected, depending on the enzyme preparation used, indicating that they contained rhamnogalacturonase activities with different specificities. The oligosaccharide profiles can serve as a marker of enzymatic treatments.
Collapse
|
50
|
Mitropoulou A, Hatzidimitriou E, Paraskevopoulou A. Aroma release of a model wine solution as influenced by the presence of non-volatile components. Effect of commercial tannin extracts, polysaccharides and artificial saliva. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.04.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|