1
|
Pykäri M, Toivonen S, Natunen J, Niemela R, Salminen H, Aitio O, Ekström M, Parmanne P, Välimäki M, Alais J, Augé C, Lowe JB, Renkonen O, Renkonen R. The acceptor and site specificity of alpha 3-fucosyltransferase V. High reactivity of the proximal and low of the distal galbeta 1-4GlcNAc unit in i-type polylactosamines. J Biol Chem 2000; 275:40057-63. [PMID: 11007797 DOI: 10.1074/jbc.m007922200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here on in vitro acceptor and site specificity of recombinant alpha3-fucosyltransferase V (Fuc-TV) with 40 oligosaccharide acceptors. Galbeta1-4GlcNAc (LN) and GalNAcbeta1-4GlcNAc (LDN) reacted rapidly; Galbeta1-3GlcNAc (LNB) reacted moderately, and GlcNAcbeta1-4GlcNAc (N, N'-diacetyl-chitobiose) reacted slowly yet distinctly. In neutral and terminally alpha3-sialylated polylactosamines of i-type, the reducing end LN unit reacted rapidly and the distal (sialyl)LN group very slowly; the midchain LNs revealed intermediate reactivities. The data suggest that a distal LN neighbor enhances but a proximal LN neighbor reduces the reactivity of the midchain LNs. This implies that Fuc-TV may bind preferably the tetrasaccharide sequence Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc for transfer at the underlined monosaccharide. Terminal alpha3-sialylation of i-type polylactosamines almost doubled the reactivities of the LN units at all positions of the chains. We conclude that, in comparison with human Fuc-TIV and Fuc-TIX, Fuc-TV reacted with a highly distinct site specificity with i-type polylactosamines. The Fuc-TV reactivity of free LNB resembled that of LNBbeta1-3'R of a polylactosamine, contrasting strongly with the dissimilarity of the reactivities of the analogous pair of LN and LNbeta1-3'R. This observation supports the notion that LN and LNB may be functionally bound at distinct sites on Fuc-TV surface. Our data show that Fuc-TV worked well with a very wide range of LN-glycans, showing weak reactivity only with distal (sialyl)LN units of i-type polylactosamines, biantennary N-glycans, and I branches of polylactosamines.
Collapse
Affiliation(s)
- M Pykäri
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Miller-Podraza H. Polyglycosylceramides, Poly-N-acetyllactosamine-Containing Glycosphingolipids: Methods of Analysis, Structure, and Presumable Biological Functions. Chem Rev 2000; 100:4663-82. [PMID: 11749361 DOI: 10.1021/cr990347o] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- H Miller-Podraza
- Institute of Medical Biochemistry, Göteborg University, P.O. Box 440, SE 405 30 Göteborg, Sweden
| |
Collapse
|
3
|
Abstract
This review describes the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to carbohydrate analysis and covers the period 1991-1998. The technique is particularly valuable for carbohydrates because it enables underivatised, as well as derivatised compounds to be examined. The various MALDI matrices that have been used for carbohydrate analysis are described, and the use of derivatization for improving mass spectral detection limits is also discussed. Methods for sample preparation and for extracting carbohydrates from biological media prior to mass spectrometric analysis are compared with emphasis on highly sensitive mass spectrometric methods. Quantitative aspects of MALDI are covered with respect to the relationship between signal strength and both mass and compound structure. The value of mass measurements by MALDI to provide a carbohydrate composition is stressed, together with the ability of the technique to provide fragmentation spectra. The use of in-source and post-source decay and collision-induced fragmentation in this context is described with emphasis on ions that provide information on the linkage and branching patterns of carbohydrates. The use of MALDI mass spectrometry, linked with exoglycosidase sequencing, is described for N-linked glycans derived from glycoproteins, and methods for the analysis of O-linked glycans are also covered. The review ends with a description of various applications of the technique to carbohydrates found as constituents of glycoproteins, bacterial glycolipids, sphingolipids, and glycolipid anchors.
Collapse
Affiliation(s)
- D J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, UK.
| |
Collapse
|
4
|
Majuri ML, Räbinä J, Niittymäki J, Tiisala S, Mattila P, Aavik E, Miyasaka M, Renkonen O, Renkonen R. High endothelial cells synthesize and degrade sLex. Putative implications for L-selectin-dependent recognition. FEBS Lett 1999; 455:97-100. [PMID: 10428480 DOI: 10.1016/s0014-5793(99)00834-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
L-selectin guides lymphocytes into peripheral lymphoid tissues by recognizing glycoprotein ligands decorated with 6-sulfated sialyl Lewis x (sulfo sLex). Here we have used a rat peripheral lymph node high endothelial cell line (Ax) to study in detail the synthesis, expression and degradation of sLex epitope. We show here that Ax cells possess active alpha(1,3)fucosyltransferase Fuc-TVII, the enzyme responsible for the final fucosylation of sialyl-N-acetyllactosamine during sLex synthesis, and express sLex on the cell surface. Furthermore, these cells degrade sLex, primarily by desialylating it to neutral Lex epitopes by alpha(2,3)sialidase(s).
Collapse
Affiliation(s)
- M L Majuri
- Haartman Institute, Department of Bacteriology and Immunology, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Toppila S, Renkonen R, Penttilä L, Natunen J, Salminen H, Helin J, Maaheimo H, Renkonen O. Enzymatic synthesis of alpha3'sialylated and multiply alpha3fucosylated biantennary polylactosamines. A bivalent [sialyl diLex]-saccharide inhibited lymphocyte-endothelium adhesion organ-selectively. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:208-15. [PMID: 10103052 DOI: 10.1046/j.1432-1327.1999.00257.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multifucosylated sialo-polylactosamines are known to be high affinity ligands for E-selectin. PSGL-1, the physiological ligand of P-selectin, is decorated in HL-60 cells by a sialylated and triply fucosylated polylactosamine that is believed to be of functional importance. Mimicking some of these saccharide structures, we have synthesized enzymatically a bivalent [sialyl diLex]-glycan, Neu5Acalpha2-3'Lexbeta1-3'Lexbeta1-3'(Neu5Acalpha2-3'Lexbeta1-3Lexbe ta1-6')LN [where Neu5Ac is N-acetylneuraminic acid, Lex is the trisaccharide Galbeta1-4(Fucalpha1-3)GlcNAc and LN is the disaccharide Galbeta1-4GlcNAc]. Several structurally related, novel polylactosamine glycans were also constructed. The inhibitory effects of these glycans on two L-selectin-dependent, lymphocyte-to-endothelium adhesion processes of rats were analysed in ex-vivo Stamper-Woodruff binding assays. The IC50 value of the bivalent [sialyl diLex]-glycan at lymph node high endothelium was 50 nm, but at the capillaries of rejecting cardiac allografts it was only 5 nm. At both adhesion sites, the inhibition was completely dependent on the presence of fucose units on the sialylated LN units of the inhibitor saccharide. These data show that the bivalent [sialyl diLex]-glycan is a high affinity ligand for L-selectin, and may reduce extravasation of lymphocytes at sites of inflammation in vivo without severely endangering the normal recirculation of lymphocytes via lymph nodes.
Collapse
Affiliation(s)
- S Toppila
- Haartman Institute, Department of Bacteriology and Immunology, Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Mattila P, Salminen H, Hirvas L, Niittymäki J, Salo H, Niemelä R, Fukuda M, Renkonen O, Renkonen R. The centrally acting beta1,6N-acetylglucosaminyltransferase (GlcNAc to gal). Functional expression, purification, and acceptor specificity of a human enzyme involved in midchain branching of linear poly-N-acetyllactosamines. J Biol Chem 1998; 273:27633-9. [PMID: 9765298 DOI: 10.1074/jbc.273.42.27633] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present experiments the cDNA coding for a truncated form of the beta1,6N-acetylglucosaminyltransferase responsible for the conversion of linear to branched polylactosamines in human PA1 cells was expressed in Sf9 insect cells. The catalytic ectodomain of the enzyme was fused to glutathione S-transferase, allowing effective one-step purification of the glycosylated 67-74-kDa fusion protein. Typically a yield of 750 microg of the purified protein/liter of suspension culture was obtained. The purified recombinant protein catalyzed the transfer of GlcNAc from UDP-GlcNAc to the linear tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc, converting the acceptor to the branched pentasaccharide Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-4 GlcNAc as shown by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, degradative experiments, and 1H NMR spectroscopy of the product. By contrast, the recombinant enzyme did not catalyze any reaction when incubated with UDP-GlcNAc and the trisaccharide GlcNAcbeta1-3Galbeta1-4GlcNAc. Accordingly, we call the recombinant beta1,6-GlcNAc transferase cIGnT6 to emphasize its action at central rather than peridistal galactose residues of linear polylactosamines in the biosynthesis of blood group I antigens. Taken together this in vitro expression of I-branching enzyme, in combination with the previously cloned enzymes, beta1,4galactosyltransferase and beta1, 3N-acetylglucosaminyltransferase, should allow the general synthesis of polylactosamines based totally on the use of recombinant enzymes.
Collapse
Affiliation(s)
- P Mattila
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, SF-00014 Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Leppänen A, Zhu Y, Maaheimo H, Helin J, Lehtonen E, Renkonen O. Biosynthesis of branched polylactosaminoglycans. Embryonal carcinoma cells express midchain beta1,6-N-acetylglucosaminyltransferase activity that generates branches to preformed linear backbones. J Biol Chem 1998; 273:17399-405. [PMID: 9651325 DOI: 10.1074/jbc.273.28.17399] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two types of beta1,6-GlcNAc transferases (IGnT6) are involved in in vitro branching of polylactosamines: dIGnT6 (distally acting), transferring to the penultimate galactose residue in acceptors like GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-R, and cIGnT6 (centrally acting), transferring to the midchain galactoses in acceptors of the type (GlcNAcbeta1-3)Galbeta1-4GlcNAcbeta1-3Galbeta1-+ ++4GlcNAcbeta1-R. The roles of the two transferases in the biosynthesis of branched polylactosamine backbones have not been clearly elucidated. We report here that cIGnT6 activity is expressed in human (PA1) and murine (PC13) embryonal carcinoma (EC) cells, both of which contain branched polylactosamines in large amounts. In the presence of exogenous UDP-GlcNAc, lysates from both EC cells catalyzed the formation of the branched pentasaccharide Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-4 GlcNAc from the linear tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc. The PA1 cell lysates were shown to also catalyze the formation of the branched heptasaccharides Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3(+ ++GlcNAcbeta1-6)Galbeta1 -4GlcNAc and Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-+ ++4GlcNAcbeta1-3Galbeta1 -4GlcNAc from the linear hexasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4GlcNAc in reactions characteristic to cIGnT6. By contrast, dIGnT6 activity was not detected in the lysates of the two EC cells that were incubated with UDP-GlcNAc and the acceptor trisaccharide GlcNAcbeta1-3Galbeta1-4GlcNAc. Hence, it appears likely that cIGnT6, rather than dIGnT6 is responsible for the synthesis of the branched polylactosamine chains in these cells.
Collapse
Affiliation(s)
- A Leppänen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, P. O. Box 56, FIN-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
8
|
Niemelä R, Natunen J, Majuri ML, Maaheimo H, Helin J, Lowe JB, Renkonen O, Renkonen R. Complementary acceptor and site specificities of Fuc-TIV and Fuc-TVII allow effective biosynthesis of sialyl-TriLex and related polylactosamines present on glycoprotein counterreceptors of selectins. J Biol Chem 1998; 273:4021-6. [PMID: 9461592 DOI: 10.1074/jbc.273.7.4021] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The P-selectin counterreceptor PSGL-1 is covalently modified by mono alpha2,3-sialylated, multiply alpha1,3-fucosylated polylactosamines. These glycans are required for the adhesive interactions that allow this adhesion receptor-counterreceptor pair to facilitate leukocyte extravasation. To begin to understand the biosynthesis of these glycans, we have characterized the acceptor and site specificities of the two granulocyte alpha1,3-fucosyltransferases, Fuc-TIV and Fuc-TVII, using recombinant forms of these two enzymes and a panel of synthetic polylactosamine-based acceptors. We find that Fuc-TIV can transfer fucose effectively to all N-acetyllactosamine (LN) units in neutral polylactosamines, and to the "inner" LN units of alpha2,3-sialylated acceptors but is ineffective in transfer to the distal alpha2,3-sialylated LN unit in alpha2,3-sialylated acceptors. Fuc-TVII, by contrast, effectively fucosylates only the distal alpha2,3-sialylated LN unit in alpha2,3-sialylated acceptors and thus exhibits an acceptor site-specificity that is complementary to Fuc-TIV. Furthermore, the consecutive action of Fuc-TIV and Fuc-TVII, in vitro, can convert the long chain sialoglycan SAalpha2-3'LNbeta1-3'LNbeta1-3'LN (where SA is sialic acid) into the trifucosylated molecule SAalpha2-3'Lexbeta1-3'Lexbeta1-3'Lex (where Lex is the trisaccharide Galbeta1-4(Fucalpha1-3)GlcNAc) known to decorate PSGL-1. The complementary in vitro acceptor site-specificities of Fuc-TIV and Fuc-TVII imply that these enzymes cooperate in vivo in the biosynthesis of monosialylated, multifucosylated polylactosamine components of selectin counterreceptors on human leukocytes.
Collapse
Affiliation(s)
- R Niemelä
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Salminen H, Ahokas K, Niemelä R, Penttilä L, Maaheimo H, Helin J, Costello CE, Renkonen O. Improved enzymatic synthesis of a highly potent oligosaccharide antagonist of L-selectin. FEBS Lett 1997; 419:220-6. [PMID: 9428638 DOI: 10.1016/s0014-5793(97)01462-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The polylactosamine sLex beta1-3'(sLex beta1-6')LacNAc beta1-3'(sLex beta1-6')LacNAc beta1-3'(sLex beta1-6')LacNAc (7) (where sLex is Neu5Ac alpha2-3Gal beta1-4(Fuc alpha1-3)GlcNAc and LacNAc is Gal beta1-4GlcNAc) is a nanomolar L-selectin antagonist and therefore a potential anti-inflammatory agent (Renkonen et al. (1997) Glycobiology, 7, 453). Here we describe an improved synthesis of 7. The octasaccharide LacNAc beta1-3'LacNAc beta1-3'LacNAc beta1-3'LacNAc (4) was converted into the triply branched undecasaccharide LacNAc beta1-3'(GlcNAc beta1-6')LacNAc beta1-3'(GlcNAc beta1-6')LacNAc beta1-3'(GlcNAc beta1-6')LacNAc (5) by incubation with UDP-GlcNAc and the midchain beta1,6-GlcNAc transferase activity of rat serum. Glycan 5 was enzymatically beta1,4-galactosylated to LacNAc beta1-3'(LacNAc beta1-6')LacNAc beta1-3'(LacNAc beta1-6')LacNAc beta1-3'(LacNAc beta1-6')LacNAc (6). Combined with the enzymatic conversion of 6 to 7 (Renkonen et al., loc. cit.) and the available chemical synthesis of 4, our data improve the availability of 7 for full assessment of its anti-inflammatory properties.
Collapse
Affiliation(s)
- H Salminen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Räbinä J, Natunen J, Niemelä R, Salminen H, Ilves K, Aitio O, Maaheimo H, Helin J, Renkonen O. Enzymatic synthesis of site-specifically (alpha 1-3)-fucosylated polylactosamines containing either a sialyl Lewis (x), a VIM-2, or a sialylated and internally difucosylated sequence. Carbohydr Res 1997; 305:491-9. [PMID: 9648266 DOI: 10.1016/s0008-6215(97)00260-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
By using two different reaction pathways, we generated enzymatically three sialylated and site-specifically alpha 1-3-fucosylated polylactosamines. Two of these are isomeric hexasaccharides Neu5Ac(alpha 2-3)Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)] GlcNAc and Neu5Ac(alpha 2-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)Gal(beta 1-4) GlcNAc, containing epitopes that correspond to VIM-2 and sialyl Lewis (x), respectively. The third one, nonasaccharide Neu5Ac(alpha 2-3)Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)] GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc, is a sialylated and internally difucosylated derivative of a trimeric N-acetyllactosamine. All three oligosaccharides have one fucose-free N-acetyllactosaminyl unit and can be used as acceptors for recombinant alpha 1-3-fucosyltransferases in determining the biosynthesis pathways leading to polyfucosylated selectin ligands.
Collapse
Affiliation(s)
- J Räbinä
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Helin J, Penttilä L, Leppänen A, Maaheimo H, Lauri S, Costello CE, Renkonen O. The beta 1,6-GlcNAc transferase activity present in hog gastric mucosal microsomes catalyses site-specific branch formation on a long polylactosamine backbone. FEBS Lett 1997; 412:637-42. [PMID: 9276482 DOI: 10.1016/s0014-5793(97)00818-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We find that the beta 1,6-GlcNAc transferase activity present in hog gastric mucosal microsomes converts the linear pentasaccharide GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (1) in a site-specific way to the branch-bearing hexasaccharide GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (2). The product is a positional isomer of GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (3), reportedly formed from 1 by another polylactosamine beta 1,6-GlcNAc transferase activity present in human serum (Leppänen et al., Biochemistry, 30 (1991) 9287). Combined use of the two kinds of activities gave in the present experiments the heptasaccharide GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (4), in which one of the branches occupies the position of the branch in 2 and the other the position of the branch in 3.
Collapse
Affiliation(s)
- J Helin
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
12
|
Maaheimo H, Räbinä J, Renkonen O. 1H and 13C NMR analysis of the pentasaccharide Gal beta (1-->4)GlcNAc beta (1-->3)-[GlcNAc beta (1-->6)]Gal beta (1-->4)GlcNAc synthesized by the mid-chain beta-(1-->6)-D-N-acetylglucosaminyltransferase of rat serum. Carbohydr Res 1997; 297:145-51. [PMID: 9060181 DOI: 10.1016/s0008-6215(96)00259-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemical shifts and coupling constants of completely assigned 1H and 13C NMR spectra at 500 MHz, as well as ROESY and HMBC connectivities were used to establish the structure of the pentasaccharide Gal beta (1-->4)GlcNAc beta (1-->3)[GlcNAc beta (1-->6)]Gal beta (1-->4)GlcNAc, synthesized by the action of the mid-chain beta-(1-->6)-D-N-acetylglucosaminyltransferase of rat serum from UDP-GlcNAc and the linear tetrasaccharide Gal beta (1-->4)GlcNAc beta (1-->3)Gal beta (1-->4)GlcNAc.
Collapse
Affiliation(s)
- H Maaheimo
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | |
Collapse
|