1
|
Westerhausen R. Interhemispheric Integration after Callosotomy: A Meta-Analysis of Poffenberger and Redundant-Target Paradigms. Neuropsychol Rev 2023; 33:872-890. [PMID: 36484870 PMCID: PMC10769931 DOI: 10.1007/s11065-022-09569-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
The central role of the corpus callosum in integrating perception and cognition across the cerebral hemispheres makes it highly desirable for clinical and basic research to have a repertoire of experimental paradigms assessing callosal functioning. Here, the objective was to assess the validity of two such paradigms (Poffenberger, redundant-target paradigms) by conducting single-step meta-analyses on individual case data of callosotomy patients. Studies were identified by systematic literature search (source: Pubmed and WebOfKnowledge, date: 07.03.2022) and all studies were included that reported callosotomy case data for either paradigm. Twenty-two studies (38 unique cases) provided 116 observations of the crossed-uncrossed difference (CUD) for the Poffenberger paradigm, while ten studies (22 cases, 103 observations) provided bilateral redundancy gain (bRG) measures. Using linear-mixed models with "individual" and "experiment" as random-effects variable, the mean CUD was estimated at 60.6 ms (CI95%: 45.3; 75.9) for commissurotomy, 43.5 ms (26.7; 60.2) for complete callosotomy, and 8.8 ms (1.1; 16.6) for partial anterior-medial callosotomy patients. The estimates of commissurotomy/callosotomy patients differed significantly from patients with partial callosotomy and healthy controls. The mean bRGmin (minimum unilateral reference) was estimated at 42.8 ms (27.1;58.4) for patients with complete and 30.8 ms (16.8; 44.7) for patients with partial callosotomy, both differing significantly from controls. One limitation was that different formulas for bRG were used, making it necessary to split the sample and reducing test power of some analyses. Nevertheless, the present findings suggest that both paradigms assess interhemispheric callosal integration, confirming their construct validity, but likely test distinct callosal functions.
Collapse
Affiliation(s)
- René Westerhausen
- Section for Cognitive and Clinical Neuroscience, Department of Psychology, University of Oslo, POB 1094 Blindern, Oslo, 0317, Norway.
| |
Collapse
|
2
|
Albishi AM. Why do different motor cortical areas activate the same muscles? Brain Struct Funct 2023; 228:2017-2024. [PMID: 37709903 DOI: 10.1007/s00429-023-02703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023]
Abstract
The cortex contains multiple motor areas, including the primary motor cortex (M1) and supplementary motor area (SMA). Many muscles are represented in both the M1 and SMA, but the reason for this dual representation remains unclear. Previous work has shown that the M1 and SMA representations of a specific human muscle can be differentiated according to their functional connectivity with different brain areas located outside of the motor cortex. It is our perspective that this differential functional connectivity may be the neural substrate that allows an individual muscle to be accessed by distinct neural processes, such as those implementing volitional vs. postural task control. Here, we review existing human and animal literature suggesting how muscles are represented in the M1 and SMA and how these brain regions have distinct functions. We also discuss potential studies to further elucidate the distinct roles of the SMA and M1 in normal and dysfunctional motor control.
Collapse
Affiliation(s)
- Alaa M Albishi
- Department of Rehabilitation Sciences-Physical Therapy Division, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Kinoshita M, Suppa A. Gear up for therapeutic application of non-invasive brain stimulation in Parkinson's disease. Clin Neurophysiol 2021; 132:2892-2893. [PMID: 34538738 DOI: 10.1016/j.clinph.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto, Japan.
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed Institute, Pozzilli IS, Italy
| |
Collapse
|
4
|
Pinheiro AP, Schwartze M, Kotz SA. Cerebellar circuitry and auditory verbal hallucinations: An integrative synthesis and perspective. Neurosci Biobehav Rev 2020; 118:485-503. [DOI: 10.1016/j.neubiorev.2020.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
|
5
|
Bhattacharjee S, Kashyap R, Abualait T, Annabel Chen SH, Yoo WK, Bashir S. The Role of Primary Motor Cortex: More Than Movement Execution. J Mot Behav 2020; 53:258-274. [PMID: 32194004 DOI: 10.1080/00222895.2020.1738992] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The predominant role of the primary motor cortex (M1) in motor execution is well acknowledged. However, additional roles of M1 are getting evident in humans owing to advances in noninvasive brain stimulation (NIBS) techniques. This review collates such studies in humans and proposes that M1 also plays a key role in higher cognitive processes. The review commences with the studies that have investigated the nature of connectivity of M1 with other cortical regions in light of studies based on NIBS. The review then moves on to discuss the studies that have demonstrated the role of M1 in higher cognitive processes such as attention, motor learning, motor consolidation, movement inhibition, somatomotor response, and movement imagery. Overall, the purpose of the review is to highlight the additional role of M1 in motor cognition besides motor control, which remains unexplored.
Collapse
Affiliation(s)
| | - Rajan Kashyap
- Center for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore
| | - Turki Abualait
- Physical Therapy Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shen-Hsing Annabel Chen
- Lee Kong Chian School of Medicine (LKC Medicine), Nanyang Technological University, Singapore.,Office of Educational Research, National Institute of Education, Nanyang Technological University, Singapore
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Belkacem AN, Nishio S, Suzuki T, Ishiguro H, Hirata M. Neuromagnetic Decoding of Simultaneous Bilateral Hand Movements for Multidimensional Brain-Machine Interfaces. IEEE Trans Neural Syst Rehabil Eng 2019; 26:1301-1310. [PMID: 29877855 DOI: 10.1109/tnsre.2018.2837003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To provide multidimensional control, we describe the first reported decoding of bilateral hand movements by using single-trial magnetoencephalography signals as a new approach to enhance a user's ability to interact with a complex environment through a multidimensional brain-machine interface. Ten healthy participants performed or imagined four types of bilateral hand movements during neuromagnetic measurements. By applying a support vector machine (SVM) method to classify the four movements regarding the sensor data obtained from the sensorimotor area, we found the mean accuracy of a two-class classification using the amplitudes of neuromagnetic fields to be particularly suitable for real-time applications, with accuracies comparable to those obtained in previous studies involving unilateral movement. The sensor data from over the sensorimotor cortex showed discriminative time-series waveforms and time-frequency maps in the bilateral hemispheres according to the four tasks. Furthermore, we used four-class classification algorithms based on the SVM method to decode all types of bilateral movements. Our results provided further proof that the slow components of neuromagnetic fields carry sufficient neural information to classify even bilateral hand movements and demonstrated the potential utility of decoding bilateral movements for engineering purposes such as multidimensional motor control.
Collapse
|
7
|
Abstract
The motor cortex is a large frontal structure in the cerebral cortex of eutherian mammals. A vast array of evidence implicates the motor cortex in the volitional control of motor output, but how does the motor cortex exert this 'control'? Historically, ideas regarding motor cortex function have been shaped by the discovery of cortical 'motor maps' - that is, ordered representations of stimulation-evoked movements in anaesthetized animals. Volitional control, however, entails the initiation of movements and the ability to suppress undesired movements. In this article, we highlight classic and recent findings that emphasize that motor cortex neurons have a role in both processes.
Collapse
|
8
|
Wu Z, Xie T, Yao L, Zhang D, Sheng X, Farina D, Chen L, Mao Y, Zhu X. Electrocorticographic Temporal Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex with Movement-Related Cortical Potentials. Front Neurosci 2017; 11:326. [PMID: 28659752 PMCID: PMC5466988 DOI: 10.3389/fnins.2017.00326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/23/2017] [Indexed: 11/18/2022] Open
Abstract
We propose electrocorticographic temporal alteration mapping (ETAM) for motor cortex mapping by utilizing movement-related cortical potentials (MRCPs) within the low-frequency band [0.05-3] Hz. This MRCP waveform-based temporal domain approach was compared with the state-of-the-art electrocorticographic frequency alteration mapping (EFAM), which is based on frequency spectrum dynamics. Five patients (two epilepsy cases and three tumor cases) were enrolled in the study. Each patient underwent intraoperative direct electrocortical stimulation (DECS) procedure for motor cortex localization. Moreover, the patients were required to perform simple brisk wrist extension task during awake craniotomy surgery. Cross-validation results showed that the proposed ETAM method had high sensitivity (81.8%) and specificity (94.3%) in identifying sites which exhibited positive DECS motor responses. Moreover, although the sensitivity of the ETAM and EFAM approaches was not significantly different, ETAM had greater specificity compared with EFAM (94.3 vs. 86.1%). These results indicate that for the intraoperative functional brain mapping, ETAM is a promising novel approach for motor cortex localization with the potential to reduce the need for cortical electrical stimulation.
Collapse
Affiliation(s)
- Zehan Wu
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, China
| | - Tao Xie
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong UniversityShanghai, China
| | - Lin Yao
- Department of Systems Design Engineering, Faculty of Engineering, University of WaterlooWaterloo, ON, Canada
| | - Dingguo Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong UniversityShanghai, China
| | - Xinjun Sheng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong UniversityShanghai, China
| | - Dario Farina
- Department of Bioengineering, Imperial College LondonLondon, United Kingdom
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, China
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
9
|
Long-Term Predictive and Feedback Encoding of Motor Signals in the Simple Spike Discharge of Purkinje Cells. eNeuro 2017; 4:eN-NWR-0036-17. [PMID: 28413823 PMCID: PMC5388669 DOI: 10.1523/eneuro.0036-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 11/21/2022] Open
Abstract
Most hypotheses of cerebellar function emphasize a role in real-time control of movements. However, the cerebellum’s use of current information to adjust future movements and its involvement in sequencing, working memory, and attention argues for predicting and maintaining information over extended time windows. The present study examines the time course of Purkinje cell discharge modulation in the monkey (Macaca mulatta) during manual, pseudo-random tracking. Analysis of the simple spike firing from 183 Purkinje cells during tracking reveals modulation up to 2 s before and after kinematics and position error. Modulation significance was assessed against trial shuffled firing, which decoupled simple spike activity from behavior and abolished long-range encoding while preserving data statistics. Position, velocity, and position errors have the most frequent and strongest long-range feedforward and feedback modulations, with less common, weaker long-term correlations for speed and radial error. Position, velocity, and position errors can be decoded from the population simple spike firing with considerable accuracy for even the longest predictive (-2000 to -1500 ms) and feedback (1500 to 2000 ms) epochs. Separate analysis of the simple spike firing in the initial hold period preceding tracking shows similar long-range feedforward encoding of the upcoming movement and in the final hold period feedback encoding of the just completed movement, respectively. Complex spike analysis reveals little long-term modulation with behavior. We conclude that Purkinje cell simple spike discharge includes short- and long-range representations of both upcoming and preceding behavior that could underlie cerebellar involvement in error correction, working memory, and sequencing.
Collapse
|
10
|
Martínez-Expósito A, Ibáñez J, Resquín F, Pons J. Task Influence on Motor-Related Cortical Signals: Comparison Between Upper and Lower Limb Coordinated and Analytic Movements. BIOSYSTEMS & BIOROBOTICS 2017. [DOI: 10.1007/978-3-319-46669-9_185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Burwell SJ, Malone SM, Iacono WG. One-year developmental stability and covariance among oddball, novelty, go/no-go, and flanker event-related potentials in adolescence: A monozygotic twin study. Psychophysiology 2016; 53:991-1007. [PMID: 26997525 DOI: 10.1111/psyp.12646] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/19/2016] [Indexed: 01/14/2023]
Abstract
ERP measures may index genetic risk for psychopathology before disorder onset in adolescence, but little is known about their developmental rank-order stability during this period of significant brain maturation. We studied ERP stability in 48 pairs of identical twins (age 14-16 years) tested 1 year apart. Trial-averaged voltage waveforms were extracted from electroencephalographic recordings from oddball/novelty, go/no-go, and flanker tasks, and 16 amplitude measures were examined. Members of twin pairs were highly similar, whether based on ERP amplitude measures (intraclass correlation [ICC] median = .64, range = .44-.86) or three factor scores (all ICCs ≥ .69) derived from them. Stability was high overall, with 69% of the 16 individual measures generating stability coefficients exceeding .70 and all factor scores showing stability above .75. Measures from 10 difference waveforms calculated from paired conditions within tasks were also examined, and were associated with lower twin similarity (ICC median = .52, .38-.64) and developmental stability (only 30% exceeding .70). In a supplemental analysis, we found significant developmental stability for error-related negativity (range = .45-.55) and positivity (.56-.70) measures when average waveforms were based on one or more trials, and that these values were equivalent to those derived from averages using the current field recommendation, which requires six or more trials. Overall, we conclude that the studied brain measures are largely stable over 1 year of mid- to late adolescence, likely reflecting familial etiologic influences on brain functions pertaining to cognitive control and salience recognition.
Collapse
Affiliation(s)
- Scott J Burwell
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Duval C, Daneault JF, Hutchison WD, Sadikot AF. A brain network model explaining tremor in Parkinson's disease. Neurobiol Dis 2016; 85:49-59. [DOI: 10.1016/j.nbd.2015.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022] Open
|
13
|
Vidal F, Meckler C, Hasbroucq T. Basics for sensorimotor information processing: some implications for learning. Front Psychol 2015; 6:33. [PMID: 25762944 PMCID: PMC4329794 DOI: 10.3389/fpsyg.2015.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/08/2015] [Indexed: 12/29/2022] Open
Abstract
In sensorimotor activities, learning requires efficient information processing, whether in car driving, sport activities or human-machine interactions. Several factors may affect the efficiency of such processing: they may be extrinsic (i.e., task-related) or intrinsic (i.e., subjects-related). The effects of these factors are intimately related to the structure of human information processing. In the present article we will focus on some of them, which are poorly taken into account, even when minimizing errors or their consequences is an essential issue at stake. Among the extrinsic factors, we will discuss, first, the effects of the quantity and quality of information, secondly, the effects of instruction and thirdly motor program learning. Among the intrinsic factors, we will discuss first the influence of prior information, secondly how individual strategies affect performance and, thirdly, we will stress the fact that although the human brain is not structured to function errorless (which is not new) humans are able to detect their errors very quickly and (in most of the cases), fast enough to correct them before they result in an overt failure. Extrinsic and intrinsic factors are important to take into account for learning because (1) they strongly affect performance, either in terms of speed or accuracy, which facilitates or impairs learning, (2) the effect of certain extrinsic factors may be strongly modified by learning and (3) certain intrinsic factors might be exploited for learning strategies.
Collapse
Affiliation(s)
- Franck Vidal
- Laboratoire de Neurosciences Cognitives UMR 7291, Faculté des Sciences, Aix-Marseille UniversitéCNRS, Marseille, France
| | - Cédric Meckler
- Institut de Recherche Biomédicale des Armées–Equipe Résidante de Recherche Subaquatique OpérationnelleToulon, France
| | - Thierry Hasbroucq
- Laboratoire de Neurosciences Cognitives UMR 7291, Faculté des Sciences, Aix-Marseille UniversitéCNRS, Marseille, France
| |
Collapse
|
14
|
Pinet S, Hamamé CM, Longcamp M, Vidal F, Alario FX. Response planning in word typing: Evidence for inhibition. Psychophysiology 2014; 52:524-31. [DOI: 10.1111/psyp.12373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/18/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Svetlana Pinet
- Laboratoire de Psychologie Cognitive; Aix-Marseille Université & CNRS; Marseille France
| | - Carlos M. Hamamé
- Laboratoire de Psychologie Cognitive; Aix-Marseille Université & CNRS; Marseille France
| | - Marieke Longcamp
- Laboratoire de Neurosciences Cognitives; Aix-Marseille Université & CNRS; Marseille France
| | - Franck Vidal
- Laboratoire de Neurosciences Cognitives; Aix-Marseille Université & CNRS; Marseille France
| | - F.-Xavier Alario
- Laboratoire de Psychologie Cognitive; Aix-Marseille Université & CNRS; Marseille France
| |
Collapse
|
15
|
Kourtis D, Knoblich G, Woźniak M, Sebanz N. Attention Allocation and Task Representation during Joint Action Planning. J Cogn Neurosci 2014; 26:2275-86. [DOI: 10.1162/jocn_a_00634] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
We investigated whether people take into account an interaction partner's attentional focus and whether they represent in advance their partner's part of the task when planning to engage in a synchronous joint action. The experiment involved two participants planning and performing joint actions (i.e., synchronously lifting and clinking glasses), unimanual individual actions (i.e., lifting and moving a glass as if clinking with another person), and bimanual individual actions. EEG was recorded from one of the participants. We employed a choice reaction paradigm where a visual cue indicated the type of action to be planned, followed 1.5 sec later by a visual go stimulus, prompting the participants to act. We studied attention allocation processes by examining two lateralized EEG components, namely the anterior directing attention negativity and the late directing attention positivity. Action planning processes were examined using the late contingent negative variation and the movement-related potential. The results show that early stages of joint action planning involve dividing attention between locations in space relevant for one's own part of the joint action and locations relevant for one's partner's part of the joint action. At later stages of joint action planning, participants represented in advance their partner's upcoming action in addition to their own action, although not at an effector-specific level. Our study provides electrophysiological evidence supporting the operation of attention sharing processes and predictive self/other action representation during the planning phase of a synchronous joint task.
Collapse
Affiliation(s)
- Dimitrios Kourtis
- 1Ghent University
- 2Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Günther Knoblich
- 2Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
- 3Central European University, Budapest, Hungary
| | | | - Natalie Sebanz
- 2Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
- 3Central European University, Budapest, Hungary
| |
Collapse
|
16
|
Roger C, Núñez Castellar E, Pourtois G, Fias W. Changing your mind before it is too late: The electrophysiological correlates of online error correction during response selection. Psychophysiology 2014; 51:746-60. [DOI: 10.1111/psyp.12224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/01/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Clémence Roger
- Department of Experimental Psychology; Ghent University; Ghent Belgium
- Université Lille Nord de France; Lille France
- URECA; UDL3; Villeneuve d'Ascq France
| | - Elena Núñez Castellar
- Department of Experimental Psychology; Ghent University; Ghent Belgium
- Department of Communication Sciences; iMinds-MICT-Ghent University; Ghent Belgium
| | - Gilles Pourtois
- Department of Experimental Clinical and Health Psychology; Ghent University; Ghent Belgium
| | - Wim Fias
- Department of Experimental Psychology; Ghent University; Ghent Belgium
| |
Collapse
|
17
|
Handedness consistency influences bimanual coordination: A behavioural and electrophysiological investigation. Neuropsychologia 2014; 58:81-7. [DOI: 10.1016/j.neuropsychologia.2014.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/10/2014] [Accepted: 04/04/2014] [Indexed: 11/23/2022]
|
18
|
Stock AK, Beste C. Lateralization of spatial information processing in response monitoring. Front Psychol 2014; 5:22. [PMID: 24550855 PMCID: PMC3913883 DOI: 10.3389/fpsyg.2014.00022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/09/2014] [Indexed: 12/02/2022] Open
Abstract
The current study aims at identifying how lateralized multisensory spatial information processing affects response monitoring and action control. In a previous study, we investigated multimodal sensory integration in response monitoring processes using a Simon task. Behavioral and neurophysiologic results suggested that different aspects of response monitoring are asymmetrically and independently allocated to the hemispheres: while efference-copy-based information on the motor execution of the task is further processed in the hemisphere that originally generated the motor command, proprioception-based spatial information is processed in the hemisphere contralateral to the effector. Hence, crossing hands (entering a “foreign” spatial hemifield) yielded an augmented bilateral activation during response monitoring since these two kinds of information were processed in opposing hemispheres. Because the traditional Simon task does not provide the possibility to investigate which aspect of the spatial configuration leads to the observed hemispheric allocation, we introduced a new “double crossed” condition that allows for the dissociation of internal/physiological and external/physical influences on response monitoring processes. Comparing behavioral and neurophysiologic measures of this new condition to those of the traditional Simon task setup, we could demonstrate that the egocentric representation of the physiological effector's spatial location accounts for the observed lateralization of spatial information in action control. The finding that the location of the physical effector had a very small influence on response monitoring measures suggests that this aspect is either less important and/or processed in different brain areas than egocentric physiological information.
Collapse
Affiliation(s)
- Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden Dresden, Germany
| |
Collapse
|
19
|
Suzuki M, Wasaka T, Inui K, Kakigi R. Reappraisal of field dynamics of motor cortex during self-paced finger movements. Brain Behav 2013; 3:747-62. [PMID: 24363977 PMCID: PMC3868179 DOI: 10.1002/brb3.186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/13/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The exact origin of neuronal responses in the human sensorimotor cortex subserving the generation of voluntary movements remains unclear, despite the presence of characteristic but robust waveforms in the records of electroencephalography or magnetoencephalography (MEG). AIMS To clarify this fundamental and important problem, we analyzed MEG in more detail using a multidipole model during pulsatile extension of the index finger, and made some important new findings. RESULTS Movement-related cerebral fields (MRCFs) were confirmed over the sensorimotor region contralateral to the movement, consisting of a temporal succession of the first premovement component termed motor field, followed by two or three postmovement components termed movement evoked fields. A source analysis was applied to separately model each of these field components. Equivalent current diploes of all components of MRCFs were estimated to be located in the same precentral motor region, and did not differ with respect to their locations and orientations. The somatosensory evoked fields following median nerve stimulation were used to validate these findings through comparisons of the location and orientation of composite sources with those specified in MRCFs. The sources for the earliest components were evoked in Brodmann's area 3b located lateral to the sources of MRCFs, and those for subsequent components in area 5 and the secondary somatosensory area were located posterior to and inferior to the sources of MRCFs, respectively. Another component peaking at a comparable latency with the area 3b source was identified in the precentral motor region where all sources of MRCFs were located. CONCLUSION These results suggest that the MRCF waveform reflects a series of responses originating in the precentral motor area.
Collapse
Affiliation(s)
- Masataka Suzuki
- Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, 444-8585, Japan ; Department of Psychology, Kinjo Gakuin University Omori 2-1723 Moriyama, Nagoya, 463-8521, Japan
| | - Toshiaki Wasaka
- Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, 444-8585, Japan
| | - Koji Inui
- Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, 444-8585, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, 444-8585, Japan
| |
Collapse
|
20
|
Lew E, Chavarriaga R, Zhang H, Seeck M, Millan JDR. Self-paced movement intention detection from human brain signals: Invasive and non-invasive EEG. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:3280-3. [PMID: 23366626 DOI: 10.1109/embc.2012.6346665] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural signatures of humans' movement intention can be exploited by future neuroprosthesis. We propose a method for detecting self-paced upper limb movement intention from brain signals acquired with both invasive and non-invasive methods. In the first study with scalp electroencephalograph (EEG) signals from healthy controls, we report single trial detection of movement intention using movement-related potentials (MRPs) in a frequency range between 0.1 to 1 Hz. Movement intention can be detected above chance level (p<0.05) on average 460 ms before the movement onset with low detection rate during the non-movement intention period. Using intracranial EEG (iEEG) from one epileptic subject, we detect movement intention as early as 1500 ms before movement onset with accuracy above 90% using electrodes implanted in the bilateral supplementary motor area (SMA). The coherent results obtained with non-invasive and invasive method and its generalization capabilities across different days of recording, strengthened the theory that self-paced movement intention can be detected before movement initiation for the advancement in robot-assisted neurorehabilitation.
Collapse
Affiliation(s)
- Eileen Lew
- Center for Neuroprosthetics,School of Engineering, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
21
|
Miller J, Gerstner N. Cortical processing of simultaneous hand and foot movements: evidence from event-related potentials. Psychophysiology 2013; 50:983-95. [PMID: 23844673 DOI: 10.1111/psyp.12088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/28/2013] [Indexed: 11/28/2022]
Abstract
The motor processes involved in generating simultaneous hand and foot movements were studied by recording event-related potentials (ERPs) during reaction time tasks in which participants made hand and foot movements either alone or in combination with one another. In particular, we assessed whether the motor potentials generated during combined movements were simply superpositions of the potentials generated during the individual movements in isolation. ERPs generated during single-limb movements replicated previously observed motor potentials, and those generated during both the execution (Experiment 1) and preparation (Experiment 2) of combined movements showed some deviations from the predictions of the superposition hypothesis, suggesting the presence of neural interactions between the hand and foot movement systems during preparation and execution of these actions.
Collapse
Affiliation(s)
- Jeff Miller
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
22
|
Inouchi M, Matsumoto R, Taki J, Kikuchi T, Mitsueda-Ono T, Mikuni N, Wheaton L, Hallett M, Fukuyama H, Shibasaki H, Takahashi R, Ikeda A. Role of posterior parietal cortex in reaching movements in humans: clinical implication for 'optic ataxia'. Clin Neurophysiol 2013; 124:2230-41. [PMID: 23831168 DOI: 10.1016/j.clinph.2013.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/12/2013] [Accepted: 05/22/2013] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To clarify the spatio-temporal profile of cortical activity related to reaching movement in the posterior parietal cortex (PPC) in humans. METHODS Four patients with intractable partial epilepsy who underwent subdural electrode implantation were studied as a part of pre-surgical evaluation. We investigated the Bereitschaftspotential (BP) associated with reaching and correlated the findings with the effect of electrical stimulation of the same cortical area. RESULTS BPs specific for reaching, as compared with BPs for simple movements by the hand or arm contralateral to the implanted hemisphere, were recognized in all patients, mainly around the intraparietal sulcus (IPS), the superior parietal lobule (SPL) and the precuneus. BPs near the IPS had the earlier onset than BPs in the SPL. Electrical stimulation of a part of the PPC, where the reach-specific BPs were recorded, selectively impaired reaching. CONCLUSIONS Intracranial BP recording and cortical electrical stimulation delineated human reach-related areas in the PPC. SIGNIFICANCE The present study for the first time by direct cortical recording in humans demonstrates that parts of the cortices around the IPS and SPL play a crucial role in visually-guided reaching.
Collapse
Affiliation(s)
- Morito Inouchi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stock AK, Wascher E, Beste C. Differential effects of motor efference copies and proprioceptive information on response evaluation processes. PLoS One 2013; 8:e62335. [PMID: 23658624 PMCID: PMC3637248 DOI: 10.1371/journal.pone.0062335] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/20/2013] [Indexed: 11/19/2022] Open
Abstract
It is well-kown that sensory information influences the way we execute motor responses. However, less is known about if and how sensory and motor information are integrated in the subsequent process of response evaluation. We used a modified Simon Task to investigate how these streams of information are integrated in response evaluation processes, applying an in-depth neurophysiological analysis of event-related potentials (ERPs), time-frequency decomposition and sLORETA. The results show that response evaluation processes are differentially modulated by afferent proprioceptive information and efference copies. While the influence of proprioceptive information is mediated via oscillations in different frequency bands, efference copy based information about the motor execution is specifically mediated via oscillations in the theta frequency band. Stages of visual perception and attention were not modulated by the interaction of proprioception and motor efference copies. Brain areas modulated by the interactive effects of proprioceptive and efference copy based information included the middle frontal gyrus and the supplementary motor area (SMA), suggesting that these areas integrate sensory information for the purpose of response evaluation. The results show how motor response evaluation processes are modulated by information about both the execution and the location of a response.
Collapse
Affiliation(s)
- Ann-Kathrin Stock
- Institute for Cognitive Neuroscience, Department of Biopsychology, Ruhr-UniversityBochum, Bochum, Germany.
| | | | | |
Collapse
|
24
|
Fumuro T, Matsuhashi M, Mitsueda T, Inouchi M, Hitomi T, Nakagawa T, Matsumoto R, Kawamata J, Inoue H, Mima T, Takahashi R, Ikeda A. Bereitschaftspotential augmentation by neuro-feedback training in Parkinson's disease. Clin Neurophysiol 2013; 124:1398-405. [PMID: 23587458 DOI: 10.1016/j.clinph.2013.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 12/28/2012] [Accepted: 01/13/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Decreased early Bereitschaftspotential (BP) is one of the electrophysiological characteristics in patients with Parkinson's disease (PD). We examined whether PD patients could increase BP amplitude by means of neuro-feedback (NFB) training for their slow cortical potentials (SCPs). METHODS We worked with 10 PD patients and 11 age-matched controls. BP was measured for self-paced button pressing by their right thumb. The subjects were instructed to make the introspective efforts to produce negative SCPs (negativation). The one-day session consisted of three trials, that is, the first BP, NFB training and the second BP, and each patient performed this routine for 2-4 days. Amplitudes of the first and second BPs were compared between the two groups that were divided depending on NFB performance. RESULTS Good NFB performance had the tendency of larger early BP in the second BP recording than in the first one, whereas in the poor NFB performance the early BP was smaller in the second BP recording than in the first one in both patient and normal groups (p < 0.001). CONCLUSIONS Good NFB performance of negativation could increase excitatory field potentials of pyramidal cells for the generation of early BP. SIGNIFICANCE Voluntary regulation of SCPs could enhance BP in PD patients and in aged controls.
Collapse
Affiliation(s)
- Tomoyuki Fumuro
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Filevich E, Kühn S, Haggard P. Negative motor phenomena in cortical stimulation: implications for inhibitory control of human action. Cortex 2012; 48:1251-61. [DOI: 10.1016/j.cortex.2012.04.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/14/2012] [Accepted: 04/20/2012] [Indexed: 12/01/2022]
|
26
|
Vidal F, Burle B, Grapperon J, Hasbroucq T. An ERP study of cognitive architecture and the insertion of mental processes: Donders revisited. Psychophysiology 2011; 48:1242-51. [PMID: 21342207 DOI: 10.1111/j.1469-8986.2011.01186.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In his seminal paper, Donders proposed that Choice reaction time (RT) tasks differ from Go/No-go RT tasks only by the insertion of a response decision operation. We evaluated this possibility by comparing the time course of Laplacian-transformed ERPs, recorded over the primary (M1s) and supplementary motor areas (SMAs) in a Choice and in a Go/No-go task. Laplacian-transformed ERPs showed that a component that develops over the SMAs during the RT of Choice tasks vanishes in our Go/No-go task. This indicates that a process, absent in the Go/No-go task, was "inserted" in the Choice task. The Choice versus Go/No-go manipulation also modified the motor command: the activity recorded over M1s and the delay separating EMG onset from response completion depended on the nature of the task. This indicates that, although a process was inserted in the Choice task, it was not "purely" inserted, contrary to Donders' initial assumption.
Collapse
Affiliation(s)
- Franck Vidal
- Laboratoire de Neurobiologie de la Cognition, Aix-Marseille Université, CNRS, Marseille, France.
| | | | | | | |
Collapse
|
27
|
Del Percio C, Rossini PM, Marzano N, Iacoboni M, Infarinato F, Aschieri P, Lino A, Fiore A, Toran G, Babiloni C, Eusebi F. Is there a “neural efficiency” in athletes? A high-resolution EEG study. Neuroimage 2008; 42:1544-53. [DOI: 10.1016/j.neuroimage.2008.05.061] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/14/2008] [Accepted: 05/31/2008] [Indexed: 10/22/2022] Open
|
28
|
Motor Commands of Facial Expressions: The Bereitschaftspotential of Posed Smiles. Brain Topogr 2008; 20:232-8. [DOI: 10.1007/s10548-008-0049-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
|
29
|
Purzner J, Paradiso GO, Cunic D, Saint-Cyr JA, Hoque T, Lozano AM, Lang AE, Moro E, Hodaie M, Mazzella F, Chen R. Involvement of the basal ganglia and cerebellar motor pathways in the preparation of self-initiated and externally triggered movements in humans. J Neurosci 2007; 27:6029-36. [PMID: 17537974 PMCID: PMC6672263 DOI: 10.1523/jneurosci.5441-06.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN) is part of the cortico-basal ganglia (BG)-thalamocortical circuit, whereas the ventral lateral nucleus of the thalamus (VL) is a relay nucleus in the cerebello-dentato-thalamocortical (CTC) pathway. Both pathways have been implicated in movement preparation. We compared the involvement of the STN and VL in movement preparation in humans by recording local field potentials (LFPs) from seven patients with Parkinson's disease with deep-brain stimulation (DBS) electrodes in the STN and five patients with tremor and electrodes in VL. LFPs were recorded from DBS electrodes and scalp electrodes simultaneously while the patients performed self-paced and externally cued (ready, go/no-go) movements. For the self-paced movement, a premovement-related potential was observed in all patients from scalp, STN (phase reversal, five of six patients), and VL (phase reversal, five of five patients) electrodes. The onset times of the potentials were similar in the cortex, STN, and VL, ranging from 1.5 to 2 s before electromyogram onset. For the externally cued movement, an expectancy potential was observed in all patients in cortical and STN electrodes (phase reversal, six of six patients). The expectancy potential was recorded from the thalamic electrodes in four of five patients. However, phase reversal occurred only in one case, and magnetic resonance imaging showed that this contact was outside the VL. The cortico-BG-thalamocortical circuit is involved in the preparation of both self-paced and externally cued movements. The CTC pathway is involved in the preparation of self-paced but not externally cued movements, although the pathway may still be involved in the execution of these movements.
Collapse
Affiliation(s)
- Jamie Purzner
- The Krembil Neuroscience Centre and Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
| | - Guillermo O. Paradiso
- The Krembil Neuroscience Centre and Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
- Division of Neurology, Department of Medicine, and
| | - Danny Cunic
- The Krembil Neuroscience Centre and Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
| | - Jean A. Saint-Cyr
- The Krembil Neuroscience Centre and Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada M5T 2S8
| | - Tasnuva Hoque
- The Krembil Neuroscience Centre and Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada M5T 2S8
| | - Andres M. Lozano
- The Krembil Neuroscience Centre and Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada M5T 2S8
| | - Anthony E. Lang
- The Krembil Neuroscience Centre and Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
- Division of Neurology, Department of Medicine, and
| | - Elena Moro
- The Krembil Neuroscience Centre and Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
- Division of Neurology, Department of Medicine, and
| | - Mojgan Hodaie
- The Krembil Neuroscience Centre and Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada M5T 2S8
| | - Filomena Mazzella
- The Krembil Neuroscience Centre and Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
| | - Robert Chen
- The Krembil Neuroscience Centre and Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
- Division of Neurology, Department of Medicine, and
| |
Collapse
|
30
|
Addamo PK, Farrow M, Hoy KE, Bradshaw JL, Georgiou-Karistianis N. The effects of age and attention on motor overflow production—A review. ACTA ACUST UNITED AC 2007; 54:189-204. [PMID: 17300842 DOI: 10.1016/j.brainresrev.2007.01.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 01/11/2007] [Accepted: 01/15/2007] [Indexed: 12/29/2022]
Abstract
Motor overflow refers to overt involuntary movement, or covert muscle activity, that sometimes co-occurs with voluntary movement. Various clinical populations exhibit overflow. Motor overflow is also present in healthy children and the elderly, although in young adults, overt overflow is considered abnormal unless elicited under conditions of extreme force or muscle fatigue. Current theories of overflow imply that the corpus callosum may mediate production of this phenomenon. However, given that the corpus callosum is a conduit enabling the transfer of cortical information, surprisingly few studies have considered the cortical or subcortical structures underlying overflow. This review considers the developmental trend of motor overflow production, specifically in the upper-limbs, and the mechanisms thought to underlie this age-related phenomenon. Potential neurological correlates of motor overflow will be discussed in conjunction with higher order attentional processes which also regulate motor overflow production. Future research investigating the impact of attentional processes on overflow production may be particularly valuable for designing rehabilitation strategies for patients experiencing induced pathological overflow or conversely, to develop techniques to encourage the recovery of movement function in individuals with paretic limbs.
Collapse
Affiliation(s)
- Patricia K Addamo
- Experimental Neuropsychology Research Unit, School of Psychology, Psychiatry and Psychological Medicine, Monash University, Clayton, 3800, Victoria, Australia.
| | | | | | | | | |
Collapse
|
31
|
Miller J. Interhemispheric interactions and redundancy gain: tests of an interhemispheric inhibition hypothesis. Exp Brain Res 2007; 180:389-413. [PMID: 17287988 DOI: 10.1007/s00221-007-0883-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 01/07/2007] [Indexed: 10/23/2022]
Abstract
In simple reaction time (RT) tasks, responses are faster when stimuli are presented to both the left and right visual hemifields than when a stimulus is presented to a single hemifield. Paradoxically, this redundancy gain with bilateral stimuli is enhanced in split-brain individuals relative to normals. This article reports three experiments testing an account of that enhancement in which normals' responses to bilateral stimuli are slowed by interhemispheric inhibition. In simple RT tasks, normal participants responded bimanually to left, right, or bilateral visual stimuli. In choice RT tasks, they responded to each stimulus with one hand, responding bimanually only when both stimuli were presented. Measurements of response forcefulness (Experiment 1) and electroencephalographic activity (Experiments 2 and 3) showed no evidence of the correlation patterns predicted by the hypothesis of interhemispheric inhibition. The results suggest that such inhibition is unlikely to be the explanation for enhanced redundancy gain in split-brain individuals.
Collapse
Affiliation(s)
- Jeff Miller
- Department of Psychology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
32
|
Miller J. Contralateral and ipsilateral motor activation in visual simple reaction time: a test of the hemispheric coactivation model. Exp Brain Res 2006; 176:539-58. [PMID: 16917768 DOI: 10.1007/s00221-006-0641-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
Motor potentials contralateral versus ipsilateral to the responding hand were examined in a visual simple reaction time (RT) experiment in order to test the hemispheric coactivation model of Miller (Cogn Psychol 49:118-154, 2004). Visual stimuli were presented on the left side of fixation, on the right side, or on both sides, and in the RT task participants had to respond as quickly as possible to the onset of any stimulus. The same stimulus displays were also presented in a counting task, for which participants had merely to count the stimuli. Hemisphere-specific movement-related potentials contralateral and ipsilateral to the responding hand were isolated by subtracting count-task ERPs from RT-task ERPs. Consistent with the hemispheric coactivation model, there was evidence of movement-related ipsilateral positivity as well as contralateral negativity, suggesting that the motor areas of both hemispheres contribute to response initiation in simple RT. The distinction between contralateral and ipsilateral motor activation appears useful in clarifying the roles of the two hemispheres in response initiation.
Collapse
Affiliation(s)
- Jeff Miller
- Department of Psychology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
33
|
Bortoletto M, Sarlo M, Poli S, Stegagno L. Pre-motion positivity during self-paced movements of finger and mouth. Neuroreport 2006; 17:883-6. [PMID: 16738481 DOI: 10.1097/01.wnr.0000221830.95598.ea] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study investigated the role of pre-motion positivity in movement initiation and the reason why it is not reliably detectable in every study participant. Nineteen right-handed participants performed self-initiated simple movements of the right index finger and mouth while electroencephalography activity was recorded. Most of the participants showed a clear-cut pre-motion positivity with its characteristics varying as a function of the effector involved in the movement. The pre-motion positivity distribution was ipsilateral for finger movements and symmetrical for mouth movements. The results suggest that pre-motion positivity might represent a go-signal to initiate the movement and its occurrence might depend on movement initiation strategies.
Collapse
Affiliation(s)
- Marta Bortoletto
- Department of General Psychology, University of Padova, Padova, Italy.
| | | | | | | |
Collapse
|
34
|
Wheaton LA, Shibasaki H, Hallett M. Temporal activation pattern of parietal and premotor areas related to praxis movements. Clin Neurophysiol 2005; 116:1201-12. [PMID: 15826863 DOI: 10.1016/j.clinph.2005.01.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 12/30/2004] [Accepted: 01/03/2005] [Indexed: 12/17/2022]
Abstract
OBJECTIVE We sought to determine the cortical physiology underlying praxis movements in normal subjects using electroencephalography (EEG). METHODS Eight normal subjects were instructed to perform six types of self-paced tool-use pantomime and communicative gesture movements with the right hand. We recorded 64-channel EEG using a linked ear reference and electromyogram (EMG) from right thumb and forearm flexors. RESULTS Data revealed early slow wave components of the movement-related cortical potential (MRCP) beginning over the left parietal area about 3s before movement onset, similarly for both movement types. At movement onset, maximal amplitude was present over central and bilateral sensorimotor areas. Event-related desynchronization (ERD) in the beta band was seen over the left parietal and sensorimotor cortices during preparation, later spreading to the homologous area of the right hemisphere. Alpha ERD was mainly in the left sensorimotor cortex about 1.5s before movement onset. Beta ERD in mesial frontal areas was greater during preparation for tool use compared to communicative gesture movements. Mesial frontal beta event-related synchronization (ERS) developed more rapidly after communicative gestures than tool-use. CONCLUSIONS The dynamics of parietal and frontal activities indicates the timing of these areas in the production of praxis. The posterior parietal cortex contributes to the early slow wave negativity of the MRCP. SIGNIFICANCE Planning self-paced praxis movements begins as early as 3s before movement in the left parietal area and subsequently engages frontal cortical regions.
Collapse
Affiliation(s)
- Lewis A Wheaton
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, MD 20892-1428 Maryland, USA
| | | | | |
Collapse
|
35
|
Fattapposta F, Restuccia R, Colonnese C, Labruna L, Garreffa G, Bianco F. Gilles de la Tourette syndrome and voluntary movement: a functional MRI study. Psychiatry Res 2005; 138:269-72. [PMID: 15854795 DOI: 10.1016/j.pscychresns.2005.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 02/01/2005] [Indexed: 11/24/2022]
Abstract
Tourette syndrome (TS) is hypothesised to be caused by an abnormal organization of movement control. The aim of this study was to use functional magnetic resonance imaging to study motor cortex activation in a TS patient. Usual and unusual self-paced voluntary movements were performed. The TS patient displayed supplementary motor area (SMA) activation during both tasks. This activation reflects a continuous use of the SMA to perform the voluntary motor movements required in both tasks. Moreover, the absence of tics during the execution of these voluntary motor tasks suggests that tic activity may be suppressed by additional mental effort.
Collapse
Affiliation(s)
- Francesco Fattapposta
- Department of Neurology and Otolaryngology, University of Rome La Sapienza, Viale dell'Universita 30, 00185 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Wiese H, Stude P, Nebel K, Osenberg D, Ischebeck W, Stolke D, Diener HC, Keidel M. Recovery of movement-related potentials in the temporal course after prefrontal traumatic brain injury: a follow-up study. Clin Neurophysiol 2004; 115:2677-92. [PMID: 15546776 DOI: 10.1016/j.clinph.2004.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2004] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The movement-related potential (MRP) is an EEG measure related to self-initiated movements, consisting of the Bereitschaftspotential (BP), the negative slope, and the motor potential. Since in a former study the BP was reduced in acute prefrontal traumatic brain injury (TBI) patients, the present study examined the MRPs' course in follow-up examinations. METHODS Right index finger MRPs of 22 patients with contusions of the prefrontal cortex were recorded 12, 26, and 52 weeks after TBI and compared to controls. RESULTS Within the patient group, a significant increase of the BP in the temporal course after TBI was observed. MRPs 12 and 26 weeks after TBI did not differ significantly from the control group. One year after TBI, significantly enhanced BPs were found. CONCLUSIONS In the temporal course after prefrontal TBI, a recovery of the initially reduced BP was observed. The enhanced BP areas 1 year after TBI might represent the need for increased cognitive resources during movement preparation, supporting a recovered, but less effective neuronal network. SIGNIFICANCE The present study represents the first longitudinal follow-up study of MRPs after prefrontal brain lesion. The observed changes reflect the plastic capacity of the brain, reorganizing the neuronal network function.
Collapse
Affiliation(s)
- Holger Wiese
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Miller J. Exaggerated redundancy gain in the split brain: A hemispheric coactivation account. Cogn Psychol 2004; 49:118-54. [PMID: 15304369 DOI: 10.1016/j.cogpsych.2003.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2003] [Indexed: 11/22/2022]
Abstract
Recent studies of redundancy gain indicate that it is especially large when redundant stimuli are presented to different hemispheres of an individual without a functioning corpus callosum. This suggests the hypothesis that responses to redundant stimuli are speeded partly because both hemispheres are involved in the activation of the response. A simple formal model incorporating this idea is developed and then elaborated to account for additional related findings. Predictions of the latter model are in good qualitative agreement with data from a number of sources, and there is neuroanatomic and psychophysiological support for its underlying structure.
Collapse
Affiliation(s)
- Jeff Miller
- Department of Psychology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
38
|
Carbonnell L, Hasbroucq T, Grapperon J, Vidal F. Response selection and motor areas: a behavioural and electrophysiological study. Clin Neurophysiol 2004; 115:2164-74. [PMID: 15294220 DOI: 10.1016/j.clinph.2004.04.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2004] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The involvement of the supplementary motor areas (SMAs) and primary motor areas (M1s) in motor processes was studied. METHODS A between-hand choice and a simple reaction time (RT) task were mixed in a precueing paradigm. Laplacians were estimated by the source derivation method from the electroencephalogram recorded over the SMAs and M1s. RESULTS RT was shorter in the simple than in the choice RT task. Response-locked averages showed a negative potential over M1 contralateral to the response and a positive wave over M1 ipsilateral. This ipsilateral positivity was much smaller in the simple than in the choice RT task, whereas the contralateral negativity was not different. A negativity preceding the activations of the M1s developed over the SMAs. This negativity was larger in the choice than in the simple RT task. CONCLUSIONS In light of previous results, the present data confirm that, in between-hand choice tasks, response execution is implemented by an activation of the contralateral M1 and by an inhibition of the ipsilateral M1. SMAs and contralateral M1 appear hierarchically organized, the SMAs being more involved in response preparation and M1s in response execution. The task-dependent inhibition of ipsilateral M1 could reflect an active suppression of the erroneous response in the choice task. SIGNIFICANCE The task context in which one movement is executed can affect the pattern of activities recorded over cortical motor structures. Cognitive context is of importance for understanding the nature of the motor command.
Collapse
Affiliation(s)
- L Carbonnell
- Laboratoire de Neurobiologie de la Cognition (CNRS-LNC), Centre National de la Recherche Scientifique, Université de Provence, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
39
|
Satow T, Ikeda A, Yamamoto JI, Begum T, Thuy DHD, Matsuhashi M, Mima T, Nagamine T, Baba K, Mihara T, Inoue Y, Miyamoto S, Hashimoto N, Shibasaki H. Role of primary sensorimotor cortex and supplementary motor area in volitional swallowing: a movement-related cortical potential study. Am J Physiol Gastrointest Liver Physiol 2004; 287:G459-70. [PMID: 14701719 DOI: 10.1152/ajpgi.00323.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the role of the cerebral cortex, particularly the face/tongue area of the primary sensorimotor (SMI) cortex (face/tongue) and supplementary motor area (SMA), in volitional swallowing by recording movement-related cortical potentials (MRCPs). MRCPs with swallowing and tongue protrusion were recorded from scalp electrodes in eight normal right-handed subjects and from implanted subdural electrodes in six epilepsy patients. The experiment by scalp EEG in normal subjects revealed that premovement Bereitschaftspotentials (BP) activity for swallowing was largest at the vertex and lateralized to either hemisphere in the central area. The experiment by epicortical EEG in patients confirmed that face/tongue SMI and SMA were commonly involved in swallowing and tongue protrusion with overlapping distribution and interindividual variability. BP amplitude showed no difference between swallowing and tongue movements, either at face/tongue SMI or at SMA, whereas postmovement potential (PMP) was significantly larger in tongue protrusion than in swallowing only at face/tongue SMI. BP occurred earlier in swallowing than in tongue protrusion. Comparison between face/tongue SMI and SMA did not show any difference with regard to BP and PMP amplitude or BP onset time in either task. The preparatory role of the cerebral cortex in swallowing was similar to that in tongue movement, except for earlier activation in swallowing. Postmovement processing of swallowing was lesser than that of tongue movement in face/tongue SMI; probably suggesting that the cerebral cortex does not play a significant role in postmovement processing of swallowing. SMA plays a supplementary role to face/tongue SMI both in swallowing and tongue movements.
Collapse
Affiliation(s)
- Takeshi Satow
- Dept. of Neurology, Kyoto Univ. Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA. Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity. Pain 2004; 110:318-28. [PMID: 15275782 DOI: 10.1016/j.pain.2004.04.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 03/26/2004] [Accepted: 04/05/2004] [Indexed: 11/27/2022]
Abstract
Intensity encoding of painful stimuli in many brain regions has been suggested by imaging studies which cannot measure electrical activity of the brain directly. We have now examined the effect of laser stimulus intensity (three energy levels) on laser evoked potentials (LEPs) recorded directly from the human primary somatosensory (SI), parasylvian, and medial frontal cortical surfaces through subdural electrodes implanted for surgical treatment of medically intractable epilepsy. LEP N2* (early exogenous/stimulus-related potential) and LEP P2** (later endogenous potential) amplitudes were significantly related to the laser energy levels in all regions, although differences between regions were not significant. Both LEP peaks were also significantly correlated with the pain intensity evoked by the laser stimulus, excepting N2* over the parasylvian region. Peak latencies of both LEP peaks were independent of laser energy levels. N2* and P2** amplitudes of the maxima in all regions showed significant positive linear correlations with laser energy, excepting N2* over the parasylvian region. The lack of correlation of parasylvian cortical N2* with laser energy and pain intensity may be due to the unique anatomy of this region, or the small sample, rather than the lack of activation by the laser. Differences in thresholds of the energy correlation with amplitudes were not significant between regions. These results suggest that both exogenous in endogenous potentials evoked by painful stimuli, and recorded over SI, parasylvian, and medial frontal cortex of awake humans, encode the intensity of painful stimuli and correlate with the pain evoked by painful stimuli.
Collapse
Affiliation(s)
- S Ohara
- Department of Neurosurgery, Johns Hopkins Hospital, Meyer Building 8-181, 600 North Wolfe Street, Baltimore, MD 21287-7713, USA
| | | | | | | | | |
Collapse
|
41
|
Ohara S, Crone NE, Weiss N, Lenz FA. Attention to a painful cutaneous laser stimulus modulates electrocorticographic event-related desynchronization in humans. Clin Neurophysiol 2004; 115:1641-52. [PMID: 15203065 DOI: 10.1016/j.clinph.2004.02.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2004] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To test the hypothesis that attention to painful cutaneous laser stimuli enhances event-related desynchronization (ERD) in cortical regions receiving nociceptive input. METHODS We used wavelet time-frequency analysis and bandpass filtering to measure ERD quantitatively in subdural electrocorticographic recordings while subjects either attended to, or were distracted from, a painful cutaneous laser stimulus. RESULTS ERD were observed over primary somatosensory and parasylvian (PS) cortices in all 4 subjects, and over medial frontal cortex in 1 subject. Laser-evoked potentials were also observed in all 3 regions. In all subjects, ERD was more widespread and intense, particularly over PS, during attention to laser stimuli (counting stimuli) than during distraction from the stimuli (reading for comprehension). CONCLUSIONS These findings suggest that pain-associated ERD is modulated by attention, particularly over PS. SIGNIFICANCE This study suggests that thalamocortical circuits are involved in attentional modulation of pain because of the proposed role of these circuits in the mechanisms of ERD.
Collapse
Affiliation(s)
- S Ohara
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287-7247, USA
| | | | | | | |
Collapse
|
42
|
Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA. Cutaneous Painful Laser Stimuli Evoke Responses Recorded Directly From Primary Somatosensory Cortex in Awake Humans. J Neurophysiol 2004; 91:2734-46. [PMID: 14602841 DOI: 10.1152/jn.00912.2003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Negative and positive laser evoked potential (LEP) peaks (N2*, P2**) were simultaneously recorded from the primary somatosensory (SI), parasylvian, and medial frontal (MF: anterior cingulate and supplementary motor area) cortical surfaces through subdural electrodes implanted for the surgical treatment of intractable epilepsy. Distribution of the LEP N2*and P2**peaks was estimated to be in cortical areas (SI, parasylvian, and MF) identified by anatomic criteria, by their response to innocuous vibratory stimulation of a finger (v-SEP), and to electrical stimulation of the median nerve (e-SEP). The maximum of the LEP N2*peak was located on the CS, medial (dorsal) to the finger motor area, as determined by cortical stimulation, and to the finger somatosensory area, as determined from the e-SEP and v-SEP. This finding suggests that the generator source of the LEP N2*peak in SI was different from that of e-SEP or v-SEP in Brodmann's areas 3b or 1. In parasylvian and MF, polarity reversal was often observed, indicating tangential current sources in these regions. In contrast to e-SEP and v-SEP, the LEP N2*latency over SI was not shorter than that over the parasylvian region. The amplitude of N2*was larger over SI than over MF and the latencies of the LEP peaks in those 2 regions were different. These findings provide evidence for a significant LEP generator in the postcentral gyrus, perhaps SI cortex, that is situated outside the tactile homunculus in SI and that receives its input arising from nociceptors simultaneously with parasylvian and MF cortex.
Collapse
Affiliation(s)
- S Ohara
- Departments of Neurosurgery and Neurology, Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, MD 21278, USA
| | | | | | | | | |
Collapse
|
43
|
Yamane F, Muragaki Y, Maruyama T, Okada Y, Iseki H, Ikeda A, Homma I, Hori T. Preoperative mapping for patients with supplementary motor area epilepsy: multimodality brain mapping. Psychiatry Clin Neurosci 2004; 58:S16-21. [PMID: 15149310 DOI: 10.1111/j.1440-1819.2004.01244_5.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surgical management and strategies for the supplementary motor area (SMA) epilepsy are described. The following is our preoperative evaluations. The steps include functional magnetic resonance imaging (fMRI), interictal dipole tracing (DT), subdural electrodes mapping, measurements of movement-related cortical potential (MRCP), and the use of the intraoperative open MRI under conscious craniotomy. Six patients with SMA epilepsy underwent surgery after the mapping procedures and are now seizure-free. Combinations of preoperative (fMRI, subdural electrodes mapping) and intraoperative mapping allow exact localization and identification of the critical functional areas. Early postoperative deficits in motor and speech function were profound but patients recovered rapidly. It is concluded that the step of mapping procedures plays an important role in the management of SMA epilepsy surgery.
Collapse
Affiliation(s)
- Fumitaka Yamane
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yamamoto J, Ikeda A, Satow T, Matsuhashi M, Baba K, Yamane F, Miyamoto S, Mihara T, Hori T, Taki W, Hashimoto N, Shibasaki H. Human eye fields in the frontal lobe as studied by epicortical recording of movement‐related cortical potentials. Brain 2004; 127:873-87. [PMID: 14960503 DOI: 10.1093/brain/awh110] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We studied the generator location of premovement subcomponents of movement-related cortical potentials (MRCPs) [Bereitschaftspotential (BP), negative slope (NS') and motor potential (MP)] associated with voluntary, self-paced horizontal saccade in the human frontal lobe. Self-paced horizontal saccade, wrist (or middle finger) extension and foot dorsiflexion were employed in 10 patients (lateral surface of the frontal lobe in seven and mesial in three) as part of the presurgical evaluation, and data of five patients (lateral in four and mesial in three) were used in the final analysis. On the lateral frontal lobe, the maximum BP, NS' or MP with horizontal saccade was seen at or 1-2 cm rostral to the hand, arm or face area of the primary motor cortex (MI) in all four subjects investigated. This area exactly corresponded to the frontal eye field (FEF) identified by electrical stimulation. The amplitude of MRCPs with saccade was smaller than that with hand movements. On the mesial surface, within the supplementary motor area (SMA) proper, BP and/or NS' for horizontal saccade was located 1-2 cm rostral to that for hand and foot movements. BP and/or NS' delineated the supplementary eye field (SEF) at the rostral part of the SMA proper, and SEF partly overlapped with the hand and foot areas of the SMA proper. At the area just rostral to the vertical anterior commissure line and/or the pre-SMA defined by electrical stimulation, BP and/or NS' was seen invariably, regardless of the sites of movements, and in contrast with the SMA proper, there was no somatotopic representation. No clear MPs were elicited by eye movements on the mesial surface. In one of the two subjects whose MRCPs with horizontal saccade were recorded simultaneously from the lateral and mesial surfaces of the frontal lobe, BP from the SEF and pre-SMA preceded that from the FEF. It is concluded that MRCPs with horizontal saccade are useful for defining the FEF, SEF and pre-SMA, and that the SEF and pre-SMA become active in preparation for horizontal saccade earlier than the FEF.
Collapse
Affiliation(s)
- Junichi Yamamoto
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Shogoin, Sakyo, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wiese H, Stude P, Nebel K, Osenberg D, Völzke V, Ischebeck W, Stolke D, Diener HC, Keidel M. Impaired movement-related potentials in acute frontal traumatic brain injury. Clin Neurophysiol 2004; 115:289-98. [PMID: 14744568 DOI: 10.1016/s1388-2457(03)00348-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Focal brain lesions due to traumatic brain injury (TBI) do not only lead to functional deficits in the lesion area, but also disturb the structurally intact neuronal network connected to the lesion site. Therefore we hypothesized dysfunctions of the cortical motor network after frontal TBI. The movement related potential (MRP) is an EEG component related to voluntary movement consisting of the Bereitschaftspotential (BP), the negative slope (NS), and the motor potential (MP). The aim of our study was to demonstrate alterations in the movement related cortical network in the acute stage after TBI by comparing our patients' MRPs to those of a healthy control group. METHODS EEGs of 22 patients with magnetic resonance imaging defined contusions of the prefrontal cortex were recorded within 8 weeks after TBI. We further recruited a healthy control group. The paradigm consisted of self-paced abductions of the right index finger. RESULTS Compared to healthy controls, the BP in the patient group was significantly reduced and its onset delayed. Moreover, an enhanced contribution of the postrolandic hemisphere ipsilateral to the movement and a reduced contribution of the left frontal cortex, ipsilateral to the lesion in the majority of the patients, were observed during motor execution (MP). CONCLUSIONS Anatomical connections between the prefrontal cortex and the supplementary motor area (SMA) are known to exist. We suggest that prefrontal lesions lead to reduced neuronal input into the SMA. This deficit in the preparatory motor network may cause the reduced BPs in our patients. Moreover, an increased need for attentional resources might explain the enhanced motor potentials during movement execution. In conclusion, we demonstrated altered MRPs in the acute stage after frontal TBI, which are a consequence of disturbed neuronal networks involved in the preparation and execution of voluntary movements.
Collapse
Affiliation(s)
- Holger Wiese
- Department of Neurology, University of Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Babiloni C, Del Percio C, Babiloni F, Carducci F, Cincotti F, Moretti DV, Rossini PM. Transient human cortical responses during the observation of simple finger movements: a high-resolution EEG study. Hum Brain Mapp 2004; 20:148-57. [PMID: 14601141 PMCID: PMC6872072 DOI: 10.1002/hbm.10135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
High-resolution event-related potentials (ERPs) were used to model the hemispherical representation of the transient cortical responses relating to the observation of movement during execution (right or left aimless finger extension). Subjects were seated in front of the observed person and looked at both their own and the observer's hand to receive similar visual feedback during the two conditions. In a visual control condition, a diode light moved at the observed person's hand. A first potential accompanying the movement execution peaked at about +110 msec over the contralateral somatomotor areas. It was followed by a potential (P300) peaking at about +350 msec over the central midline. In contrast, the potentials accompanying the movement observation peaked later over parietal-occipital other than somatomotor areas (N200 peak, +200 msec; P300 peak, +400 msec). Notably, the N200 was maximum in left parietal area whereas the P300 was maximum in right parietal area regardless the side of the movement. They markedly differed by the potentials following the displacement of the diode light. These results suggest a rapid time evolution (approximately 200-400 msec) of the cortical responses characterizing the observation of aimless movements (as opposite to grasping or handling). The execution of these movements would mainly involve somatomotor cortical responses and would be scarcely founded on the visual feedback. In contrast, the observation of the same movements carried out by others would require dynamical responses of somatomotor and parietal-occipital areas (especially of the right hemisphere), possibly for a stringent visuospatial analysis of the motor event.
Collapse
Affiliation(s)
- Claudio Babiloni
- Sezione di EEG ad Alta Risoluzione, Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma La Sapienza, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Vidal F, Grapperon J, Bonnet M, Hasbroucq T. The nature of unilateral motor commands in between-hand choice tasks as revealed by surface Laplacian estimation. Psychophysiology 2003; 40:796-805. [PMID: 14696733 DOI: 10.1111/1469-8986.00080] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
From electroencephalographic recordings, we estimated the surface Laplacian over motor areas in a Stroop-like between-hand choice reaction time task in humans. Response-locked averages showed a (negative) "motor potential" over the primary motor areas contralateral to the response. At the same time, a positive wave was observed over the primary motor areas ipsilateral to the response. These data suggest that, when a between-hand choice is required, an inhibition of the primary motor cortex ipsilateral to the nonresponding hand is implemented. This observation is relevant to the interpretation of the lateralized readiness potential (LRP) because the LRP is blind to the respective contribution of the contralateral and ipsilateral motor cortices. In addition, a negative wave beginning about 200 ms before EMG onset and peaking about 50 ms before it occurred over the supplementary motor areas (FCz). This wave preceded the motor potential, which supports the view that the supplementary motor areas are upstream in a hierarchy of the motor command.
Collapse
Affiliation(s)
- Franck Vidal
- Institut de Médecine Navale du Service de Santé des Armies, Toulon Naval, France.
| | | | | | | |
Collapse
|
48
|
Onoda K, Takahashi E, Sakata S. Event-related potentials in the frontal cortex, hippocampus, and cerebellum during a temporal discrimination task in rats. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2003; 17:380-7. [PMID: 12880908 DOI: 10.1016/s0926-6410(03)00139-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of this study was to evaluate the roles of the frontal cortex, hippocampus, and cerebellum in timing and time perception using event-related potentials (ERPs) in rats. Rats were trained to discriminate between 2-s and 8-s auditory signal durations using a choice procedure. A simple reaction-time task using only the 2-s signal served as the control condition. In both tasks, ERPs were computed at stimulus onset and offset. Auditory ERPs were recorded from the frontal cortex, hippocampus, and cerebellum. The stimulus onset ERPs consisted of P2, N2, and P3-like components. Significantly greater amplitudes of the P3-like components were observed during the temporal-discrimination task when compared to the simple reaction-time task. At the stimulus offset, P2, N2, and P3-like components were elicited as well as the stimulus onset. Only in the frontal cortex was the P3-like component that appeared at the stimulus offset larger for the temporal-discrimination task than for the simple reaction-time task. These results suggest that the frontal cortex, hippocampus, and cerebellum contribute to interval timing in the seconds range.
Collapse
Affiliation(s)
- Keiichi Onoda
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan
| | | | | |
Collapse
|
49
|
Labyt E, Szurhaj W, Bourriez JL, Cassim F, Defebvre L, Destée A, Guieu JD, Derambure P. Changes in oscillatory cortical activity related to a visuomotor task in young and elderly healthy subjects. Clin Neurophysiol 2003; 114:1153-66. [PMID: 12804684 DOI: 10.1016/s1388-2457(03)00058-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE In order to better understand the spatio-temporal interaction of the activated cortical areas when the movement is visuo-guided and to assess the age effect on the spatio-temporal pattern of cortical activity, we have compared a proximo-distal movement with visual-motor control and hand-eye coordination (targeting movement) with a distal and a proximal movement. METHODS Brain's electrical activity was studied using the analysis of event-related (de)synchronizations (ERD/S) of cortical mu and beta rhythms in 17 subjects, 8 young and 9 elderly subjects. RESULTS In both populations, we found an earlier and broader mu and beta ERD during the preparation of the targeting movement compared to distal and proximal movements, principally involving the contralateral parietal region. During the execution, a spreading over the parietocentral region during proximal movement and over the parietal region during targeting movement was observed. After the execution of proximal and targeting movements, a wider and higher beta ERS was observed only in the young subjects. In the elderly subjects, our results showed a significant decrease of beta ERS during the targeting task. CONCLUSIONS These results suggest there was a larger recruitment of cortical areas, involving notably the parietal cortex when the movement is visuo-guided. Moreover, cerebral aging-related changes in the spatio-temporal beta ERS pattern suggests an impaired sensory integration.
Collapse
Affiliation(s)
- E Labyt
- Department of Clinical Neurophysiology, Hospital R. Salengro, Regional University Hospital, CHRU 59037 Cedex, EA 2683, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Conway MA, Pleydell-Pearce CW, Whitecross SE, Sharpe H. Neurophysiological correlates of memory for experienced and imagined events. Neuropsychologia 2003; 41:334-40. [PMID: 12457758 DOI: 10.1016/s0028-3932(02)00165-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Changes in slow cortical potentials within EEG were monitored while autobiographical memories of experienced and imagined event were generated and then held in mind for a short period. The generation of both kinds of memory led to significantly larger negative dc shifts over left versus right frontal regions, and this was interpreted as a reflection of substantial left frontal activation. The generation phase was also associated with greater right versus left negative dc shifts over posterior occipital regions. This pattern replicates and extends previous findings from our laboratory. In addition, however, experienced memories were associated with significantly larger negative dc shifts over occipito-temporal regions than imagined events. Furthermore, during the hold-in-mind period, imagined events led to larger negative dc shifts over left frontal regions than experienced events. These findings suggest that memories for imagined and experienced events may share control processes that mediate construction of memories but that they differ in the types of content of the memories: memories of experienced events contain sensory-perceptual episodic knowledge stored in occipital networks whereas memories for imagined events contain generic imagery generated from frontal networks.
Collapse
Affiliation(s)
- Martin A Conway
- Department of Psychology, University of Durham, South Road, Durham DH1 3LE, UK.
| | | | | | | |
Collapse
|