1
|
Wu KC, Liao KS, Yeh LR, Wang YK. Drug Repurposing: The Mechanisms and Signaling Pathways of Anti-Cancer Effects of Anesthetics. Biomedicines 2022; 10:biomedicines10071589. [PMID: 35884894 PMCID: PMC9312706 DOI: 10.3390/biomedicines10071589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. There are only limited treatment strategies that can be applied to treat cancer, including surgical resection, chemotherapy, and radiotherapy, but these have only limited effectiveness. Developing a new drug for cancer therapy is protracted, costly, and inefficient. Recently, drug repurposing has become a rising research field to provide new meaning for an old drug. By searching a drug repurposing database ReDO_DB, a brief list of anesthetic/sedative drugs, such as haloperidol, ketamine, lidocaine, midazolam, propofol, and valproic acid, are shown to possess anti-cancer properties. Therefore, in the current review, we will provide a general overview of the anti-cancer mechanisms of these anesthetic/sedative drugs and explore the potential underlying signaling pathways and clinical application of these drugs applied individually or in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kai-Sheng Liao
- Department of Pathology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Li-Ren Yeh
- Department of Anesthesiology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung 82144, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| |
Collapse
|
2
|
Brun JF, Varlet-Marie E, Myzia J, Raynaud de Mauverger E, Pretorius E. Metabolic Influences Modulating Erythrocyte Deformability and Eryptosis. Metabolites 2021; 12:4. [PMID: 35050126 PMCID: PMC8778269 DOI: 10.3390/metabo12010004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/17/2022] Open
Abstract
Many factors in the surrounding environment have been reported to influence erythrocyte deformability. It is likely that some influences represent reversible changes in erythrocyte rigidity that may be involved in physiological regulation, while others represent the early stages of eryptosis, i.e., the red cell self-programmed death. For example, erythrocyte rigidification during exercise is probably a reversible physiological mechanism, while the alterations of red blood cells (RBCs) observed in pathological conditions (inflammation, type 2 diabetes, and sickle-cell disease) are more likely to lead to eryptosis. The splenic clearance of rigid erythrocytes is the major regulator of RBC deformability. The physicochemical characteristics of the surrounding environment (thermal injury, pH, osmolality, oxidative stress, and plasma protein profile) also play a major role. However, there are many other factors that influence RBC deformability and eryptosis. In this comprehensive review, we discuss the various elements and circulating molecules that might influence RBCs and modify their deformability: purinergic signaling, gasotransmitters such as nitric oxide (NO), divalent cations (magnesium, zinc, and Fe2+), lactate, ketone bodies, blood lipids, and several circulating hormones. Meal composition (caloric and carbohydrate intake) also modifies RBC deformability. Therefore, RBC deformability appears to be under the influence of many factors. This suggests that several homeostatic regulatory loops adapt the red cell rigidity to the physiological conditions in order to cope with the need for oxygen or fuel delivery to tissues. Furthermore, many conditions appear to irreversibly damage red cells, resulting in their destruction and removal from the blood. These two categories of modifications to erythrocyte deformability should thus be differentiated.
Collapse
Affiliation(s)
- Jean-Frédéric Brun
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles-PHYMEDEXP, Unité D’explorations Métaboliques (CERAMM), Département de Physiologie Clinique, Université de Montpellier, Hôpital Lapeyronie-CHRU de Montpellier, 34295 Montpellier, France; (J.M.); (E.R.d.M.)
| | - Emmanuelle Varlet-Marie
- UMR CNRS 5247-Institut des Biomolécules Max Mousseron (IBMM), Laboratoire du Département de Physicochimie et Biophysique, UFR des Sciences Pharmaceutiques et Biologiques, Université de Montpellier, 34090 Montpellier, France;
| | - Justine Myzia
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles-PHYMEDEXP, Unité D’explorations Métaboliques (CERAMM), Département de Physiologie Clinique, Université de Montpellier, Hôpital Lapeyronie-CHRU de Montpellier, 34295 Montpellier, France; (J.M.); (E.R.d.M.)
| | - Eric Raynaud de Mauverger
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles-PHYMEDEXP, Unité D’explorations Métaboliques (CERAMM), Département de Physiologie Clinique, Université de Montpellier, Hôpital Lapeyronie-CHRU de Montpellier, 34295 Montpellier, France; (J.M.); (E.R.d.M.)
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 MATIELAND, Stellenbosch 7602, South Africa;
| |
Collapse
|
3
|
Guilarte TR, Rodichkin AN, McGlothan JL, Acanda De La Rocha AM, Azzam DJ. Imaging neuroinflammation with TSPO: A new perspective on the cellular sources and subcellular localization. Pharmacol Ther 2021; 234:108048. [PMID: 34848203 DOI: 10.1016/j.pharmthera.2021.108048] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Translocator Protein 18 kDa (TSPO), previously named Peripheral Benzodiazepine Receptor, is a well-validated and widely used biomarker of neuroinflammation to assess diverse central nervous system (CNS) pathologies in preclinical and clinical studies. Many studies have shown that in animal models of human neurological and neurodegenerative disease and in the human condition, TSPO levels increase in the brain neuropil, and this increase is driven by infiltration of peripheral inflammatory cells and activation of glial cells. Therefore, a clear understanding of the dynamics of the cellular sources of the TSPO response is critically important in the interpretation of Positron Emission Tomography (PET) studies and for understanding the pathophysiology of CNS diseases. Within the normal brain compartment, there are tissues and cells such as the choroid plexus, ependymal cells of the lining of the ventricles, and vascular endothelial cells that also express TSPO at even higher levels than in glial cells. However, there is a paucity of knowledge if these cell types respond and increase TSPO in the diseased brain. These cells do provide a background signal that needs to be accounted for in TSPO-PET imaging studies. More recently, there are reports that TSPO may be expressed in neurons of the adult brain and TSPO expression may be increased by neuronal activity. Therefore, it is essential to study this topic with a great deal of detail, methodological rigor, and rule out alternative interpretations and imaging artifacts. High levels of TSPO are present in the outer mitochondrial membrane. Recent studies have provided evidence of its localization in other cellular compartments including the plasma membrane and perinuclear regions which may define functions that are different from that in mitochondria. A greater understanding of the TSPO subcellular localization in glial cells and infiltrating peripheral immune cells and associated function(s) may provide an additional layer of information to the understanding of TSPO neurobiology. This review is an effort to outline recent advances in understanding the cellular sources and subcellular localization of TSPO in brain cells and to examine remaining questions that require rigorous investigation.
Collapse
Affiliation(s)
- Tomás R Guilarte
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America.
| | - Alexander N Rodichkin
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America
| | - Jennifer L McGlothan
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America
| | - Arlet Maria Acanda De La Rocha
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America
| | - Diana J Azzam
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America
| |
Collapse
|
4
|
Hiser C, Montgomery BL, Ferguson-Miller S. TSPO protein binding partners in bacteria, animals, and plants. J Bioenerg Biomembr 2021; 53:463-487. [PMID: 34191248 PMCID: PMC8243069 DOI: 10.1007/s10863-021-09905-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
The ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO’s primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions—whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.
Collapse
Affiliation(s)
- Carrie Hiser
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - Beronda L Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
5
|
Blevins LK, Crawford RB, Azzam DJ, Guilarte TR, Kaminski NE. Surface translocator protein 18 kDa (TSPO) localization on immune cells upon stimulation with LPS and in ART-treated HIV + subjects. J Leukoc Biol 2020; 110:123-140. [PMID: 33205494 DOI: 10.1002/jlb.3a1219-729rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
Translocator protein 18 kDa (TSPO) is a well-known outer mitochondrial membrane protein and it is widely used as a biomarker of neuroinflammation and brain injury. Although it is thought that TSPO plays key roles in a multitude of host cell functions, including steroid biosynthesis, apoptosis, generation of reactive oxygen species, and proliferation, some of these functions have recently been questioned. Here, we report the unexpected finding that circulating immune cells differentially express basal levels of TSPO on their cell surface, with a high percentage of monocytes and neutrophils expressing cell surface TSPO. In vitro stimulation of monocytes with LPS significantly increases the frequency of cells with surface TSPO expression in the absence of altered gene expression. Importantly, the LPS increase in TSPO cell surface expression in monocytes appears to be selective for LPS because two other distinct monocyte activators failed to increase the frequency of cells with surface TSPO. Finally, when we quantified immune cell TSPO surface expression in antiretroviral therapy-treated HIV+ donors, a chronic inflammatory disease, we found significant increases in the frequency of TSPO surface localization, which could be pharmacologically suppressed with ∆9 -tetrahydrocannabinol. These findings suggest that cell surface TSPO in circulating leukocytes could serve as a peripheral blood-based biomarker of inflammation.
Collapse
Affiliation(s)
- Lance K Blevins
- Department of Pharmacology and Toxicology, Center for Research on Ingredient Safety, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Crawford
- Department of Pharmacology and Toxicology, Center for Research on Ingredient Safety, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Diana J Azzam
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida, USA
| | - Tomás R Guilarte
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida, USA
| | - Norbert E Kaminski
- Department of Pharmacology and Toxicology, Center for Research on Ingredient Safety, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Cipollina G, Davari Serej A, Di Nolfi G, Gazzano A, Marsala A, Spatafora MG, Peviani M. Heterogeneity of Neuroinflammatory Responses in Amyotrophic Lateral Sclerosis: A Challenge or an Opportunity? Int J Mol Sci 2020; 21:E7923. [PMID: 33113845 PMCID: PMC7662281 DOI: 10.3390/ijms21217923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex pathology: (i) the neurodegeneration is chronic and progressive; it starts focally in specific central nervous system (CNS) areas and spreads to different districts; (ii) multiple cell types further than motor neurons (i.e., glial/immune system cells) are actively involved in the disease; (iii) both neurosupportive and neurotoxic neuroinflammatory responses were identified. Microglia cells (a key player of neuroinflammation in the CNS) attracted great interest as potential target cell population that could be modulated to counteract disease progression, at least in preclinical ALS models. However, the heterogeneous/multifaceted microglia cell responses occurring in different CNS districts during the disease represent a hurdle for clinical translation of single-drug therapies. To address this issue, over the past ten years, several studies attempted to dissect the complexity of microglia responses in ALS. In this review, we shall summarize these results highlighting how the heterogeneous signature displayed by ALS microglia reflects not only the extent of neuronal demise in different regions of the CNS, but also variable engagement in the attempts to cope with the neuronal damage. We shall discuss novel avenues opened by the advent of single-cell and spatial transcriptomics technologies, underlining the potential for discovery of novel therapeutic targets, as well as more specific diagnostic/prognostic not-invasive markers of neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Peviani
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.C.); (A.D.S.); (G.D.N.); (A.G.); (A.M.); (M.G.S.)
| |
Collapse
|
7
|
Loth MK, Guariglia SR, Re DB, Perez J, de Paiva VN, Dziedzic JL, Chambers JW, Azzam DJ, Guilarte TR. A Novel Interaction of Translocator Protein 18 kDa (TSPO) with NADPH Oxidase in Microglia. Mol Neurobiol 2020; 57:4467-4487. [PMID: 32743737 PMCID: PMC7515859 DOI: 10.1007/s12035-020-02042-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
In the brain neuropil, translocator protein 18 kDa (TSPO) is a stress response protein that is upregulated in microglia and astrocytes in diverse central nervous system pathologies. TSPO is widely used as a biomarker of neuroinflammation in preclinical and clinical neuroimaging studies. However, there is a paucity of knowledge on the function(s) of TSPO in glial cells. In this study, we explored a putative interaction between TSPO and NADPH oxidase 2 (NOX2) in microglia. We found that TSPO associates with gp91phox and p22phox, the principal subunits of NOX2 in primary murine microglia. The association of TSPO with gp91phox and p22phox was observed using co-immunoprecipitation, confocal immunofluorescence imaging, and proximity ligation assay. We found that besides gp91phox and p22phox, voltage-dependent anion channel (VDAC) also co-immunoprecipitated with TSPO consistent with previous reports. When we compared lipopolysaccharide (LPS) stimulated microglia to vehicle control, we found that a lower amount of gp91phox and p22phox protein co-immunoprecipitated with TSPO suggesting a disruption of the TSPO-NOX2 subunits association. TSPO immuno-gold electron microscopy confirmed that TSPO is present in the outer mitochondrial membrane but it is also found in the endoplasmic reticulum (ER), mitochondria-associated ER membrane (MAM), and in the plasma membrane. TSPO localization at the MAM may represent a subcellular site where TSPO interacts with gp91phox and p22phox since the MAM is a point of communication between outer mitochondria membrane proteins (TSPO) and ER proteins (gp91phox and p22phox) where they mature and form the cytochrome b558 (Cytb558) heterodimer. We also found that an acute burst of reactive oxygen species (ROS) increased TSPO levels on the surface of microglia and this effect was abrogated by a ROS scavenger. These results suggest that ROS production may alter the subcellular distribution of TSPO. Collectively, our findings suggest that in microglia, TSPO is associated with the major NOX2 subunits gp91phox and p22phox. We hypothesize that this interaction may regulate Cytb558 formation and modulate NOX2 levels, ROS production, and redox homeostasis in microglia.
Collapse
Affiliation(s)
- Meredith K Loth
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sara R Guariglia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Juan Perez
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, 33199, USA
| | - Vanessa Nunes de Paiva
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jennifer L Dziedzic
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeremy W Chambers
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, 33199, USA
| | - Diana J Azzam
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, 33199, USA
| | - Tomás R Guilarte
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
8
|
Zeineh N, Denora N, Laquintana V, Franco M, Weizman A, Gavish M. Efficaciousness of Low Affinity Compared to High Affinity TSPO Ligands in the Inhibition of Hypoxic Mitochondrial Cellular Damage Induced by Cobalt Chloride in Human Lung H1299 Cells. Biomedicines 2020; 8:biomedicines8050106. [PMID: 32370132 PMCID: PMC7277862 DOI: 10.3390/biomedicines8050106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022] Open
Abstract
The 18 kDa translocator protein (TSPO) plays an important role in apoptotic cell death, including apoptosis induced by the hypoxia mimicking agent cobalt chloride (CoCl2). In this study, the protective effects of a high (CB86; Ki = 1.6 nM) and a low (CB204; Ki = 117.7 nM) affinity TSPO ligands were investigated in H1299 lung cancer cell line exposed to CoCl2. The lung cell line H1299 was chosen in the present study since they express TSPO and able to undergo programmed cell death. The examined cell death markers included: ATP synthase reversal, reactive oxygen species (ROS) generation, mitochondrial membrane potential (Δψm) depolarization, cellular toxicity, and cellular viability. Pretreatment of the cells with the low affinity ligand CB204 at a concentration of 100 µM suppressed significantly (p < 0.05 for all) CoCl2-induced cellular cytotoxicity (100%), ATP synthase reversal (67%), ROS generation (82%), Δψm depolarization (100%), reduction in cellular density (97%), and also increased cell viability (85%). Furthermore, the low affinity TSPO ligand CB204, was harmless when given by itself at 100 µM. In contrast, the high affinity ligand (CB86) was significantly effective only in the prevention of CoCl2–induced ROS generation (39%, p < 0.001), and showed significant cytotoxic effects when given alone at 100 µM, as reflected in alterations in ADP/ATP ratio, oxidative stress, mitochondrial membrane potential depolarization and cell death. It appears that similar to previous studies on brain-derived cells, the relatively low affinity for the TSPO target enhances the potency of TSPO ligands in the protection from hypoxic cell death. Moreover, the high affinity TSPO ligand CB86, but not the low affinity ligand CB204, was lethal to the lung cells at high concentration (100 µM). The low affinity TSPO ligand CB204 may be a candidate for the treatment of pulmonary diseases related to hypoxia, such as pulmonary ischemia and chronic obstructive pulmonary disease COPD.
Collapse
Affiliation(s)
- Nidal Zeineh
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel;
| | - Nunzio Denora
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (N.D.); (V.L.); (M.F.)
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (N.D.); (V.L.); (M.F.)
| | - Massimo Franco
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (N.D.); (V.L.); (M.F.)
| | - Abraham Weizman
- Research Unit at Geha Mental Health Center and Laboratory of Biological Psychiatry at Felsenstein Medical Research Center, Petah Tikva 4910002, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moshe Gavish
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel;
- Correspondence: ; Tel.: +972-4829-5275; Fax: +972-4829-5330
| |
Collapse
|
9
|
Kaestner L, Bogdanova A, Egee S. Calcium Channels and Calcium-Regulated Channels in Human Red Blood Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:625-648. [PMID: 31646528 DOI: 10.1007/978-3-030-12457-1_25] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Free Calcium (Ca2+) is an important and universal signalling entity in all cells, red blood cells included. Although mature mammalian red blood cells are believed to not contain organelles as Ca2+ stores such as the endoplasmic reticulum or mitochondria, a 20,000-fold gradient based on a intracellular Ca2+ concentration of approximately 60 nM vs. an extracellular concentration of 1.2 mM makes Ca2+-permeable channels a major signalling tool of red blood cells. However, the internal Ca2+ concentration is tightly controlled, regulated and maintained primarily by the Ca2+ pumps PMCA1 and PMCA4. Within the last two decades it became evident that an increased intracellular Ca2+ is associated with red blood cell clearance in the spleen and promotes red blood cell aggregability and clot formation. In contrast to this rather uncontrolled deadly Ca2+ signals only recently it became evident, that a temporal increase in intracellular Ca2+ can also have positive effects such as the modulation of the red blood cells O2 binding properties or even be vital for brief transient cellular volume adaptation when passing constrictions like small capillaries or slits in the spleen. Here we give an overview of Ca2+ channels and Ca2+-regulated channels in red blood cells, namely the Gárdos channel, the non-selective voltage dependent cation channel, Piezo1, the NMDA receptor, VDAC, TRPC channels, CaV2.1, a Ca2+-inhibited channel novel to red blood cells and i.a. relate these channels to the molecular unknown sickle cell disease conductance Psickle. Particular attention is given to correlation of functional measurements with molecular entities as well as the physiological and pathophysiological function of these channels. This view is in constant progress and in particular the understanding of the interaction of several ion channels in a physiological context just started. This includes on the one hand channelopathies, where a mutation of the ion channel is the direct cause of the disease, like Hereditary Xerocytosis and the Gárdos Channelopathy. On the other hand it applies to red blood cell related diseases where an altered channel activity is a secondary effect like in sickle cell disease or thalassemia. Also these secondary effects should receive medical and pharmacologic attention because they can be crucial when it comes to the life-threatening symptoms of the disease.
Collapse
Affiliation(s)
- Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany. .,Experimental Physics, Saarland University, Saarbrücken, Germany.
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland
| | - Stephane Egee
- CNRS, UMR8227 LBI2M, Sorbonne Université, Roscoff, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
10
|
Stadulytė A, Alcaide-Corral CJ, Walton T, Lucatelli C, Tavares AAS. Analysis of PK11195 concentrations in rodent whole blood and tissue samples by rapid and reproducible chromatographic method to support target-occupancy PET studies. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:33-39. [PMID: 31005772 PMCID: PMC6522057 DOI: 10.1016/j.jchromb.2019.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022]
Abstract
In Positron Emission Tomography (PET) research, it is important to assess not only pharmacokinetics of a radiotracer in vivo, but also of the drugs used in blocking/displacement PET studies. Typically, pharmacokinetic/pharmacodynamic (PK/PD) analyses of drugs used in rodent PET studies are based on population average pharmacokinetic profiles of the drugs due to limited blood volume withdrawal while simultaneously maintaining physiological homeostasis. This likely results in bias of PET data quantification, including unknown bias of target occupancy (TO) measurements. This study aimed to develop a High Performance Liquid Chromatography (HPLC) method for PK/PD quantification of drugs used in preclinical rodent PET research, specifically the translocator 18 kDa protein (TSPO) selective drug, PK11195, that used sub-millilitre blood volumes. The lowest detection limit for the proposed HPLC method ranged between 7.5 and 10 ng/mL depending on the method used to calculate the limit of detection, and the measured average relative standard deviation for intermediate precision was equal to 17.2%. Most importantly, we were able to demonstrate a significant difference between calculated PK11195 concentrations at 0.5, 1, 2, 3, 5, 15 and 30 min post-administration and individually measured whole blood levels (significance level range from p < 0.05 to p < 0.001; one-way ANOVA, Dunnet's post hoc test, p < 0.05). The HPLC method developed here uses sub-millilitre sample volumes to reproducibly assess PK/PD of PK11195 in rodent blood. This study highlights the importance of individually measured PK/PD drug concentrations when quantifying the TO from blocking/displacement rodent PET experiments.
Collapse
Affiliation(s)
- Agnė Stadulytė
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK.
| | - Carlos José Alcaide-Corral
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK
| | - Tashfeen Walton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Christophe Lucatelli
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Adriana Alexandre S Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK
| |
Collapse
|
11
|
Marginedas-Freixa I, Alvarez CL, Moras M, Hattab C, Bouyer G, Chene A, Lefevre SD, Le Van Kim C, Bihel F, Schwarzbaum PJ, Ostuni MA. Induction of ATP Release, PPIX Transport, and Cholesterol Uptake by Human Red Blood Cells Using a New Family of TSPO Ligands. Int J Mol Sci 2018; 19:ijms19103098. [PMID: 30308949 PMCID: PMC6213633 DOI: 10.3390/ijms19103098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023] Open
Abstract
Two main isoforms of the Translocator Protein (TSPO) have been identified. TSPO1 is ubiquitous and is mainly present at the outer mitochondrial membrane of most eukaryotic cells, whereas, TSPO2 is specific to the erythroid lineage, located at the plasma membrane, the nucleus, and the endoplasmic reticulum. The design of specific tools is necessary to determine the molecular associations and functions of TSPO, which remain controversial nowadays. We recently demonstrated that TSPO2 is involved in a supramolecular complex of the erythrocyte membrane, where micromolar doses of the classical TSPO ligands induce ATP release and zinc protoporphyrin (ZnPPIX) transport. In this work, three newly-designed ligands (NCS1016, NCS1018, and NCS1026) were assessed for their ability to modulate the functions of various erythrocyte's and compare them to the TSPO classical ligands. The three new ligands were effective in reducing intraerythrocytic Plasmodium growth, without compromising erythrocyte survival. While NCS1016 and NCS1018 were the most effective ligands in delaying sorbitol-induced hemolysis, NCS1016 induced the highest uptake of ZnPPIX and NCS1026 was the only ligand inhibiting the cholesterol uptake. Differential effects of ligands are probably due, not only, to ligand features, but also to the dynamic interaction of TSPO with various partners at the cell membrane. Further studies are necessary to fully understand the mechanisms of the TSPO's complex activation.
Collapse
Affiliation(s)
- Irene Marginedas-Freixa
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Cora L Alvarez
- Instituto de Química y Fisico-Química Biológicas "Prof. Alejandro C. Paladini", UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina.
- Departamento de Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina.
| | - Martina Moras
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Claude Hattab
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Guillaume Bouyer
- UMR 8227 LBI2M, Comparative Erythrocyte's Physiology, CNRS, Sorbonne Université, Laboratoire d'Excellence GR-Ex, F-29680 Roscoff, France.
| | - Arnaud Chene
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Sophie D Lefevre
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Caroline Le Van Kim
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Frederic Bihel
- UMR7200, Laboratoire d'Innovation Thérapeutique, Faculty of Pharmacy, University of Strasbourg, CNRS, F-67400 Illkirch Graffenstaden, France.
| | - Pablo J Schwarzbaum
- Instituto de Química y Fisico-Química Biológicas "Prof. Alejandro C. Paladini", UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| |
Collapse
|
12
|
Edison P, Donat CK, Sastre M. In vivo Imaging of Glial Activation in Alzheimer's Disease. Front Neurol 2018; 9:625. [PMID: 30131755 PMCID: PMC6090997 DOI: 10.3389/fneur.2018.00625] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by memory loss and decline of cognitive function, associated with progressive neurodegeneration. While neuropathological processes like amyloid plaques and tau neurofibrillary tangles have been linked to neuronal death in AD, the precise role of glial activation on disease progression is still debated. It was suggested that neuroinflammation could occur well ahead of amyloid deposition and may be responsible for clearing amyloid, having a neuroprotective effect; however, later in the disease, glial activation could become deleterious, contributing to neuronal toxicity. Recent genetic and preclinical studies suggest that the different activation states of microglia and astrocytes are complex, not as polarized as previously thought, and that the heterogeneity in their phenotype can switch during disease progression. In the last few years, novel imaging techniques e.g., new radiotracers for assessing glia activation using positron emission tomography and advanced magnetic resonance imaging technologies have emerged, allowing the correlation of neuro-inflammatory markers with cognitive decline, brain function and brain pathology in vivo. Here we review all new imaging technology in AD patients and animal models that has the potential to serve for early diagnosis of the disease, to monitor disease progression and to test the efficacy and the most effective time window for potential anti-inflammatory treatments.
Collapse
Affiliation(s)
- Paul Edison
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Cornelius K Donat
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Magdalena Sastre
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Bhoola NH, Mbita Z, Hull R, Dlamini Z. Translocator Protein (TSPO) as a Potential Biomarker in Human Cancers. Int J Mol Sci 2018; 19:ijms19082176. [PMID: 30044440 PMCID: PMC6121633 DOI: 10.3390/ijms19082176] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 11/17/2022] Open
Abstract
TSPO is a receptor involved in the regulation of cellular proliferation, apoptosis and mitochondrial functions. Previous studies showed that the expression of TSPO protein correlated positively with tumour malignancy and negatively with patient survival. The aim of this study was to determine the transcription of Tspo mRNA in various types of normal and cancer tissues. In situ hybridization was performed to localise the Tspo mRNA in various human normal and cancer tissues. The relative level of Tspo mRNA was quantified using fluorescent intensity and visual estimation of colorimetric staining. RT-PCR was used to confirm these mRNA levels in normal lung, lung cancer, liver cancer, and cervical cancer cell lines. There was a significant increase in the level of transcription in liver, prostate, kidney, and brain cancers while a significant decrease was observed in cancers of the colon and lung. Quantitative RT-PCR confirmed that the mRNA levels of Tspo are higher in a normal lung cell line than in a lung cancer cell line. An increase in the expression levels of Tspo mRNA is not necessarily a good diagnostic biomarker in most cancers with changes not being large enough to be significantly different when detected by in situ hybridisation.
Collapse
Affiliation(s)
- Nimisha H Bhoola
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa.
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa.
| | - Rodney Hull
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban 4031, South Africa.
| | - Zodwa Dlamini
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban 4031, South Africa.
| |
Collapse
|
14
|
Brun JF, Varlet-Marie E, Richou M, Mercier J, Raynaud de Mauverger E. Blood rheology as a mirror of endocrine and metabolic homeostasis in health and disease1. Clin Hemorheol Microcirc 2018; 69:239-265. [PMID: 29660919 DOI: 10.3233/ch-189124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rheological properties of plasma and blood cells are markedly influenced by the surrounding milieu: physicochemical factors, metabolism and hormones. Acid/base status, osmolality, lipid status, plasma protein pattern, oxidative stress induced by increased free radicals production, endothelium-derived factors such as nitric oxide (NO), achidonic acid derivatives modulate both red blood cell (RBC) and white cell mechanics. Therefore, regulatory axes involving liver, endothelium, kidney, pancreas, adrenal gland, endocrine heart, adipose tissue, pituitary gland, and surely other tissues play important roles in the regulation of blood fluidity. A comprehensive picture of all this complex network of regulatory loops is still unavailable but current progress of knowledge suggest that some attempts can currently be made.
Collapse
Affiliation(s)
- Jean-Frédéric Brun
- U1046 INSERM, UMR 9214 CNRS « Physiopathologie and Médecine Expérimentale du Coeur et des Muscles-PHYMEDEXP », Unité d'ExplorationsMétaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique, Hôpital Lapeyronie CHRU Montpellier, France
| | - Emmanuelle Varlet-Marie
- Institut des Biomolécules Max Mousseron (IBMM) UMR CNRS 5247, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, France.,Laboratoire de Biophysique and Bio-Analyses, Faculté de Pharmacie, Université de Montpellier, France
| | - Marlène Richou
- U1046 INSERM, UMR 9214 CNRS « Physiopathologie and Médecine Expérimentale du Coeur et des Muscles-PHYMEDEXP », Unité d'ExplorationsMétaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique, Hôpital Lapeyronie CHRU Montpellier, France
| | - Jacques Mercier
- U1046 INSERM, UMR 9214 CNRS « Physiopathologie and Médecine Expérimentale du Coeur et des Muscles-PHYMEDEXP », Unité d'ExplorationsMétaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique, Hôpital Lapeyronie CHRU Montpellier, France
| | - Eric Raynaud de Mauverger
- U1046 INSERM, UMR 9214 CNRS « Physiopathologie and Médecine Expérimentale du Coeur et des Muscles-PHYMEDEXP », Unité d'ExplorationsMétaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique, Hôpital Lapeyronie CHRU Montpellier, France
| |
Collapse
|
15
|
Donat CK, Mirzaei N, Tang SP, Edison P, Sastre M. Imaging of Microglial Activation in Alzheimer's Disease by [ 11C]PBR28 PET. Methods Mol Biol 2018; 1750:323-339. [PMID: 29512083 DOI: 10.1007/978-1-4939-7704-8_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Deficits in neuronal function and synaptic plasticity in Alzheimer's disease (AD) are believed to be linked to microglial activation. A hallmark of reactive microglia is the upregulation of mitochondrial translocator protein (TSPO) expression. Positron emission tomography (PET) is a nuclear imaging technique that measures the distribution of trace doses of radiolabeled compounds in the body over time. PET imaging using the 2nd generation TSPO tracer [11C]PBR28 provides an opportunity for accurate visualization and quantification of changes in microglial density in transgenic mouse models of Alzheimer's disease (AD). Here, we describe the methodology for the in vivo use of [11C]PBR28 in AD patients and the 5XFAD transgenic mouse model of AD and compare the results against healthy individuals and wild-type controls. To confirm the results, autoradiography with [3H]PBR28 and immunochemistry was carried out in the same mouse brains. Our data shows that [11C]PBR28 is suitable as a tool for in vivo monitoring of microglial activation and may be useful to assess treatment response in future studies.
Collapse
Affiliation(s)
- Cornelius K Donat
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Nazanin Mirzaei
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | | | - Paul Edison
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Magdalena Sastre
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
16
|
Iacobazzi RM, Lopalco A, Cutrignelli A, Laquintana V, Lopedota A, Franco M, Denora N. Bridging Pharmaceutical Chemistry with Drug and Nanoparticle Targeting to Investigate the Role of the 18-kDa Translocator Protein TSPO. ChemMedChem 2017; 12:1261-1274. [PMID: 28771957 DOI: 10.1002/cmdc.201700322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/06/2017] [Indexed: 11/10/2022]
Abstract
An interesting mitochondrial biomarker is the 18-kDa mitochondrial translocator protein (TSPO). Decades of study have shown that this protein plays an important role in a wide range of cellular functions, including opening of the mitochondrial permeability transition pore as well as programmed cell death and proliferation. Variations in TSPO expression have been correlated to different diseases, from tumors to endocrine and neurological disorders. TSPO has therefore become an appealing target for both early diagnosis and selective mitochondrial drug delivery. The number of structurally different TSPO ligands examined has increased over time, highlighting the scientific community's growing understanding of the roles of TSPO in normal and pathological conditions. However, only few TSPO ligands are characterized by the presence of groups that are potentially derivatizable; therefore only few such ligands are well suited for the preparation of targeted prodrugs or nanocarriers able to deliver therapeutics and/or diagnostic agents to mitochondria. This review provides an overview of the very few examples of drug delivery systems characterized by moieties that target TSPO.
Collapse
Affiliation(s)
| | - Antonio Lopalco
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Annalisa Cutrignelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Valentino Laquintana
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Angela Lopedota
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Massimo Franco
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
17
|
|
18
|
Liu GJ, Middleton RJ, Banati RB. Subcellular distribution of the 18kDa translocator protein and transcript variant PBR-S in human cells. Gene 2017; 613:45-56. [PMID: 28263860 DOI: 10.1016/j.gene.2017.02.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
Abstract
Despite continued interest in the 18kDa translocator protein (PBR/TSPO) as a biomarker and a therapeutic target for a range of diseases, its functional role, such as in the steroid synthesis pathway and energy metabolism has either become contentious or remains to be described more precisely. The PBR/TSPO gene consists of four exons, while a shorter isoform termed PBR-S lacks exon 2. The PBR-S 102-codon open reading frame differs to that of PBR/TSPO, resulting in a protein that is completely unrelated to PBR/TSPO. To our knowledge, PBR-S protein has never been described and has no known or proposed function. To obtain possible clues on the role of this uncharacterised protein, we compared the subcellular distribution of PBR-S to that of PBR/TSPO. By expressing fluorescently tagged PBR/TSPO, we confirmed that full-length PBR/TSPO co-localises with mitochondria in HeLa, HEK-293, MDA-MB-231, BJ and U87-MG human cell lines. Unlike the strictly mitochondrial localisation of PBR/TSPO, PBR-S has a punctate distribution throughout the cytosol that co-localises with lysosomes in HeLa, HEK-293, MDA-MB-231, BJ and U87-MG cells. In summary, within the cell lines examined we confirm mitochondria rather than occasionally reported other localisations, such as the cell nucleus, to be the only site where PBR/TSPO resides. Due to the lack of any shared protein sequences and the different subcellular locations, we suggest that the previously uncharacterised PBR-S protein variant of the PBR/TSPO gene is likely to serve a different yet to be discovered function compared to PBR/TSPO.
Collapse
Affiliation(s)
- Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia; National Imaging Facility, Brain and Mind Centre and Faculty of Health Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Richard B Banati
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia; National Imaging Facility, Brain and Mind Centre and Faculty of Health Sciences, University of Sydney, Camperdown, NSW 2050, Australia.
| |
Collapse
|
19
|
TSPO ligands stimulate ZnPPIX transport and ROS accumulation leading to the inhibition of P. falciparum growth in human blood. Sci Rep 2016; 6:33516. [PMID: 27641616 PMCID: PMC5027585 DOI: 10.1038/srep33516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/30/2016] [Indexed: 11/08/2022] Open
Abstract
After invading red blood cells (RBCs), Plasmodium falciparum (Pf) can export its own proteins to the host membrane and activate endogenous channels that are present in the membrane of RBCs. This transport pathway involves the Voltage Dependent Anion Channel (VDAC). Moreover, ligands of the VDAC partner TranSlocator PrOtein (TSPO) were demonstrated to inhibit the growth of the parasite. We studied the expression of TSPO and VDAC isoforms in late erythroid precursors, examined the presence of these proteins in membranes of non-infected and infected human RBCs, and evaluated the efficiency of TSPO ligands in inhibiting plasmodium growth, transporting the haem analogue Zn-protoporphyrin-IX (ZnPPIX) and enhancing the accumulation of reactive oxygen species (ROS). TSPO and VDAC isoforms are differentially expressed on erythroid cells in late differentiation states. TSPO2 and VDAC are present in the membranes of mature RBCs in a unique protein complex that changes the affinity of TSPO ligands after Pf infection. TSPO ligands dose-dependently inhibited parasite growth, and this inhibition was correlated to ZnPPIX uptake and ROS accumulation in the infected RBCs. Our results demonstrate that TSPO ligands can induce Pf death by increasing the uptake of porphyrins through a TSPO2-VDAC complex, which leads to an accumulation of ROS.
Collapse
|
20
|
TSPO: kaleidoscopic 18-kDa amid biochemical pharmacology, control and targeting of mitochondria. Biochem J 2016; 473:107-21. [PMID: 26733718 DOI: 10.1042/bj20150899] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 18-kDa translocator protein (TSPO) localizes in the outer mitochondrial membrane (OMM) of cells and is readily up-regulated under various pathological conditions such as cancer, inflammation, mechanical lesions and neurological diseases. Able to bind with high affinity synthetic and endogenous ligands, its core biochemical function resides in the translocation of cholesterol into the mitochondria influencing the subsequent steps of (neuro-)steroid synthesis and systemic endocrine regulation. Over the years, however, TSPO has also been linked to core cellular processes such as apoptosis and autophagy. It interacts and forms complexes with other mitochondrial proteins such as the voltage-dependent anion channel (VDAC) via which signalling and regulatory transduction of these core cellular events may be influenced. Despite nearly 40 years of study, the precise functional role of TSPO beyond cholesterol trafficking remains elusive even though the recent breakthroughs on its high-resolution crystal structure and contribution to quality-control signalling of mitochondria. All this along with a captivating pharmacological profile provides novel opportunities to investigate and understand the significance of this highly conserved protein as well as contribute the development of specific therapeutics as presented and discussed in the present review.
Collapse
|
21
|
Costa B, Da Pozzo E, Giacomelli C, Barresi E, Taliani S, Da Settimo F, Martini C. TSPO ligand residence time: a new parameter to predict compound neurosteroidogenic efficacy. Sci Rep 2016; 6:18164. [PMID: 26750656 PMCID: PMC4707509 DOI: 10.1038/srep18164] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/13/2015] [Indexed: 12/19/2022] Open
Abstract
The pharmacological activation of the cholesterol-binding Translocator Protein (TSPO) leads to an increase of endogenous steroids and neurosteroids determining benefic pleiotropic effects in several pathological conditions, including anxiety disorders. The relatively poor relationship between TSPO ligand binding affinities and steroidogenic efficacies prompted us to investigate the time (Residence Time, RT) that a number of compounds with phenylindolylglyoxylamide structure (PIGAs) spends in contact with the target. Here, given the poor availability of TSPO ligand kinetic parameters, a kinetic radioligand binding assay was set up and validated for RT determination using a theoretical mathematical model successfully applied to other ligand-target systems. TSPO ligand RT was quantified and the obtained results showed a positive correlation between the period for which a drug interacts with TSPO and the compound ability to stimulate steroidogenesis. Specifically, the TSPO ligand RT significantly fitted both with steroidogenic efficacy (Emax) and with area under the dose-response curve, a parameter combining drug potency and efficacy. A positive relation between RT and anxiolytic activity of three compounds was evidenced. In conclusion, RT could be a relevant parameter to predict the steroidogenic efficacy and the in vivo anxiolytic action of new TSPO ligands.
Collapse
Affiliation(s)
- Barbara Costa
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| |
Collapse
|
22
|
Morin D, Musman J, Pons S, Berdeaux A, Ghaleh B. Mitochondrial translocator protein (TSPO): From physiology to cardioprotection. Biochem Pharmacol 2015; 105:1-13. [PMID: 26688086 DOI: 10.1016/j.bcp.2015.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/04/2015] [Indexed: 01/08/2023]
Abstract
The mitochondrial translocator protein (TSPO) is a high affinity cholesterol binding protein which is primarily located in the outer mitochondrial membrane where it has been shown to interact with proteins implicated in mitochondrial permeability transition pore (mPTP) formation. TSPO is found in different species and is expressed at high levels in tissues that synthesize steroids but is also present in other peripheral tissues especially in the heart. TSPO has been involved in the import of cholesterol into mitochondria, a key step in steroidogenesis. This constitutes the main established function of the protein which was recently challenged by genetic studies. TSPO has also been associated directly or indirectly with a wide range of cellular functions such as apoptosis, cell proliferation, differentiation, regulation of mitochondrial function or porphyrin transport. In the heart the role of TSPO remains undefined but a growing body of evidence suggests that TSPO plays a critical role in regulating physiological cardiac function and that TSPO ligands may represent interesting drugs to protect the heart under pathological conditions. This article briefly reviews current knowledge regarding TSPO and discusses its role in the cardiovascular system under physiological and pathologic conditions. More particularly, it provides evidence that TSPO can represent an alternative strategy to develop new pharmacological agents to protect the myocardium against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Didier Morin
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| | - Julien Musman
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| | - Sandrine Pons
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| | - Alain Berdeaux
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| | - Bijan Ghaleh
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| |
Collapse
|
23
|
Targeting the 18-kDa translocator protein: recent perspectives for neuroprotection. Biochem Soc Trans 2015; 43:559-65. [DOI: 10.1042/bst20150028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 12/14/2022]
Abstract
The translocator protein (TSPO, 18 kDa), mainly localized in the outer mitochondrial membrane of steroidogenic tissues, is involved in several cellular functions. TSPO level alterations have been reported in a number of human disorders, particularly in cancer, psychiatric and neurological diseases. In the central nervous system (CNS), TSPO is usually expressed in glial cells, but also in some neuronal cell types. Interestingly, the expression of TSPO on glial cells rises after brain injury and increased TSPO expression is often observed in neurological disorders, gliomas, encephalitis and traumatic injury. Since TSPO is up-regulated in brain diseases, several structurally different classes of ligands targeting TSPO have been described as potential diagnostic or therapeutic agents. Recent researches have reported that TSPO ligands might be valuable in the treatment of brain diseases. This review focuses on currently available TSPO ligands, as useful tools for the treatment of neurodegeneration, neuro-inflammation and neurotrauma.
Collapse
|
24
|
Selvaraj V, Stocco DM, Tu LN. Minireview: translocator protein (TSPO) and steroidogenesis: a reappraisal. Mol Endocrinol 2015; 29:490-501. [PMID: 25730708 DOI: 10.1210/me.2015-1033] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The 18-kDa translocator protein (TSPO), also known as the peripheral benzodiazepine receptor, is a transmembrane protein in the outer mitochondrial membrane. TSPO has long been described as being indispensable for mitochondrial cholesterol import that is essential for steroid hormone production. In contrast to this initial proposition, recent experiments reexamining TSPO function have demonstrated that it is not involved in steroidogenesis. This fundamental change has forced a reexamination of the functional interpretations made for TSPO that broadly impacts both basic and clinical research across multiple fields. In this minireview, we recapitulate the key studies from 25 years of TSPO research and concurrently examine their limitations that perhaps led towards the incorrect association of TSPO and steroid hormone production. Although this shift in understanding raises new questions regarding the molecular function of TSPO, these recent developments are poised to have a significant positive impact for research progress in steroid endocrinology.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Animal Science (V.S., L.N.T.), Cornell University, Ithaca, New York 14853; and Department of Cell Biology and Biochemistry (D.M.S.), Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | | | | |
Collapse
|
25
|
Chua SW, Kassiou M, Ittner LM. The translocator protein as a drug target in Alzheimer's disease. Expert Rev Neurother 2014; 14:439-48. [PMID: 24625007 DOI: 10.1586/14737175.2014.896201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The translocator protein (TSPO) recently emerged as a potential drug target in Alzheimer's disease (AD). This has been fuelled mainly by positron emission topography studies that show the upregulation of TSPO in AD, especially in relation to microgliosis and astrogliosis in amyloid-β and tau pathology. Although data as to the exact role of TSPO in AD is still inconclusive, TSPO appears to be involved in neuroinflammatory processes and AD has been shown to involve substantial inflammation. Therefore, further development and investigation of the pharmacological effect of TSPO ligands in AD pathology are warranted.
Collapse
Affiliation(s)
- Sook W Chua
- Dementia Research Unit, School of Medical Sciences, Wallace Wurth Building, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
26
|
Liu G, Middleton RJ, Hatty CR, Kam WW, Chan R, Pham T, Harrison‐Brown M, Dodson E, Veale K, Banati RB. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol 2014; 24:631-53. [PMID: 25345894 PMCID: PMC8029074 DOI: 10.1111/bpa.12196] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022] Open
Abstract
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is expressed in the injured brain. It has become known as an imaging marker of "neuroinflammation" indicating active disease, and is best interpreted as a nondiagnostic biomarker and disease staging tool that refers to histopathology rather than disease etiology. The therapeutic potential of TSPO as a drug target is mostly based on the understanding that it is an outer mitochondrial membrane protein required for the translocation of cholesterol, which thus regulates the rate of steroid synthesis. This pivotal role together with the evolutionary conservation of TSPO has underpinned the belief that any loss or mutation of TSPO should be associated with significant physiological deficits or be outright incompatible with life. However, against prediction, full Tspo knockout mice are viable and across their lifespan do not show the phenotype expected if cholesterol transport and steroid synthesis were significantly impaired. Thus, the "translocation" function of TSPO remains to be better substantiated. Here, we discuss the literature before and after the introduction of the new nomenclature for TSPO and review some of the newer findings. In light of the controversy surrounding the function of TSPO, we emphasize the continued importance of identifying compounds with confirmed selectivity and suggest that TSPO expression is analyzed within specific disease contexts rather than merely equated with the reified concept of "neuroinflammation."
Collapse
Affiliation(s)
- Guo‐Jun Liu
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Ryan J. Middleton
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Claire R. Hatty
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Winnie Wai‐Ying Kam
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Ronald Chan
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Tien Pham
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Meredith Harrison‐Brown
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Eoin Dodson
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Kelly Veale
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Richard B. Banati
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
- National Imaging Facility and Ramaciotti Brain Imaging CentreSydneyNSWAustralia
| |
Collapse
|
27
|
Reinhart WH, Lubszky S, Thöny S, Schulzki T. Interaction of injectable neurotropic drugs with the red cell membrane. Toxicol In Vitro 2014; 28:1274-9. [DOI: 10.1016/j.tiv.2014.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022]
|
28
|
Castellano S, Taliani S, Viviano M, Milite C, Da Pozzo E, Costa B, Barresi E, Bruno A, Cosconati S, Marinelli L, Greco G, Novellino E, Sbardella G, Da Settimo F, Martini C. Structure–Activity Relationship Refinement and Further Assessment of 4-Phenylquinazoline-2-carboxamide Translocator Protein Ligands as Antiproliferative Agents in Human Glioblastoma Tumors. J Med Chem 2014; 57:2413-28. [DOI: 10.1021/jm401721h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sabrina Castellano
- Dipartimento
di Farmacia, Universitá di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Sabrina Taliani
- Dipartimento
di Farmacia, Universitá di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Monica Viviano
- Dipartimento
di Farmacia, Universitá di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Dipartimento
di Farmacia, Universitá di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Eleonora Da Pozzo
- Dipartimento
di Farmacia, Universitá di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Barbara Costa
- Dipartimento
di Farmacia, Universitá di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Barresi
- Dipartimento
di Farmacia, Universitá di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Agostino Bruno
- Dipartimento
di Farmacia, Universitá di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Sandro Cosconati
- DiSTABiF, Seconda Universitá di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luciana Marinelli
- Dipartimento
di Farmacia, Universitá di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giovanni Greco
- Dipartimento
di Farmacia, Universitá di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Universitá di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Gianluca Sbardella
- Dipartimento
di Farmacia, Universitá di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Federico Da Settimo
- Dipartimento
di Farmacia, Universitá di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Dipartimento
di Farmacia, Universitá di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
29
|
Signal Transduction in Astrocytes during Chronic or Acute Treatment with Drugs (SSRIs, Antibipolar Drugs, GABA-ergic Drugs, and Benzodiazepines) Ameliorating Mood Disorders. JOURNAL OF SIGNAL TRANSDUCTION 2014; 2014:593934. [PMID: 24707399 PMCID: PMC3953578 DOI: 10.1155/2014/593934] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/16/2013] [Indexed: 01/29/2023]
Abstract
Chronic treatment with fluoxetine or other so-called serotonin-specific reuptake inhibitor antidepressants (SSRIs) or with a lithium salt “lithium”, carbamazepine, or valproic acid, the three classical antibipolar drugs, exerts a multitude of effects on astrocytes, which in turn modulate astrocyte-neuronal interactions and brain function. In the case of the SSRIs, they are to a large extent due to 5-HT2B-mediated upregulation and editing of genes. These alterations induce alteration in effects of cPLA2, GluK2, and the 5-HT2B receptor, probably including increases in both glucose metabolism and glycogen turnover, which in combination have therapeutic effect on major depression. The ability of increased levels of extracellular K+ to increase [Ca2+]i is increased as a sign of increased K+-induced excitability in astrocytes. Acute anxiolytic drug treatment with benzodiazepines or GABAA receptor stimulation has similar glycogenolysis-enhancing effects. The antibipolar drugs induce intracellular alkalinization in astrocytes with lithium acting on one acid extruder and carbamazepine and valproic acid on a different acid extruder. They inhibit K+-induced and transmitter-induced increase of astrocytic [Ca2+]i and thereby probably excitability. In several cases, they exert different changes in gene expression than SSRIs, determined both in cultured astrocytes and in freshly isolated astrocytes from drug-treated animals.
Collapse
|
30
|
Austin CJD, Kahlert J, Kassiou M, Rendina LM. The translocator protein (TSPO): a novel target for cancer chemotherapy. Int J Biochem Cell Biol 2013; 45:1212-6. [PMID: 23518318 DOI: 10.1016/j.biocel.2013.03.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/21/2013] [Accepted: 03/05/2013] [Indexed: 01/02/2023]
Abstract
The translocator protein (TSPO) is an 18 kDa transmembrane protein primarily found in the outer mitochondrial membrane where it forms a key part of the mitochondrial permeability transition pore (MPTP). Omnipresent in almost all tissues, TSPO up-regulation has been connected to neuronal damage and inflammation, making the protein an important bio-imaging marker for disease progression. More recently, TSPO has attracted attention as a possible molecular target for tumour imaging and chemotherapy. In this review we summarize TSPO's molecular characteristics and highlight research progress in recent years in the field of TSPO-targeted cancer diagnostics and treatments.
Collapse
|
31
|
Yousefi OS, Wilhelm T, Maschke-Neuß K, Kuhny M, Martin C, Molderings GJ, Kratz F, Hildenbrand B, Huber M. The 1,4-benzodiazepine Ro5-4864 (4-chlorodiazepam) suppresses multiple pro-inflammatory mast cell effector functions. Cell Commun Signal 2013; 11:13. [PMID: 23425659 PMCID: PMC3598916 DOI: 10.1186/1478-811x-11-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/16/2013] [Indexed: 11/25/2022] Open
Abstract
Activation of mast cells (MCs) can be achieved by the high-affinity receptor for IgE (FcεRI) as well as by additional receptors such as the lipopolysaccharide (LPS) receptor and the receptor tyrosine kinase Kit (stem cell factor [SCF] receptor). Thus, pharmacological interventions which stabilize MCs in response to different receptors would be preferable in diseases with pathological systemic MC activation such as systemic mastocytosis. 1,4-Benzodiazepines (BDZs) have been reported to suppress MC effector functions. In the present study, our aim was to analyze molecularly the effects of BDZs on MC activation by comparison of the effects of the two BDZs Ro5-4864 and clonazepam, which markedly differ in their affinities for the archetypical BDZ recognition sites, i.e., the GABAA receptor and TSPO (previously termed peripheral-type BDZ receptor). Ro5-4864 is a selective agonist at TSPO, whereas clonazepam is a selective agonist at the GABAA receptor. Ro5-4864 suppressed pro-inflammatory MC effector functions in response to antigen (Ag) (degranulation/cytokine production) and LPS and SCF (cytokine production), whereas clonazepam was inactive. Signaling pathway analyses revealed inhibitory effects of Ro5-4864 on Ag-triggered production of reactive oxygen species, calcium mobilization and activation of different downstream kinases. The initial activation of Src family kinases was attenuated by Ro5-4864 offering a molecular explanation for the observed impacts on various downstream signaling elements. In conclusion, BDZs structurally related to Ro5-4864 might serve as multifunctional MC stabilizers without the sedative effect of GABAA receptor-interacting BDZs.
Collapse
Affiliation(s)
- Omid Sascha Yousefi
- Medical Faculty, Institute of Biochemistry and Molecular Immunology, RWTH Aachen University, Pauwelsstr, 30, 52074, Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang X, Paule MG, Wang C, Slikker W. Application of microPET imaging approaches in the study of pediatric anesthetic-induced neuronal toxicity. J Appl Toxicol 2013; 33:861-8. [DOI: 10.1002/jat.2857] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 12/14/2022]
Affiliation(s)
- Xuan Zhang
- Division of Neurotoxicology; National Center for Toxicological Research (NCTR)/FDA; Jefferson; AR; USA
| | - Merle G. Paule
- Division of Neurotoxicology; National Center for Toxicological Research (NCTR)/FDA; Jefferson; AR; USA
| | - Cheng Wang
- Division of Neurotoxicology; National Center for Toxicological Research (NCTR)/FDA; Jefferson; AR; USA
| | - William Slikker
- Office of the Director; National Center for Toxicological Research (NCTR)/FDA; Jefferson; AR; USA
| |
Collapse
|
33
|
Shargorodsky L, Veenman L, Caballero B, Pe'er Y, Leschiner S, Bode J, Gavish M. The nitric oxide donor sodium nitroprusside requires the 18 kDa Translocator Protein to induce cell death. Apoptosis 2012; 17:647-65. [PMID: 22544277 DOI: 10.1007/s10495-012-0725-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Various studies have shown that several lethal agents induce cell death via the mitochondrial 18 kDa Translocator Protein (TSPO). In this study we tested the possibility that nitric oxide (NO) is the signaling component inducing the TSPO to initiate cell death process. Cell viability assays included Trypan blue uptake, propidium iodide uptake, lactate dehydrogenase release, and DNA fragmentation. These assays showed that application of the specific TSPO ligand PK 11195 reduced these parameters for the lethal effects of the NO donor sodium nitroprusside (SNP) by 41, 27, 40, and 42 %, respectively. TSPO silencing by siRNA also reduced the measured lethal effects of SNP by 50 % for all of these four assays. With 2,3-bis[2-methoxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5-carboxyanilide (XTT) changes in metabolic activity were detected. PK 11195 and TSPO knockdown fully prevented the reductions in XTT signal otherwise induced by SNP. Collapse of the mitochondrial membrane potential was studied with the aid of JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolylcarbocyanine chloride). PK 11195 and TSPO knockdown reduced, respectively by 36 and 100 %, the incidence of collapse of the mitochondrial membrane potential otherwise induced by SNP. 10-N-Nonyl-Acridine Orange (NAO) was used to detect mitochondrial reactive oxygen species generation due to SNP. PK 11195 and TSPO knockdown reduced this effect of SNP by 65 and 100 %, respectively. SNP did not affect TSPO protein expression and binding characteristics, and also did not cause TSPO S-nitrosylation. However, β-actin and various other proteins (not further defined) were S-nitrosylated. In conclusion, TSPO is required for the lethal and metabolic effects of the NO donor SNP, but TSPO itself is not S-nitrosylated.
Collapse
Affiliation(s)
- Luba Shargorodsky
- Department of Molecular Pharmacology, Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhang X, Paule MG, Newport GD, Liu F, Callicott R, Liu S, Berridge MS, Apana SM, Slikker W, Wang C. MicroPET/CT Imaging of [18F]-FEPPA in the Nonhuman Primate: A Potential Biomarker of Pathogenic Processes Associated with Anesthetic-Induced Neurotoxicity. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/261640] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background. The inhalation anesthetics nitrous oxide (N2O) and isoflurane (ISO) are used in surgical procedures for human infants. Injury to the central nervous system is often accompanied by localization of activated microglia or astrocytosis at the site of injury. The tracer that targets to the peripheral benzodiazepine receptor (PBR), [18F]N-2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide ([18F]-FEPPA), has been reported as a sensitive biomarker for the detection of neuronal damage/inflammation. Methods. On postnatal day (PND) 5 or 6 rhesus monkey neonates were exposed to a mixture of N2O/oxygen and ISO for 8 hours and control monkeys were exposed to room air. MicroPET/CT images with [18F]-FEPPA were obtained for each monkey 1 day, one week, three weeks, and 6 months after the anesthetic exposure. Results. The radiotracer quickly distributed into the brains of both treated and control monkeys on all scan days. One day after anesthetic exposure, the uptake of [18F]-FEPPA was significantly increased in the temporal lobe. One week after exposure, the uptake of [18F]-FEPPA in the frontal lobe of treated animals was significantly greater than that in controls. Conclusions. These findings suggest that microPET imaging is capable of dynamic detection of inhaled anesthetic-induced brain damage in different brain regions of the nonhuman primate.
Collapse
Affiliation(s)
- Xuan Zhang
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Merle G. Paule
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Glenn D. Newport
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Fang Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ralph Callicott
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Shuliang Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Marc S. Berridge
- 3D Imaging, LLC, Little Rock, AR 72113, USA
- University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Scott M. Apana
- 3D Imaging, LLC, Little Rock, AR 72113, USA
- University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - William Slikker
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Cheng Wang
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
35
|
Purinoceptor signaling in malaria-infected erythrocytes. Microbes Infect 2012; 14:779-86. [PMID: 22580091 DOI: 10.1016/j.micinf.2012.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 01/25/2023]
Abstract
Human erythrocytes are endowed with ATP release pathways and metabotropic and ionotropic purinoceptors. This review summarizes the pivotal function of purinergic signaling in erythrocyte control of vascular tone, in hemolytic septicemia, and in malaria. In malaria, the intraerythrocytic parasite exploits the purinergic signaling of its host to adapt the erythrocyte to its requirements.
Collapse
|
36
|
The 18 kDa translocator protein (peripheral benzodiazepine receptor) expression in the bone of normal, osteoprotegerin or low calcium diet treated mice. PLoS One 2012; 7:e30623. [PMID: 22295097 PMCID: PMC3266288 DOI: 10.1371/journal.pone.0030623] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/19/2011] [Indexed: 01/08/2023] Open
Abstract
The presence of the translocator protein (TSPO), previously named as the mitochondrial or peripheral benzodiazepine receptor, in bone cells was studied in vitro and in situ using RT-qPCR, and receptor autoradiography using the selective TSPO ligand PK11195. In vitro, the TSPO is highly expressed in osteoblastic and osteoclastic cells. In situ, constitutive expression of TSPO is found in bone marrow and trabecular bone, e.g., spongiosa. Mice with a reduction of bone turnover induced by a 4-day treatment of osteoprotegerin reduces [3H]PK11195 binding in the spongiosa (320±128 Bq.mg−1, 499±106 Bq.mg−1 in saline-treated controls). In contrast, mice with an increase in bone turnover caused by a 4-day low calcium diet increases [3H]PK11195 binding in the spongiosa (615±90 Bq.mg−1). Further, our study includes technical feasibility data on [18F]fluoride microPET imaging of rodent bone with altered turnover. Despite [18F]fluoride having high uptake, the in vivo signal differences were small. Using a phantom model, we describe the spillover effect and partial volume loss that affect the quantitative microPET imaging of the small bone structures in experimental mouse models. In summary, we demonstrate the expression of TSPO in small rodent bone tissues, including osteoblasts and osteoclasts. A trend increase in TSPO expression was observed in the spongiosa from low to high bone turnover conditions. However, despite the potential utility of TSPO expression as an in vivo biomarker of bone turnover in experimental rodent models, our small animal PET imaging data using [18F]fluoride show that even under the condition of a good biological signal-to-noise ratio and high tracer uptake, the currently achievable instrument sensitivity and spatial resolution is unlikely to be sufficient to detect subtle differences in small structures, such as mouse bone.
Collapse
|
37
|
Cappelli A, Bini G, Valenti S, Giuliani G, Paolino M, Anzini M, Vomero S, Giorgi G, Giordani A, Stasi LP, Makovec F, Ghelardini C, Di Cesare Mannelli L, Concas A, Porcu P, Biggio G. Synthesis and Structure–Activity Relationship Studies in Translocator Protein Ligands Based on a Pyrazolo[3,4-b]quinoline Scaffold. J Med Chem 2011; 54:7165-75. [DOI: 10.1021/jm200770f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Cappelli
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Giulia Bini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Salvatore Valenti
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Germano Giuliani
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Marco Paolino
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Maurizio Anzini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Salvatore Vomero
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Gianluca Giorgi
- Dipartimento di Chimica, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | | | | | | | - Carla Ghelardini
- Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”, Università degli Studi di Firenze,Viale G. Pieraccini 6, 50139 Firenze, Italy
| | - Lorenzo Di Cesare Mannelli
- Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”, Università degli Studi di Firenze,Viale G. Pieraccini 6, 50139 Firenze, Italy
| | - Alessandra Concas
- Dipartimento di Biologia Sperimentale “B. Loddo”, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 (km 4.500), 09042 Monserrato (Cagliari), Italy
| | - Patrizia Porcu
- Dipartimento di Biologia Sperimentale “B. Loddo”, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 (km 4.500), 09042 Monserrato (Cagliari), Italy
| | - Giovanni Biggio
- Dipartimento di Biologia Sperimentale “B. Loddo”, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 (km 4.500), 09042 Monserrato (Cagliari), Italy
| |
Collapse
|
38
|
Erythrocyte peripheral type benzodiazepine receptor/voltage-dependent anion channels are upregulated by Plasmodium falciparum. Blood 2011; 118:2305-12. [PMID: 21795748 DOI: 10.1182/blood-2011-01-329300] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Plasmodium falciparum relies on anion channels activated in the erythrocyte membrane to ensure the transport of nutrients and waste products necessary for its replication and survival after invasion. The molecular identity of these anion channels, termed "new permeability pathways" is unknown, but their currents correspond to up-regulation of endogenous channels displaying complex gating and kinetics similar to those of ligand-gated channels. This report demonstrates that a peripheral-type benzodiazepine receptor, including the voltage dependent anion channel, is present in the human erythrocyte membrane. This receptor mediates the maxi-anion currents previously described in the erythrocyte membrane. Ligands that block this peripheral-type benzodiazepine receptor reduce membrane transport and conductance in P falciparum-infected erythrocytes. These ligands also inhibit in vitro intraerythrocytic growth of P falciparum. These data support the hypothesis that dormant peripheral-type benzodiazepine receptors become the "new permeability pathways" in infected erythrocytes after up-regulation by P falciparum. These channels are obvious targets for selective inhibition in anti-malarial therapies, as well as potential routes for drug delivery in pharmacologic applications.
Collapse
|
39
|
Thomas SL, Bouyer G, Cueff A, Egée S, Glogowska E, Ollivaux C. Ion channels in human red blood cell membrane: Actors or relics? Blood Cells Mol Dis 2011; 46:261-5. [DOI: 10.1016/j.bcmd.2011.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
|
40
|
Batarseh A, Papadopoulos V. Regulation of translocator protein 18 kDa (TSPO) expression in health and disease states. Mol Cell Endocrinol 2010; 327:1-12. [PMID: 20600583 PMCID: PMC2922062 DOI: 10.1016/j.mce.2010.06.013] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 06/17/2010] [Indexed: 01/12/2023]
Abstract
Translocator protein (TSPO) is an 18 kDa high affinity cholesterol- and drug-binding protein found primarily in the outer mitochondrial membrane. Although TSPO is found in many tissue types, it is expressed at the highest levels under normal conditions in tissues that synthesize steroids. TSPO has been associated with cholesterol import into mitochondria, a key function in steroidogenesis, and directly or indirectly with multiple other cellular functions including apoptosis, cell proliferation, differentiation, anion transport, porphyrin transport, heme synthesis, and regulation of mitochondrial function. Aberrant expression of TSPO has been linked to multiple diseases, including cancer, brain injury, neurodegeneration, and ischemia-reperfusion injury. There has been an effort during the last decade to understand the mechanisms regulating tissue- and disease-specific TSPO expression and to identify pharmacological means to control its expression. This review focuses on the current knowledge regarding the chemicals, hormones, and molecular mechanisms regulating Tspo gene expression under physiological conditions in a tissue- and disease-specific manner. The results described here provide evidence that the PKCepsilon-ERK1/2-AP-1/STAT3 signal transduction pathway is the primary regulator of Tspo gene expression in normal and pathological tissues expressing high levels of TSPO.
Collapse
Affiliation(s)
- Amani Batarseh
- Department of Biochemistry and Molecular and Cell Biology, Georgetown University Medical Center, Washington, D.C. 20057, USA
- The Research Institute of the McGill University Health Centre and the Department of Medicine, Biochemistry, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
| | - Vassilios Papadopoulos
- Department of Biochemistry and Molecular and Cell Biology, Georgetown University Medical Center, Washington, D.C. 20057, USA
- The Research Institute of the McGill University Health Centre and the Department of Medicine, Biochemistry, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
- Department of Pharmacology and Therapeutics, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
| |
Collapse
|
41
|
Glogowska E, Dyrda A, Cueff A, Bouyer G, Egée S, Bennekou P, Thomas SLY. Anion conductance of the human red cell is carried by a maxi-anion channel. Blood Cells Mol Dis 2010; 44:243-51. [PMID: 20226698 DOI: 10.1016/j.bcmd.2010.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion channels proper has never been clarified, and the informations obtained by different groups of electrophysiologists are rather badly matched. This study, using the cell-attached configuration of the patch-clamp technique, rationalizes and explains earlier confusing results by demonstrating that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance to the red cell than the ground leak mediated by Band 3.
Collapse
Affiliation(s)
- Edyta Glogowska
- Centre National de la Recherche Scientifique, Université Pierre et Marie Curie Paris6, UMR 7150, Station Biologique, B. P. 74, 29682 Roscoff cedex, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Fan J, Rone MB, Papadopoulos V. Translocator protein 2 is involved in cholesterol redistribution during erythropoiesis. J Biol Chem 2009; 284:30484-97. [PMID: 19729679 PMCID: PMC2781603 DOI: 10.1074/jbc.m109.029876] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/17/2009] [Indexed: 12/11/2022] Open
Abstract
Translocator protein (TSPO) is an 18-kDa cholesterol- and drug-binding protein conserved from bacteria to humans. While surveying for Tspo-like genes, we identified its paralogous gene, Tspo2, encoding an evolutionarily conserved family of proteins that arose by gene duplications before the divergence of avians and mammals. Comparative analysis of Tspo1 and Tspo2 functions suggested that Tspo2 has become subfunctionalized, typical of duplicated genes, characterized by the loss of diagnostic drug ligand-binding but retention of cholesterol-binding properties, hematopoietic tissue- and erythroid cell-specific distribution, and subcellular endoplasmic reticulum and nuclear membrane localization. Expression of Tspo2 in erythroblasts is strongly correlated with the down-regulation of the enzymes involved in cholesterol biosynthesis. Overexpression of TSPO2 in erythroid cells resulted in the redistribution of intracellular free cholesterol, an essential step in nucleus expulsion during erythrocyte maturation. Taken together, these data identify the TSPO2 family of proteins as mediators of cholesterol redistribution-dependent erythroblast maturation during mammalian erythropoiesis.
Collapse
Affiliation(s)
- Jinjiang Fan
- From the Research Institute of the McGill University Health Center and the Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montréal, Québec H3A 1A4, Canada
| | - Malena B. Rone
- From the Research Institute of the McGill University Health Center and the Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montréal, Québec H3A 1A4, Canada
| | - Vassilios Papadopoulos
- From the Research Institute of the McGill University Health Center and the Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montréal, Québec H3A 1A4, Canada
| |
Collapse
|
43
|
Rampon C, Bouzaffour M, Ostuni MA, Dufourcq P, Girard C, Freyssinet JM, Lacapere JJ, Schweizer-Groyer G, Vriz S. Translocator protein (18 kDa) is involved in primitive erythropoiesis in zebrafish. FASEB J 2009; 23:4181-92. [PMID: 19723704 DOI: 10.1096/fj.09-129262] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The translocator protein (18 kDa) (TSPO), also known as peripheral-type benzodiazepine receptor, is directly or indirectly associated with many biological processes. Although extensively characterized, the specific function of TSPO during development remains unclear. It has been reported that TSPO is involved in a variety of mechanisms, including cell proliferation, apoptosis, regulation of mitochondrial functions, cholesterol transport and steroidogenesis, and porphyrin transport and heme synthesis. Although the literature has reported a murine knockout model, the experiment did not generate information because of early lethality. We then used the zebrafish model to address the function of tspo during development. Information about spatiotemporal expression showed that tspo has a maternal and a zygotic contribution which, during somatogenesis, seems to be erythroid restricted to the intermediate cell mass. Genetic and pharmacological approaches used to invalidate Tspo function resulted in embryos with specific erythropoietic cell depletion. Although unexpected, this lack of blood cells is independent of the Tspo cholesterol binding site and reveals a new in vivo key role for Tspo during erythropoiesis.
Collapse
Affiliation(s)
- Christine Rampon
- CNRS UMR 8542, Chaire des Processes Morphogénètiques, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Krestinina OV, Grachev DE, Odinokova IV, Reiser G, Evtodienko YV, Azarashvili TS. Effect of peripheral benzodiazepine receptor (PBR/TSPO) ligands on opening of Ca2+-induced pore and phosphorylation of 3.5-kDa polypeptide in rat brain mitochondria. BIOCHEMISTRY (MOSCOW) 2009; 74:421-9. [PMID: 19463096 DOI: 10.1134/s0006297909040105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of nanomolar concentrations of PBR/TSPO ligands--Ro 5-4864, PK11195, and PPIX--on Ca2+-induced permeability transition pore (PTP) opening in isolated rat brain mitochondria was investigated. PBR/TSPO agonist Ro 5-4864 (100 nM) and endogenous ligand PPIX (1 microM) were shown to stimulate PTP opening, while antagonist PK11195 (100 nM) suppressed this process. Correlation between PBR ligand action on PTP opening and phosphorylation of a 3.5 kDa polypeptide was investigated. In intact brain mitochondria, incorporation of [gamma-(32)P]ATP into 3.5 kDa peptide was decreased in the presence of Ro 5-4864 and PPIX and increased in the presence of PK11195. At threshold Ca2+ concentrations leading to PTP opening, PBR/TSPO ligands were found to stimulate dephosphorylation of the 3.5 kDa peptide. Specific anti-PBR/TSPO antibody prevented both PTP opening and dephosphorylation of the 3.5-kDa peptide. The peptide was identified as subunit c of F(o)F(1)-ATPase by Western blot using specific anti-subunit c antibody. The results suggest that subunit c of F(o)F(1)-ATPase could be an additional target for PBR/TSPO ligands action, is subjected to Ca2+- and TSPO-dependent phosphorylation/dephosphorylation, and is involved in PTP operation in mitochondria.
Collapse
Affiliation(s)
- O V Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | | | | | | | |
Collapse
|
45
|
Hernstadt H, Wang S, Lim G, Mao J. Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis. Brain Res 2009; 1286:42-52. [PMID: 19555675 DOI: 10.1016/j.brainres.2009.06.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 12/20/2022]
Abstract
Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund's Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on Days 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral laminae I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Days 7 and 14. Moreover, TSPO was colocalized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.
Collapse
Affiliation(s)
- Hayley Hernstadt
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
46
|
Briard E, Zoghbi SS, Siméon FG, Imaizumi M, Gourley JP, Shetty HU, Lu S, Fujita M, Innis RB, Pike VW. Single-step high-yield radiosynthesis and evaluation of a sensitive 18F-labeled ligand for imaging brain peripheral benzodiazepine receptors with PET. J Med Chem 2009; 52:688-99. [PMID: 19119848 DOI: 10.1021/jm8011855] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elevated levels of peripheral benzodiazepine receptors (PBR) are associated with activated microglia in their response to inflammation. Hence, PBR imaging in vivo is valuable for investigating brain inflammatory conditions. Sensitive, easily prepared, and readily available radioligands for imaging with positron emission tomography (PET) are desirable for this purpose. We describe a new 18F-labeled PBR radioligand, namely [18F]N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline ([18F]9). [18F]9 was produced easily through a single and highly efficient step, the reaction of [18F]fluoride ion with the corresponding bromo precursor, 8. Ligand 9 exhibited high affinity for PBR in vitro. PET showed that [18F]9 was avidly taken into monkey brain and gave a high ratio of PBR-specific to nonspecific binding. [18F]9 was devoid of defluorination in rat and monkey and gave predominantly polar radiometabolite(s). In rat, a low level radiometabolite of intermediate lipophilicity was identified as [18F]2-fluoro-N-(2-phenoxyphenyl)acetamide ([18F]11). [18F]9 is a promising radioligand for future imaging of PBR in living human brain.
Collapse
Affiliation(s)
- Emmanuelle Briard
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nakazawa F, Alev C, Shin M, Nakaya Y, Jakt LM, Sheng G. PBRL, a putative peripheral benzodiazepine receptor, in primitive erythropoiesis. Gene Expr Patterns 2009; 9:114-21. [DOI: 10.1016/j.gep.2008.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
|
48
|
Gulyás B, Makkai B, Kása P, Gulya K, Bakota L, Várszegi S, Beliczai Z, Andersson J, Csiba L, Thiele A, Dyrks T, Suhara T, Suzuki K, Higuchi M, Halldin C. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system. Neurochem Int 2009; 54:28-36. [DOI: 10.1016/j.neuint.2008.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
|
49
|
Synthesis, fluorine-18 radiolabeling, and in vitro characterization of 1-iodophenyl-N-methyl-N-fluoroalkyl-3-isoquinoline carboxamide derivatives as potential PET radioligands for imaging peripheral benzodiazepine receptor. Bioorg Med Chem 2008; 16:6145-55. [DOI: 10.1016/j.bmc.2008.04.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 10/22/2022]
|
50
|
Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 2008; 118:1-17. [PMID: 18374421 DOI: 10.1016/j.pharmthera.2007.12.004] [Citation(s) in RCA: 408] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 12/21/2007] [Indexed: 11/25/2022]
Abstract
For over 15 years, the peripheral benzodiazepine receptor (PBR), recently named translocator protein 18 kDa (TSPO) has been studied as a biomarker of reactive gliosis and inflammation associated with a variety of neuropathological conditions. Early studies documented that in the brain parenchyma, TSPO is exclusively localized in glial cells. Under normal physiological conditions, TSPO levels are low in the brain neuropil but they markedly increase at sites of brain injury and inflammation making it uniquely suited for assessing active gliosis. This research has generated significant efforts from multiple research groups throughout the world to apply TSPO as a marker of "active" brain pathology using in vivo imaging modalities such as Positron Emission Tomography (PET) in experimental animals and humans. Further, in the last few years, there has been an increased interest in understanding the molecular and cellular function(s) of TSPO in glial cells. The latest evidence suggests that TSPO may not only serve as a biomarker of active brain disease but also the use of TSPO-specific ligands may have therapeutic implications in brain injury and repair. This review presents an overview of the history and function of TSPO focusing on studies related to its use as a sensor of active brain disease in experimental animals and in human studies.
Collapse
Affiliation(s)
- Ming-Kai Chen
- Neurotoxicology & Molecular Imaging Laboratory, Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|