1
|
Guntermann A, Marcus K, May C. The good or the bad: an overview of autoantibodies in traumatic spinal cord injury. Biol Chem 2024; 405:79-89. [PMID: 37786927 DOI: 10.1515/hsz-2023-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Infections remain the most common cause of death after traumatic spinal cord injury, likely due to a developing immune deficiency syndrome. This, together with a somewhat contradictory development of autoimmunity in many patients, are two major components of the maladaptive systemic immune response. Although the local non-resolving inflammation in the lesioned spinal cord may lead to an antibody formation against autoantigens of the injured spinal cord tissue, there are also natural (pre-existing) autoantibodies independent of the injury. The way in which these autoantibodies with different origins affect the neuronal and functional outcome of spinal cord-injured patients is still controversial.
Collapse
Affiliation(s)
- Annika Guntermann
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, ProDi E2.233, Ruhr University Bochum, Gesundheitscampus 4, D-44801 Bochum, Germany
| | - Katrin Marcus
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, ProDi E2.233, Ruhr University Bochum, Gesundheitscampus 4, D-44801 Bochum, Germany
| | - Caroline May
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, ProDi E2.233, Ruhr University Bochum, Gesundheitscampus 4, D-44801 Bochum, Germany
| |
Collapse
|
2
|
Jones TB. Lymphocytes and autoimmunity after spinal cord injury. Exp Neurol 2014; 258:78-90. [PMID: 25017889 DOI: 10.1016/j.expneurol.2014.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 12/23/2022]
Abstract
Over the past 15 years an immense amount of data has accumulated regarding the infiltration and activation of lymphocytes in the traumatized spinal cord. Although the impact of the intraspinal accumulation of lymphocytes is still unclear, modulation of the adaptive immune response via active and passive vaccination is being evaluated for its preclinical efficacy in improving the outcome for spinal-injured individuals. The complexity of the interaction between the nervous and the immune systems is highlighted in the contradictions that appear in response to these modulations. Current evidence regarding augmentation and inhibition of the adaptive immune response to spinal cord injury is reviewed with an aim toward reconciling conflicting data and providing consensus issues that may be exploited in future therapies. Opportunities such an approach may provide are highlighted as well as the obstacles that must be overcome before such approaches can be translated into clinical trials.
Collapse
Affiliation(s)
- T Bucky Jones
- Department of Anatomy, Arizona College of Medicine, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
3
|
Wu B, Matic D, Djogo N, Szpotowicz E, Schachner M, Jakovcevski I. Improved regeneration after spinal cord injury in mice lacking functional T- and B-lymphocytes. Exp Neurol 2012; 237:274-85. [PMID: 22868200 DOI: 10.1016/j.expneurol.2012.07.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 07/14/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
Abstract
It is widely accepted that the immune system plays important functional roles in regeneration after injury to the spinal cord. Immune response towards injury involves a complex interplay of immune system cells, such as neutrophils, macrophages and microglia, T- and B-lymphocytes. We investigated the influence of the lymphocyte component of the immune system on the locomotor outcome of severe spinal cord injury in a genetic mouse model of immune suppression. Transgenic mice lacking mature T- and B-lymphocytes due to the recombination activating gene 2 gene deletion (RAG2-/- mice) were subjected to severe compression of the lower thoracic spinal cord, with the wild-type mice of the same inbred background serving as controls. According to both the Basso Mouse Scale score and single frame motion analysis, the RAG2-/- mice showed improved recovery in comparison to control mice at six weeks after injury. Better locomotor function was associated with enhanced catecholaminergic and cholinergic reinnervation of the spinal cord caudal to injury and increased axonal regrowth/sprouting at the site of injury. Myelination of axons in the ventral column measured as g-ratio was more extensive in RAG2-/- than in control mice 6weeks after injury. Additionally, the number of microglia/macrophages was decreased in the lumbar spinal cord of RAG2-/- mice after injury, whereas the number of astrocytes was increased compared with controls. We conclude that T- and B-lymphocytes restrict functional recovery from spinal cord injury by increasing numbers of microglia/macrophages as well as decreasing axonal sprouting and myelination.
Collapse
Affiliation(s)
- Bin Wu
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Autoimmune Processes in the Central Nervous System. HANDBOOK OF NEUROCHEMISTRY AND MOLECULAR NEUROBIOLOGY 2008. [PMCID: PMC7121640 DOI: 10.1007/978-0-387-30398-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this chapter we discuss the factors that contribute to the unique immunological environment of the central nervous system and the mechanisms that may account for the development of autoimmunity within the CNS, including infectious agents as inducers of autoimmune disease. Consideration is given to a variety of human neurological diseases of autoimmune or presumed autoimmune etiology: autism, neuromyelitis optica, neuromyotonia, schizophrenia, lethargic encephalitis and stiff‐man syndrome. Also, we discuss autoimmunity as a possible mediator of CNS repair and examples of the protective effects of bacterial and helminth infections on CNS disease. Multiple sclerosis and models of multiple sclerosis are discussed with special attention given to the Theiler's virus‐induced demyelination model.
Collapse
|
5
|
Ibarra A, Correa D, Willms K, Merchant MT, Guizar-Sahagún G, Grijalva I, Madrazo I. Effects of cyclosporin-A on immune response, tissue protection and motor function of rats subjected to spinal cord injury. Brain Res 2003; 979:165-78. [PMID: 12850583 DOI: 10.1016/s0006-8993(03)02898-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this work was to test the effect of cyclosporin-A (CsA) on some immunological, morphological and functional aspects developed after spinal cord injury. The specific cellular immune response against spinal cord constituents, the amount of spared tissue and myelination at the site of injury, and the motor function outcome were assessed in a first series of experiments. Rats were subjected to spinal cord compression and treated with cyclosporin-A before lesion and during the entire study. A specific lymphocyte response against spinal cord antigens was found in untreated spinal cord injured rats but not in cyclosporine-A treated injured rats. A significantly better myelination index was also found in injured cyclosporin-A-treated rats, as compared to untreated animals. The amount of spared spinal cord tissue at the epicenter was not significantly different comparing CsA-treated with vehicle-treated rats. Looking for a potential therapeutic use of CsA, in a second series of experiments, rats were subjected to spinal cord contusion and treated with cyclosporin-A from 1 to 72 h after lesion. Motor recovery and red nuclei neurons survival, were evaluated, and found to be significantly better in spinal cord injured rats treated with cyclosporin-A than in injured-untreated rats. This work confirms the existence of an autoimmune cellular reaction after injury that can be inhibited by cyclosporin-A treatment. Furthermore, cyclosporin-A promotes neuroprotection by diminishing both demyelination and neuronal cell death, resulting in a better motor outcome after spinal cord injury.
Collapse
Affiliation(s)
- Antonio Ibarra
- Unidad de Investigación Médica en Enfermedades Neurológicas, Centro Médico Nacional Siglo XXI, IMSS, DF, México, Mexico.
| | | | | | | | | | | | | |
Collapse
|
6
|
Schori H, Lantner F, Shachar I, Schwartz M. Severe immunodeficiency has opposite effects on neuronal survival in glutamate-susceptible and -resistant mice: adverse effect of B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2861-5. [PMID: 12218098 DOI: 10.4049/jimmunol.169.6.2861] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The resistance of rats or mice to glutamate-induced toxicity depends on their ability to spontaneously manifest a T cell-dependent response to the insult. Survival of retinal ganglion cells (RGCs) exposed to glutamate in BALB/c SCID mice (a strain relatively resistant to glutamate toxicity) was significantly worse than in the wild type. In the susceptible C57BL/6J mouse strain, however, significantly more RGCs survived among SCID mutants than in the matched wild type. RGC survival in the SCID mutants of the two strains was similar. These results suggest 1) that immunodeficiency might be an advantage in strains incapable of spontaneously manifesting protective T cell-dependent immunity and 2) that B cells might be destructive in such cases. After exposure of RGCs to toxic glutamate concentrations in three variants of B cell-deficient C57BL/6J mice, namely muMT(-/-) (B cell knockout mice) and Ii(-/-) mice reconstituted with transgenically expressed low levels of Ii p31 isoforms (p31 mice) or Ii p41 isoforms (p41 mice), significantly more RGCs survived in these mice than in the wild type. The improved survival was diminished by replenishment of the B cell-deficient mice with B cells derived from the wild type. It thus seems that B cells have an adverse effect on neuronal recovery after injury, at least in a strain that is unable to spontaneously manifest a T cell-dependent protective mechanism. These findings have clear implications for the design of immune-based therapies for CNS injury.
Collapse
Affiliation(s)
- Hadas Schori
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
7
|
Barouch R, Schwartz M. Autoreactive T cells induce neurotrophin production by immune and neural cells in injured rat optic nerve: implications for protective autoimmunity. FASEB J 2002; 16:1304-6. [PMID: 12154003 DOI: 10.1096/fj.01-0467fje] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Accumulating evidence suggests that activation of the immune system in the central nervous system (CNS) after trauma protects the CNS from damage propagation and facilitates regeneration. Studies by our group have shown that passive transfer of autoimmune T cells specific to myelin basic protein (T(MBP)) can protect injured neurons in the rat CNS from secondary degeneration. In this study, we investigated the effects of T(MBP) treatment on the local immune response (by B cells and macrophages) and on the expression of neurotrophic factors after crush injury of the rat optic nerve. Systemic injection of activated T(MBP) caused an increase in the accumulation of macrophages/microglia and B cells in the injured nerve, which was greater than that seen in the injured optic nerves of untreated animals. This accumulation was accompanied by a transient, but massive, increase in the expression of neurotrophic factors. Immunocytochemical analysis demonstrated differential expression of neurotrophins by resident astrocytes and by infiltrating B cells, T cells, and macrophages. Because postinjury neuronal survival and maintenance are known to be affected by neurotrophins, our findings point to a possible contribution of a neurotrophin-related mechanism to the protective effect conferred by T cell-mediated autoimmunity on injured neurons.
Collapse
Affiliation(s)
- Rina Barouch
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
8
|
Popovich PG. Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord. PROGRESS IN BRAIN RESEARCH 2001; 128:43-58. [PMID: 11105668 DOI: 10.1016/s0079-6123(00)28006-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- P G Popovich
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine and Public Health, Ohio State University, Columbus 43210, USA.
| |
Collapse
|
9
|
Ibarra A, Martinez S, Reyes J, Meza-Lucas A, Mandujano A, Grijalva I, Madrazo I, Correa D. Search for an IgG response against neural antigens in experimental spinal cord injury. Neuroscience 2000; 96:3-5. [PMID: 10683404 DOI: 10.1016/s0306-4522(99)00541-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to determine if a specific response is induced after spinal cord injury, we performed a kinetic search for IgG antibodies against various spinal cord antigenic preparations in a rat contusion model. Even though spinal cord injured animals showed two reactive bands, these could be originated by the reaction of natural antibodies, since they were also observed before lesion. Thus, these antibodies would not be of relevance in the pathogenic events of spinal cord injury in this rat model. Our findings do not demonstrate the existence of a specific IgG response against spinal cord constituents after injury.
Collapse
Affiliation(s)
- A Ibarra
- Instituto Nacional de Diagnóstico y Referencia Epidemiológicos (INDRE), SSA, México D.F., Mexico
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999; 5:49-55. [PMID: 9883839 DOI: 10.1038/4734] [Citation(s) in RCA: 646] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autoimmunity to antigens of the central nervous system is usually considered detrimental. T cells specific to a central nervous system self antigen, such as myelin basic protein, can indeed induce experimental autoimmune encephalomyelitis, but such T cells may nevertheless appear in the blood of healthy individuals. We show here that autoimmune T cells specific to myelin basic protein can protect injured central nervous system neurons from secondary degeneration. After a partial crush injury of the optic nerve, rats injected with activated anti-myelin basic protein T cells retained approximately 300% more retinal ganglion cells with functionally intact axons than did rats injected with activated T cells specific for other antigens. Electrophysiological analysis confirmed this finding and suggested that the neuroprotection could result from a transient reduction in energy requirements owing to a transient reduction in nerve activity. These findings indicate that T-cell autoimmunity in the central nervous system, under certain circumstances, can exert a beneficial effect by protecting injured neurons from the spread of damage.
Collapse
Affiliation(s)
- G Moalem
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Cross-talk between cells of the nervous and immune systems is an emerging concept in neurotrauma research. Previously, neuroimmunological approaches in brain and spinal cord injury have focused on the functional consequences of macrophage and microglial activation. These cells constitute the natural, or innate, branch of CNS immunity and respond to injury or infection in a nonspecific fashion. Recent evidence, however, has shown that T-lymphocytes may also play a significant role in spinal cord injury. Once activated, T- and B-lymphocytes orchestrate the complex functions of the inflammatory response. Acquired immunity is readily induced against “non-self,” or foreign, antigens, although “self-reactive” lymphocytes are present in normal individuals, providing the potential for the onset of autoimmunity. Trauma to or infection in the CNS may release “self” antigens normally sequestered behind the blood-brain barrier that can trigger lymphocyte activation. This article addresses the potential pathological and physiological implications of lymphocyte activation induced by traumatic spinal cord injury. NEUROSCIENTIST 4:71-76, 1998
Collapse
Affiliation(s)
- Phillip G. Popovich
- Departments of Medical Microbiology and Immunology (PGP, CCW), Physiology (BTS), and The Spinal Cord Injury Research Center (PGP, BTS). The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| | - Caroline C. Whitacre
- Departments of Medical Microbiology and Immunology (PGP, CCW), Physiology (BTS), and The Spinal Cord Injury Research Center (PGP, BTS). The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| | - Bradford T. Stokes
- Departments of Medical Microbiology and Immunology (PGP, CCW), Physiology (BTS), and The Spinal Cord Injury Research Center (PGP, BTS). The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| |
Collapse
|
12
|
Ibarra A, Guízar-Sahagún G, Correa D, Kretschmer R, Grijalva I, Flores-Murrieta FJ, Castañeda-Hernández G, Odor A, López RM, Franco-Bourland R, Espitia AL, Salgado-Ceballos H, Madrazo I. Alteration of cyclosporin-A pharmacokinetics after experimental spinal cord injury. J Neurotrauma 1996; 13:267-72. [PMID: 8797176 DOI: 10.1089/neu.1996.13.267] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The pharmacokinetics of the immunosuppressive agent cyclosporin-A (CsA) were studied in rats submitted to spinal cord (SC) injury. A single CsA 10 mg/kg dose was given either intraperitoneally (i.p.) or orally to rats submitted to experimental SC injury at the T8 level. Twenty four hours after lesion (acute stage of SC injury) i.p. CsA bioavailability was increased, while t1/2 was prolonged. However, oral bioavailability was reduced. Seven weeks after lesion (chronic stage of SC injury) CsA bioavailability, by either route, was not significantly different from control values. Results indicate that parenteral CsA bioavailability is increased during the acute stage of SC lesion, probably due to an impaired elimination. Oral bioavailability, however, is decreased, since there is also an important reduction in gastrointestinal CsA absorption that overrides the effect of impaired elimination. Alterations in CsA pharmacokinetics appear to revert during the chronic stage of SC injury. Changes in CsA bioavailability, depending on the route of administration and on time, must be considered to design an adequate immunosuppressive treatment in SC injury.
Collapse
Affiliation(s)
- A Ibarra
- Proyecto CAMINA A.C., México, D.F., Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lauro GM, Margotta V, Venturini G, Teichner A, Caronti B, Palladini G. Correlation between immune response and CNS regeneration in vertebrate phylogenesis. ACTA ACUST UNITED AC 1992. [DOI: 10.1080/11250009209386670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|