1
|
Rushmore RJ, Bouix S, Kubicki M, Rathi Y, Rosene DL, Yeterian EH, Makris N. MRI-based Parcellation and Morphometry of the Individual Rhesus Monkey Brain: the macaque Harvard-Oxford Atlas (mHOA), a translational system referencing a standardized ontology. Brain Imaging Behav 2021; 15:1589-1621. [PMID: 32960419 PMCID: PMC8608281 DOI: 10.1007/s11682-020-00357-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Investigations of the rhesus monkey (Macaca mulatta) brain have shed light on the function and organization of the primate brain at a scale and resolution not yet possible in humans. A cornerstone of the linkage between non-human primate and human studies of the brain is magnetic resonance imaging, which allows for an association to be made between the detailed structural and physiological analysis of the non-human primate and that of the human brain. To further this end, we present a novel parcellation method and system for the rhesus monkey brain, referred to as the macaque Harvard-Oxford Atlas (mHOA), which is based on the human Harvard-Oxford Atlas (HOA) and grounded in an ontological and taxonomic framework. Consistent anatomical features were used to delimit and parcellate brain regions in the macaque, which were then categorized according to functional systems. This system of parcellation will be expanded with advances in technology and, like the HOA, will provide a framework upon which the results from other experimental studies (e.g., functional magnetic resonance imaging (fMRI), physiology, connectivity, graph theory) can be interpreted.
Collapse
Affiliation(s)
- R Jarrett Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Edward H Yeterian
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
- Department of Psychology, Colby College, Waterville, ME, USA
| | - Nikos Makris
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA.
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
2
|
Paulussen M, Jacobs S, Van der Gucht E, Hof PR, Arckens L. Cytoarchitecture of the mouse neocortex revealed by the low-molecular-weight neurofilament protein subunit. Brain Struct Funct 2011; 216:183-99. [DOI: 10.1007/s00429-011-0311-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/13/2011] [Indexed: 12/20/2022]
|
3
|
Judaš M, Sedmak G, Pletikos M, Jovanov-Milošević N. Populations of subplate and interstitial neurons in fetal and adult human telencephalon. J Anat 2011; 217:381-99. [PMID: 20979586 DOI: 10.1111/j.1469-7580.2010.01284.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular) interstitial neurons in the postnatal and adult deep cerebral white matter (i.e. corpus callosum, anterior commissure, internal and external capsule and the corona radiata/centrum semiovale). Although these deep interstitial neurons are poorly developed or absent in the brains of rodents, they represent a prominent feature of the significantly enlarged white matter of human and non-human primate brains.
Collapse
Affiliation(s)
- Miloš Judaš
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Salata 12, Zagreb, Croatia.
| | | | | | | |
Collapse
|
4
|
Scott BH, Malone BJ, Semple MN. Transformation of temporal processing across auditory cortex of awake macaques. J Neurophysiol 2010; 105:712-30. [PMID: 21106896 DOI: 10.1152/jn.01120.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anatomy and connectivity of the primate auditory cortex has been modeled as a core region receiving direct thalamic input surrounded by a belt of secondary fields. The core contains multiple tonotopic fields (including the primary auditory cortex, AI, and the rostral field, R), but available data only partially address the degree to which those fields are functionally distinct. This report, based on single-unit recordings across four hemispheres in awake macaques, argues that the functional organization of auditory cortex is best understood in terms of temporal processing. Frequency tuning, response threshold, and strength of activation are similar between AI and R, validating their inclusion as a unified core, but the temporal properties of the fields clearly differ. Onset latencies to pure tones are longer in R (median, 33 ms) than in AI (20 ms); moreover, synchronization of spike discharges to dynamic modulations of stimulus amplitude and frequency, similar to those present in macaque and human vocalizations, suggest distinctly different windows of temporal integration in AI (20-30 ms) and R (100 ms). Incorporating data from the adjacent auditory belt reveals that the divergence of temporal properties within the core is in some cases greater than the temporal differences between core and belt.
Collapse
Affiliation(s)
- Brian H Scott
- Center for Neural Science, New York University, New York, New York, USA.
| | | | | |
Collapse
|
5
|
Abstract
The mammalian cerebral cortex consists of multiple areas specialized for processing information for many different sensory modalities. Although the basic structure is similar for each cortical area, specialized neural connections likely mediate unique information processing requirements. Relative to primary visual (V1) and somatosensory (S1) cortices, little is known about the intrinsic connectivity of primary auditory cortex (A1). To better understand the flow of information from the thalamus to and through rat A1, we made use of a rapid, high-throughput screening method exploiting laser-induced uncaging of glutamate to construct excitatory input maps of individual neurons. We found that excitatory inputs to layer 2/3 pyramidal neurons were similar to those in V1 and S1; these cells received strong excitation primarily from layers 2-4. Both anatomical and physiological observations, however, indicate that inputs and outputs of layer 4 excitatory neurons in A1 contrast with those in V1 and S1. Layer 2/3 pyramids in A1 have substantial axonal arbors in layer 4, and photostimulation demonstrates that these pyramids can connect to layer 4 excitatory neurons. Furthermore, most or all of these layer 4 excitatory neurons project out of the local cortical circuit. Unlike S1 and V1, where feedback to layer 4 is mediated exclusively by indirect local circuits involving layer 2/3 projections to deep layers and deep feedback to layer 4, layer 4 of A1 integrates thalamic and strong layer 4 recurrent excitatory input with relatively direct feedback from layer 2/3 and provides direct cortical output.
Collapse
|
6
|
Hoffman KL, Ghazanfar AA, Gauthier I, Logothetis NK. Category-specific responses to faces and objects in primate auditory cortex. Front Syst Neurosci 2008; 1:2. [PMID: 18958243 PMCID: PMC2526270 DOI: 10.3389/neuro.06.002.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 01/01/2008] [Indexed: 11/24/2022] Open
Abstract
Auditory and visual signals often occur together, and the two sensory channels are known to influence each other to facilitate perception. The neural basis of this integration is not well understood, although other forms of multisensory influences have been shown to occur at surprisingly early stages of processing in cortex. Primary visual cortex neurons can show frequency-tuning to auditory stimuli, and auditory cortex responds selectively to certain somatosensory stimuli, supporting the possibility that complex visual signals may modulate early stages of auditory processing. To elucidate which auditory regions, if any, are responsive to complex visual stimuli, we recorded from auditory cortex and the superior temporal sulcus while presenting visual stimuli consisting of various objects, neutral faces, and facial expressions generated during vocalization. Both objects and conspecific faces elicited robust field potential responses in auditory cortex sites, but the responses varied by category: both neutral and vocalizing faces had a highly consistent negative component (N100) followed by a broader positive component (P180) whereas object responses were more variable in time and shape, but could be discriminated consistently from the responses to faces. The face response did not vary within the face category, i.e., for expressive vs. neutral face stimuli. The presence of responses for both objects and neutral faces suggests that auditory cortex receives highly informative visual input that is not restricted to those stimuli associated with auditory components. These results reveal selectivity for complex visual stimuli in a brain region conventionally described as non-visual “unisensory” cortex.
Collapse
Affiliation(s)
- Kari L Hoffman
- Max Planck Institute for Biological Cybernetics Tübingen, Germany
| | | | | | | |
Collapse
|
7
|
Koliatsos VE, Kecojevic A, Troncoso JC, Gastard MC, Bennett DA, Schneider JA. Early involvement of small inhibitory cortical interneurons in Alzheimer's disease. Acta Neuropathol 2006; 112:147-62. [PMID: 16758165 DOI: 10.1007/s00401-006-0068-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 03/27/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
Work on acute models of cortical injury has revealed a population of small GABAergic interneurons that are induced to increase their low constitutive expression of neuronal nitric oxide (NO) synthase (nNOS). In some cases, this activation may play a role in NO-mediated degeneration of pyramidal neurons. In this report, we explore the anatomy of various classes of cortical nNOS (+) (nitrergic) neurons, with emphasis on small interneurons, in the medial temporal lobe of subjects with Alzheimer's disease (AD) from two well-characterized cohorts, the Baltimore Longitudinal Study on Aging (BLSA) and the Religious Order Study (ROS). We find that small calbindin (+) cortical interneurons are induced to high levels of NADPHd/nNOS reactivity early in AD and abound in areas with emerging neurofibrillary pathology, that is, in entorhinal cortex in the beginning of the limbic stage of Braak, in hippocampal CA1 in the mature limbic stage and in temporal neocortex in the late limbic stage. This pattern was robust and significant in the younger of the two AD cohorts studied (BLSA), but persisted as a trend in the older cohort (ROS). In optimally prepared material, we find a significant correlation between numbers of these interneurons and markers of neuronal cell death, for example, caspase-3 activation. Our results show that small cortical inhibitory interneurons represent an extensive signaling system that is induced to higher levels of NADPHd/nNOS expression early in the paralimbic-limbic-neocortical sequence of AD progression. We propose that nNOS/NO signaling initiated in these interneurons can serve as a marker of early cortical injury in AD. The specific role played by inhibitory interneurons and NO in the elaboration of specific neuropathologies associated with AD, that is, Abeta and neurofibrillary deposits and cell death deserves further exploration in experimental animal models.
Collapse
Affiliation(s)
- Vassilis E Koliatsos
- Department of Pathology, Division of Neuropathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Cho RH, Segawa S, Mizuno A, Kaneko T. Intracellularly labeled pyramidal neurons in the cortical areas projecting to the spinal cord. I. Electrophysiological properties of pyramidal neurons. Neurosci Res 2005; 50:381-94. [PMID: 15567476 DOI: 10.1016/j.neures.2004.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 08/06/2004] [Indexed: 11/28/2022]
Abstract
To study cortical motor control, we examined electrical characteristics of pyramidal neurons in the present report, and intra- or juxta-columnar connections of the pyramidal neurons to corticospinal neurons in the accompanying report. Pyramidal neurons were intracellularly recorded and stained in slices of rat motorsensory cortices (areas FL, HL and M1) where many corticospinal neurons were labeled retrogradely. They were morphologically classified into classical, star and other modified pyramidal neurons, and electrophysiologically into regular-spiking (RS), intrinsic bursting (IB) and irregular-spiking (IS) neurons on the basis of spiking pattern in response to 500 ms depolarizing current pulses. RS responses were further divided into RS with slow adaptation (RS-SA) and RS with fast adaptation (RS-FA). The electrical properties were associated with the laminar location of the neurons; RS-SA responses were observed frequently in layer II/III and less frequently in layers IV-VI, and IB and IS responses were exclusively found in layers V and VI, respectively. Interestingly, all layer IV neurons in area FL/HL were RS-FA star-pyramidal neurons, whereas layer IV neurons in area M1 were RS-SA classical pyramidal neurons. Although weak stimulation of areas FL/HL and M1 is known to elicit movement, these results suggest different information processings between the two areas.
Collapse
Affiliation(s)
- Ryong-Ho Cho
- Department of Developmental and Reconstructive Medicine, Division of Oral and Maxillofacial Surgery, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8102, Japan
| | | | | | | |
Collapse
|
9
|
Recanzone GH, Guard DC, Phan ML. Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J Neurophysiol 2000; 83:2315-31. [PMID: 10758136 DOI: 10.1152/jn.2000.83.4.2315] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Response properties of auditory cortical neurons measured in anesthetized preparations have provided important information on the physiological differences between neurons in different auditory cortical areas. Studies in the awake animal, however, have been much less common, and the physiological differences noted may reflect differences in the influence of anesthetics on neurons in different cortical areas. Because the behaving monkey is gaining popularity as an animal model in studies exploring auditory cortical function, it has become critical to physiologically define the response properties of auditory cortical neurons in this preparation. This study documents the response properties of single cortical neurons in the primary and surrounding auditory cortical fields in monkeys performing an auditory discrimination task. We found that neurons with the shortest latencies were located in the primary auditory cortex (AI). Neurons in the rostral field had the longest latencies and the narrowest intensity and frequency tuning, neurons in the caudomedial field had the broadest frequency tuning, and neurons in the lateral field had the most monotonic rate/level functions of the four cortical areas studied. These trends were revealed by comparing response properties across the population of studied neurons, but there was considerable variability between neurons for each response parameter other than characteristic frequency (CF) in each cortical area. Although the neuronal CFs showed a systematic spatial organization across AI, no such systematic organization was apparent for any other response property in AI or the adjacent cortical areas. The results of this study indicate that there are physiological differences between auditory cortical fields in the behaving monkey consistent with previous studies in the anesthetized animal and provide insights into the functional role of these cortical areas in processing acoustic information.
Collapse
Affiliation(s)
- G H Recanzone
- Center for Neuroscience, Physiology and Behavior, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
10
|
Judas M, Sestan N, Kostović I. Nitrinergic neurons in the developing and adult human telencephalon: transient and permanent patterns of expression in comparison to other mammals. Microsc Res Tech 1999; 45:401-19. [PMID: 10402267 DOI: 10.1002/(sici)1097-0029(19990615)45:6<401::aid-jemt7>3.0.co;2-q] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A subpopulation of cerebral cortical neurons constitutively express nitric oxide synthase (NOS) and, upon demand, produce a novel messenger molecule nitric oxide (NO) with a variety of proposed roles in the developing, adult, and diseased brain. With respect to the intensity of their histochemical (NADPH-diaphorase histochemistry) and immunocytochemical (nNOS and eNOS immunocytochemistry) staining, these nitrinergic neurons are generally divided in type I and type II cells. Type I cells are usually large, intensely stained interneurons, scattered throughout all cortical layers; they frequently co-express GABA, neuropeptide Y, and somatostatin, but rarely contain calcium-binding proteins. Type II cells are small and lightly to moderately stained, about 20-fold more numerous than type I cells, located exclusively in supragranular layers, and found almost exclusively in the primate and human brain. In the developing cerebral cortex, nitrinergic neurons are among the earliest differentiating neurons, mostly because the dominant population of prenatal nitrinergic neurons are specific fetal subplate and Cajal-Retzius cells, which are the earliest generated neurons of the cortical anlage. However, at least in the human brain, a subpopulation of principal (pyramidal) cortical neurons transiently express NOS proteins in a regionally specific manner. In fact, transient overexpression of NOS-activity is a well-documented phenomenon in the developing mammalian cerebral cortex, suggesting that nitric oxide plays a significant role in the establishment and refinement of the cortical synaptic circuitry. Nitrinergic neurons are also present in human fetal basal forebrain and basal ganglia from 15 weeks of gestation onwards, thus being among the first chemically differentiated neurons within these brain regions. Finally, a subpopulation of human dorsal pallidal neurons transiently express NADPH-diaphorase activity during midgestation.
Collapse
Affiliation(s)
- M Judas
- Section of Neuroanatomy and Neuroembryology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3b, 10000 Zagreb, Republic of Croatia.
| | | | | |
Collapse
|
11
|
Kosaki H, Hashikawa T, He J, Jones E. Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970922)386:2<304::aid-cne10>3.0.co;2-k] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Juckel G, Molnár M, Hegerl U, Csépe V, Karmos G. Auditory-evoked potentials as indicator of brain serotonergic activity--first evidence in behaving cats. Biol Psychiatry 1997; 41:1181-95. [PMID: 9171909 DOI: 10.1016/s0006-3223(96)00240-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Due to the increasing importance of the central serotonergic neurotransmission for pathogenetic concepts and as a target of pharmacotherapeutic interventions in psychiatry, reliable indicators of this system are needed. Several findings from basic and clinical research suggest that the stimulus intensity dependence of auditory evoked potentials (AEP) may be such an indicator of behaviorally relevant aspects of serotonergic activity (Hegerl and Juckel 1993, Biol Psychiatry 33:173-187). In order to study this relationship more directly, epidural recordings over the primary and secondary auditory cortex were conducted in chronically implanted cats under intravenous (i.v.) administration of drugs influencing the serotonergic and other modulatory systems (8-OH-DPAT, m-CPP, ketanserin, DOI, apomorphine, atropine, clonidine). The intensity dependence of the cat AEP component with the highest functional similarity to this of the N1/P2-component in humans was significantly changed by influencing 5-HT1a and 5-HT2 receptors, but not 5-HT1c receptors. This serotonergic modulation of the intensity dependence was only found for the primary auditory cortex which corresponds to the known different innervation of the primary and secondary auditory cortex by serotonergic fibers. Our study supports the idea that the intensity dependence of AEP could be a valuable indicator of brain serotonergic activity; however, this indicator seems to be of relative specificity because at least cholinergic effects on the intensity dependence were also observed.
Collapse
Affiliation(s)
- G Juckel
- Department of Psychophysiology, Institute for Psychology of the Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
13
|
Dombrowski SM, Barbas H. Differential expression of NADPH diaphorase in functionally distinct prefrontal cortices in the rhesus monkey. Neuroscience 1996; 72:49-62. [PMID: 8730705 DOI: 10.1016/0306-4522(95)00539-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The prefrontal cortex of primates is an integrative centre for sensory, cognitive, mnemonic and emotional processes. The cellular features which contribute to the functional specialization of its subsectors are poorly understood. In this study we determined the distribution of nicotinamide adenine dinucleotide phosphate-diaphorase-positive neurons in structurally and functionally distinct prefrontal cortices in the rhesus monkey. This class of neurons express nitric oxide synthase which is necessary for the production of nitric oxide, a novel neural messenger implicated in learning and memory. The density of diaphorase-positive neurons was approximately four times higher in olfactory areas than in eulaminate areas (areas 9, 10, 12, 46, and 8), and two- to three-times higher in the agranular limbic area PAll than in eulaminate areas. Positive neurons were concentrated in a deep band (layers V and VI), a superficial band (layers II and upper III), and were sparsely distributed in the central, thalamic recipient zone (deep layer III, layer IV and upper V). The highest densities of positive neurons were observed in the white matter where their prevalence followed the opposite trend than in the corresponding overlying cortices. The distribution of diaphorase-positive neurons was correlated with the regional anatomic and functional specialization of prefrontal cortices. Thus, diaphorase-positive neurons were most densely distributed in orbital and then medial prefrontal limbic cortices which have a low cell density and widespread connections. In contrast, positive neurons were comparatively sparse in eulaminate cortices, which have a high cell density and more restricted connections. These findings indicated that the distribution of diaphorase-positive neurons in prefrontal cortices is not random, but is associated with the structural architecture and functional attributes of these cortices. The preponderance of diaphorase-positive neurons in limbic cortices, which have been implicated in learning and memory, is consistent with the idea that nitric oxide may have a role in synaptic plasticity.
Collapse
Affiliation(s)
- S M Dombrowski
- Department of Behavioral Neuroscience, Boston University School of Medicine, MA, USA
| | | |
Collapse
|
14
|
Gabbott PL, Bacon SJ. Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometrics. J Comp Neurol 1996; 364:567-608. [PMID: 8821449 DOI: 10.1002/(sici)1096-9861(19960122)364:4<567::aid-cne1>3.0.co;2-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This paper provides a comprehensive morphological description of local circuit neurons in the medial prefrontal cortex (mPFC: areas 24a, 24b, 24c, 25 and 32) of the monkey. Cortical interneurons were identified immunocytochemically by the expression of the calcium binding proteins calretinin (CR), parvalbumin (PV) and calbindin D-28k (CB). Interneurons were also identified using GABA immunocytochemistry. The areal and laminar distributions of CR, PV, and CB cells were consistent across mPFC; their morphological characteristics identified them as local circuit neurons. Throughout layers 2-6: CR immunoreactivity labelled double bouquet and bipolar neurons, PV was localised in large and small basket neurons and in chandelier (axoaxonic) cells, while CB immunoreactivity was present in double bouquet, Martinotti, and neurogliaform neurons. In addition, some cells in layer 1 (including Cajal-Retzius neurons) were CR immunoreactive. Calbindin immunoreactivity also labelled a population of large nonpyramidal neurons deep in the cortex. Other types of CR, PV and CB cells were also immunolabelled. A small population of layer 3 pyramidal cells was weakly CB immunoreactive. Peak cell densities occurred in layer 2/upper layer 3 for CR+ neurons and in upper to midlayer 3 for CB+ cells. PV+ neuron density peaked in midcortex. These observations support and extend a similar study of monkey prefrontal cortex (Condé et al. [1994] J. Comp. Neurol. 341:95-116). The morphologies and combined cortical depth distributions of CR+, PV+, and CB+ neurons were similar to GABA-immunolabelled cells. Local circuit neurons in mPFC displaying NADPH diaphorase activity composed less than 0.25% of the total neuron population, and were distributed in two horizontal strata, in mid- to lower layer 3 and in lower layer 5/upper layer 6. CR, PV and CB immunoreactivity was colocalised in NADPH diaphorase-reactive neurons. The interrelationships between CR+, PV+ and CB+ neurons were investigated using dual immunocytochemistry. CR+ puncta were found to be closely associated with the cell bodies and proximal processes of PV+ neurons, whereas CR+ puncta were located more distally over processes from CB+ cells. Additionally, PV+ puncta were found closely apposed to PV+ somata and processes and CR+ puncta abutted against CR+ cell bodies. The companion paper (Gabbott and Bacon [1996] J. Comp. Neurol.) presents quantitative data regarding the areal and laminar distributions of the identified cell classes in mPFC. Such data provide a realistic structural framework with which to investigate neuronal operations in monkey mPFC.
Collapse
Affiliation(s)
- P L Gabbott
- University Department of Pharmacology, Oxford, England
| | | |
Collapse
|
15
|
Jones EG, Dell'Anna ME, Molinari M, Rausell E, Hashikawa T. Subdivisions of macaque monkey auditory cortex revealed by calcium-binding protein immunoreactivity. J Comp Neurol 1995; 362:153-70. [PMID: 8576431 DOI: 10.1002/cne.903620202] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of this investigation was to characterize auditory areas of the primate cerebral cortex on the basis of chemoarchitecture. Cortical areas of the supratemporal plane were delineated in Macaca fuscata (M. fuscata) by immunocytochemical staining for parvalbumin, staining for cytochrome oxidase, examination of cyto- and myeloarchitecture, and retrograde tracing of corticocortical connections. Comparative observations were made on Macaca fascicularis (M. fascicularis). Differential staining of fiber plexuses, probably of thalamic origin, identifies a central core zone of dense immunostaining and a surrounding zone of moderate-to-dense immunostaining composed of anteromedial, lateral, and posteromedial fields. Outside the second zone, there is a third anterolateral zone of weaker immunoreactivity, and, outside that zone, there is a fourth zone in which immunoreactivity is virtually absent. Differences in parvalbumin immunostaining in the auditory fields may reflect differences in relative contributions of thalamic inputs from parvalbumin-immunoreactive cells in the medial geniculate complex. The central core zone and the surrounding three fields can be correlated with major auditory fields previously defined by multiunit mapping and thalamocortical connectivity. The core zone contains a large principal field and an anterior extension. The pattern of corticocortical connections between these and adjoining fields suggests that the anteromedial, lateral, and posteromedial fields represent first steps in three streams of connections passing outward from auditory into association cortex. M. fuscata has an unusually large auditory cortex that is more deeply placed in the lateral sulcus in comparison to that of M. fascicularis. A small annectant gyrus provides a guide to the position of the primary auditory area.
Collapse
Affiliation(s)
- E G Jones
- Institute of Physical and Chemical Research, Riken, Saitama, Japan
| | | | | | | | | |
Collapse
|