1
|
Zaghmi A, Drouin-Ouellet J, Brambilla D, Gauthier MA. Treating brain diseases using systemic parenterally-administered protein therapeutics: Dysfunction of the brain barriers and potential strategies. Biomaterials 2020; 269:120461. [PMID: 33218788 DOI: 10.1016/j.biomaterials.2020.120461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
The parenteral administration of protein therapeutics is increasingly gaining importance for the treatment of human diseases. However, the presence of practically impermeable blood-brain barriers greatly restricts access of such pharmaceutics to the brain. Treating brain disorders with proteins thus remains a great challenge, and the slow clinical translation of these therapeutics may be largely ascribed to the lack of appropriate brain delivery system. Exploring new approaches to deliver proteins to the brain by circumventing physiological barriers is thus of great interest. Moreover, parallel advances in the molecular neurosciences are important for better characterizing blood-brain interfaces, particularly under different pathological conditions (e.g., stroke, multiple sclerosis, Parkinson's disease, and Alzheimer's disease). This review presents the current state of knowledge of the structure and the function of the main physiological barriers of the brain, the mechanisms of transport across these interfaces, as well as alterations to these concomitant with brain disorders. Further, the different strategies to promote protein delivery into the brain are presented, including the use of molecular Trojan horses, the formulation of nanosystems conjugated/loaded with proteins, protein-engineering technologies, the conjugation of proteins to polymers, and the modulation of intercellular junctions. Additionally, therapeutic approaches for brain diseases that do not involve targeting to the brain are presented (i.e., sink and scavenging mechanisms).
Collapse
Affiliation(s)
- A Zaghmi
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada
| | - J Drouin-Ouellet
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - D Brambilla
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - M A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada.
| |
Collapse
|
2
|
Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol 2019; 181:101665. [DOI: 10.1016/j.pneurobio.2019.101665] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
|
3
|
Granholm AC, Henry S, Herbert MA, Eken S, Gerhardt GA, van Horne C. Kidney Cografts Enhance Fiber Outgrowth from Ventral Mesencephalic Grafts to the 6-Ohda–Lesioned Striatum, and Improve Behavioral Recovery. Cell Transplant 2017; 7:197-212. [PMID: 9588601 DOI: 10.1177/096368979800700214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent studies have demonstrated the presence of many different neurotrophic factors in the developing and adult kidney. Due to its production of this mixture of neurotrophic factors, we wanted to investigate whether fetal kidney tissue could be beneficial for neuritic fiber growth and/or cell survival in intracranial transplants of fetal ventral mesencephalic tissue (VM). A retrograde lesion of nigral dopaminergic neurons was performed in adult Fischer 344 male rats by injecting 6-hydroxydopamine into the medial forebain. The animals were monitored for spontaneous locomotor activity in addition to apomorphine-induced rotations once a week. Four weeks following the lesion, animals were anesthetized and embryonic day 14 VM tissue from rat fetuses was implanted stereotaxically into the dorsal striatum. One group of animals received a cograft of kidney tissue from the same embryos in the same needle track. The animals were then monitored behaviorally for an additional 4 months. There was a significant improvement in both spontaneous locomotor activity (distance traveled) and apomorphine-induced rotations with both single VM grafts and VM–kidney cografts, with the VM–kidney double grafts enhancing the motor behaviors to a significantly greater degree. Tyrosine hydroxylase (TH) immunohistochemistry and image analysis revealed a significantly denser innervation of the host striatum from the VM–kidney cografts than from the single VM grafts. TH-positive neurons were also significantly larger in the cografts compared to the single VM grafts. In addition to the dense TH-immunoreactive innervation, the kidney portion of cografts contained a rich cholinergic innervation, as evidenced from antibodies against choline acetyltransferase (ChAT). The striatal cholinergic cell bodies surrounding the VM–kidney cografts were enlarged and had a slightly higher staining density for ChAT. Taken together, these data support the hypothesis that neurotrophic factors secreted from fetal kidney grafts stimulated both TH-positive neurons in the VM cografts and cholinergic neurons in the host striatum. Thus, these factors may be combined for treatment of degenerative diseases involving both dopaminergic and cholinergic neurons.
Collapse
Affiliation(s)
- A C Granholm
- Department of Basic Science, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
4
|
Hajimiri M, Shahverdi S, Kamalinia G, Dinarvand R. Growth factor conjugation: strategies and applications. J Biomed Mater Res A 2014; 103:819-38. [PMID: 24733811 DOI: 10.1002/jbm.a.35193] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/17/2014] [Accepted: 04/03/2014] [Indexed: 12/17/2022]
Abstract
Growth factors, first known for their essential role in the initiation of mitosis, are required for a variety of cellular processes and their localized delivery is considered as a rational approach in their therapeutic application to assure a safe and effective treatment while avoiding unwanted adverse effects. Noncovalent immobilization of growth factors as well as their covalent conjugation is amongst the most common strategies for localized delivery of growth factors. Today, immobilized and covalently conjugated growth factors are considered as a promising drug design and are widely used for protein reformulation and material design to cover the unwanted characteristics of growth factors as well as improving their functions. Selection of a suitable conjugation technique depends on the substrate chemistry and the availability of functional reactive groups in the structure of growth factor, the position of reactive groups in growth factor molecules and its relation with the receptor binding area, and the intention of creating either patterned or unpatterned conjugation. Various approaches for growth factor reformulation have been reported. This review provides an overview on chemical conjugation of growth factors and covers the relevant studies accomplished for bioconjugation of growth factors and their related application.
Collapse
Affiliation(s)
- Mirhamed Hajimiri
- Nanomedicine and Biomaterial Lab, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran; Nano Alvand Co., Avicenna Tech Park, Tehran University of Medical Sciences, Tehran, 1439955991, Iran
| | | | | | | |
Collapse
|
5
|
Williams BJ, Bimonte-Nelson HA, Granholm-Bentley AC. ERK-mediated NGF signaling in the rat septo-hippocampal pathway diminishes with age. Psychopharmacology (Berl) 2006; 188:605-18. [PMID: 16915384 DOI: 10.1007/s00213-006-0477-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 06/10/2006] [Indexed: 01/01/2023]
Abstract
RATIONALE Degeneration of basal forebrain cholinergic neurons (BFCNs) plays an important role in aging and Alzheimer's disease (AD) pathology. This degeneration may be a result of disrupted nerve growth factor (NGF) signaling. Aged rats have memory deficits, BFCN degeneration, and disrupted NGF signaling. OBJECTIVE In this study we identify a rapid NGF signaling pathway in BFCNs and the second messenger system associated with that signaling. We also identify age-dependent alterations in this signaling pathway. MATERIALS AND METHODS After cognitive assessment using the Morris water maze, rats were given an intra-hippocampal NGF injection. Basal forebrain immunohistochemical analysis, confocal microscopy, and inhibitor studies were performed. RESULTS An increase in immunoreactivity for the NGF receptor TrkA was found in cell bodies of BFCNs 15 min and 1 h post-NGF injection. Immunohistochemistry studies with phospho-ERK and phospho-AKT antibodies showed that this rapid signaling occurred through MAP kinase, but not PI-3 kinase pathways. MAPK inhibitor studies attenuated the NGF-induced effects. Both TrkA and phospho-ERK (extracellular signal-regulated kinase) immunoreactivities were diminished in aged rats and phospho-ERK immunoreactivity-correlated with aged rat performance in the Morris water maze. CONCLUSIONS Rapid NGF signaling likely occurs in the rat CNS through the MAPK signaling pathway. This rapid signaling pathway is diminished in aged rats compared to young ones and may contribute to memory deficits observed in aged rats. As cholinergic degeneration coupled with altered levels of NGF and TrkA receptors are also seen in human aging and AD, ERK-related dysfunction may be relevant in human conditions as well.
Collapse
Affiliation(s)
- Brice J Williams
- Department of Neurosciences, Center on Aging, Charleston, SC 29425, USA
| | | | | |
Collapse
|
6
|
Williams BJ, Eriksdotter-Jonhagen M, Granholm AC. Nerve growth factor in treatment and pathogenesis of Alzheimer's disease. Prog Neurobiol 2006; 80:114-28. [PMID: 17084014 DOI: 10.1016/j.pneurobio.2006.09.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
The etiology of Alzheimer's disease (AD) is still unknown. In addition, this terrible neurodegenerative disease will increase exponentially over the next two decades due to longer lifespan and an aging "baby-boomer" generation. All treatments currently approved for AD have moderate efficacy in slowing the rate of cognitive decline in patients, and no efficacy in halting progression of the disease. Hence, there is an urgent need for new drug targets and delivery methods to slow or reverse the progression of AD. One molecule that has received much attention in its potential therapeutic role in AD is nerve growth factor (NGF). This review will demonstrate data from humans and animals which promote NGF as a potential therapeutic target by (1) outlining the hypothesis behind using NGF for the treatment of AD, (2) reviewing both the normal and AD altered signaling pathways and effects of NGF in the central nervous system (CNS), and (3) examining the results of NGF treatment obtained from animal models of AD and AD patients.
Collapse
Affiliation(s)
- Brice J Williams
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, 173 Ashley Ave BSB 403, Charleston, SC 29425, United States
| | | | | |
Collapse
|
7
|
Sonoda KH, Sasa Y, Qiao H, Tsutsumi C, Hisatomi T, Komiyama S, Kubota T, Sakamoto T, Kawano YI, Ishibashi T. Immunoregulatory role of ocular macrophages: the macrophages produce RANTES to suppress experimental autoimmune uveitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2652-9. [PMID: 12928419 DOI: 10.4049/jimmunol.171.5.2652] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Murine experimental autoimmune uveitis (EAU) is a model of human uveitis. Ocular-infiltrating macrophages play a crucial role in the generation of tissue damage in EAU. In fact, several chemokines are actually produced in the inflamed eye. The aim of this study was to elucidate the role of ocular macrophage-derived chemokines in EAU. C57BL/6 mice were immunized with human interphotoreceptor retinoid binding protein peptide 1-20, and the EAU severity was scored at multiple time points based on microscopic fundus observations (retinal vascular dilatation and exudates) and histological examinations. The peak inflammatory response was observed 1 wk (day 16) after the beginning of macrophage infiltration to the eye (day 9). Ocular-infiltrating cells were enriched or depleted of macrophages by magnetic beads and analyzed by real-time RT-PCR for chemokine mRNA production. We found that only the macrophage-enriched cells from the eye produced RANTES, and thus proposed that macrophage-derived RANTES facilitated the ocular inflammations. In contrast to our postulate, neutralization of RANTES by specific Ab in vivo on days 9 and 13 exacerbated EAU. We also found that the ratio of ocular CD4/CD8 T cells was markedly increased after treatment. As a result, RANTES neutralization might exacerbate EAU by modulating the type of T cell subsets recruited to the eye. In conclusion, our data provide insight into the immunoregulatory role of macrophages and RANTES in the pathogenesis of ocular inflammation. Not all macrophage-derived chemokines cause local inflammation, since RANTES produced by ocular macrophages appears to suppress EAU.
Collapse
Affiliation(s)
- Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Vyas SP, Sihorkar V. Endogenous carriers and ligands in non-immunogenic site-specific drug delivery. Adv Drug Deliv Rev 2000; 43:101-64. [PMID: 10967224 DOI: 10.1016/s0169-409x(00)00067-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Targeted drug delivery has gained recognition in modern therapeutics and attempts are being made to explore the potentials and possibilities of cell biology related bioevents in the development of specific, programmed and target oriented systems. The components which have been recognized to be tools include receptors and ligands, where the receptors act as molecular targets or portals, and ligands, with receptor specificity and selectivity, are trafficked en route to the target site. Although ligands of exogenous or synthetic origin contribute to the selectivity component of carrier constructs, they may impose immunological manifestations of different magnitudes. The latter may entail a continual quest for bio-compatible, non-immunogenic and target orientated delivery. Endogenous serum, cellular and extracellular bio-ligands interact with the colloidal carrier constructs and influence their bio-fate. However, these endogenous bio-ligands can themselves serve as targeting modules either in their native form or engineered as carrier cargo. Bio-regulatory, nutrient and immune ligands are sensitive, specific and effective site directing handles which add to targeted drug delivery. The present review provides an exhaustive account of the identified bio-ligands, which are not only non-immunogenic in nature but also site-specific. The cell-related bioevents which are instrumental in negotiating the uptake of bio-ligands are discussed. Further, a brief account of ligand-receptor interactions and the set of biological events which ensures ligand-driven trafficking of the ligand-receptor complex to the cellular interior is also presented. Since ligand-receptor interaction is a critical pre-requisite for negotiating cellular uptake of endogenous ligands and anchored carrier cargo, an attempt has been made to identify differential expression of receptors and bio-ligands under normal and etiological conditions. Studies which judiciously utilized bio-ligands or their analogs in negotiating site-specific drug delivery have been reviewed and presented. Targeted delivery of bioactives using endogenous bio-ligands offers enormous options and opportunities through carrier construct engineering and could become a future reality in clinical practice.
Collapse
Affiliation(s)
- S P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H.S. Gour Vishwavidyalaya, M.P. 470003, Sagar, India.
| | | |
Collapse
|
9
|
Abstract
A dysfunctional central nervous system (CNS) resulting from neurological disorders and diseases impacts all of humanity. The outcome presents a staggering health care issue with a tremendous potential for developing interventive therapies. The delivery of therapeutic molecules to the CNS has been hampered by the presence of the blood-brain barrier (BBB). To circumvent this barrier, putative therapeutic molecules have been delivered to the CNS by such methods as pumps/osmotic pumps, osmotic opening of the BBB, sustained polymer release systems and cell delivery via site-specific transplantation of cells. This review presents an overview of some of the CNS delivery technologies with special emphasis on transplantation of cells with and without the use of polymer encapsulation technology.
Collapse
Affiliation(s)
- M S Shoichet
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 200 College Street, Toronto, M55 3E5, Ontario, Canada.
| | | |
Collapse
|
10
|
|
11
|
Albeck DS, Bäckman C, Veng L, Friden P, Rose GM, Granholm A. Acute application of NGF increases the firing rate of aged rat basal forebrain neurons. Eur J Neurosci 1999; 11:2291-304. [PMID: 10383618 DOI: 10.1046/j.1460-9568.1999.00644.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nerve growth factor (NGF) has been widely used in animal models to ameliorate age-related neurodegeneration, but it cannot cross the blood-brain barrier (BBB). NGF conjugated to an antibody against the transferrin receptor (OX-26) crosses the BBB and affects the biochemistry and morphology of NGF-deprived basal forebrain neurons. The rapid actions of NGF, including electrophysiological effects on these neurons, are not well understood. In the present study, two model systems in which basal forebrain neurons either respond dysfunctionally to NGF (aged rats) or do not have access to target-derived NGF (intraocular transplants of forebrain neurons) were tested. One group of transplanted and one group of aged animals received unconjugated OX-26 and NGF comixture as a control, while other groups received replacement NGF in the form of OX-26-NGF conjugate during the 3 months preceding the electrophysiological recording session. Neurons from animals in both the transplanted and aged control groups showed a significant increase in firing rate in response to acute NGF application, while none of the conjugate-treated groups or young intact rats showed any response. After the recordings, forebrain transplants and aged brains were immunocytochemically stained for the low-affinity NGF receptor. All conjugate treatment groups showed significantly greater staining intensity compared to controls. These data from both transplants and aged rats in situ indicate that NGF-deprived basal forebrain neurons respond to acute NGF with an increased firing rate. This novel finding may have importance even for long-term biological effects of this trophic factor in the basal forebrain.
Collapse
Affiliation(s)
- D S Albeck
- Department of Basic Science, University of Colorado Health Sciences Center, Denver, 80262, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Prokai L. Peptide drug delivery into the central nervous system. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1999; 51:95-131. [PMID: 9949860 DOI: 10.1007/978-3-0348-8845-5_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The microvasculature of the central nervous system (CNS) is characterized by tight junctions between the endothelial cells and, thus, behaves as a continuous lipid bilayer that prevents the passage of polar and lipid-insoluble substances such as peptides. Highly active enzymes expressed in the morphological components of the microcirculation also represent a metabolic component that contributes to the homeostatic balance of the CNS. Peptides generally cannot enter the brain and spinal cord from the circulating blood because they are highly polar and lipid insoluble, metabolically unstable, and active transport systems only exist for very few of them in this membraneous barrier separating the systemic circulation from the interstitial fluid of the CNS. This blood-brain barrier is, therefore, the major obstacle to peptide-based drugs that are potentially useful for combating diseases affecting the brain and spinal cord. This review discusses and critically evaluates invasive, chemical-enzymatic (prodrug and chemical delivery/targeting system) and biological carrier-based approaches to overcome the blood-brain barrier for these highly active and versatile molecules that are very attractive as a future generation of neuropharmaceuticals.
Collapse
Affiliation(s)
- L Prokai
- Center for Drug Discovery, College of Pharmacy, University of Florida, J. Hillis Miller Health Center, Gainesville 32610-0497, USA
| |
Collapse
|
13
|
Granholm AC, Sanders LA, Ickes B, Albeck D, Hoffer BJ, Young DA, Kaplan PL. Effects of osteogenic protein-1 (OP-1) treatment on fetal spinal cord transplants to the anterior chamber of the eye. Cell Transplant 1999; 8:75-85. [PMID: 10338277 DOI: 10.1177/096368979900800116] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injury represents a serious medical problem, and leads to chronic conditions that cannot be reversed at present. It has been suggested that trophic factor treatment may reduce the extent of damage and restore damaged neurons following the injury. We have tested the effects of osteogenic protein-1 (OP-1, also known as BMP-7), a member of the transforming growth factor-beta superfamily of growth factors, on developing spinal cord motor neurons in an intraocular transplantation model. Embryonic day 13 or 18 spinal cord tissue was dissected, incubated with OP-1 or vehicle, and injected into the anterior chamber of the eye of adult rats. Injections of additional doses of OP-1 were performed weekly, and the overall growth of the grafted tissue was assessed noninvasively. Four to 6 weeks postgrafting, animals were sacrificed and the tissue was processed for immunohistochemistry using antibodies directed against choline acetyltransferase, neurofilament, and the dendritic marker MAP-II. We found that OP-1 treatment stimulated overall growth of spinal cord tissue when dissected from embryonic day 18, but not from embryonic day 13. OP-1 treatment increased cell size and extent of cholinergic markers in motor neurons from both embryonic stages. The neurons also appeared to have a more extensive dendritic network in OP-1-treated grafts compared to controls. These findings indicate that OP-1 treatment may reduce the extent of axotomy-induced cell death of motor neurons, at least in the developing spinal cord.
Collapse
Affiliation(s)
- A C Granholm
- Department of Basic Science, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Zochodne DW, Said G. Recombinant human nerve growth factor and diabetic polyneuropathy. Neurology 1998; 51:662-3. [PMID: 9748004 DOI: 10.1212/wnl.51.3.662] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Granholm AC, Albeck D, Bäckman C, Curtis M, Ebendal T, Friden P, Henry M, Hoffer B, Kordower J, Rose GM, Söderström S, Bartus RT. A non-invasive system for delivering neural growth factors across the blood-brain barrier: a review. Rev Neurosci 1998; 9:31-55. [PMID: 9683326 DOI: 10.1515/revneuro.1998.9.1.31] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intraventricular administration of nerve growth factor (NGF) in rats has been shown to reduce age-related atrophy of central cholinergic neurons and the accompanying memory impairment, as well as protect these neurons against a variety of perturbations. Since neurotrophins do not pass the blood-brain barrier (BBB) in significant amounts, a non-invasive delivery system for this group of therapeutic molecules needs to be developed. We have utilized a carrier system, consisting of NGF covalently linked to an anti-transferrin receptor antibody (OX-26), to transport biologically active NGF across the BBB. The biological activity of this carrier system was tested using in vitro bioassays and intraocular transplants; we were able to demonstrate that cholinergic markers in both developing and aged intraocular septal grafts were enhanced by intravenous delivery of the OX-26-NGF conjugate. In subsequent experiments, aged (24 months old) Fischer 344 rats received intravenous injections of the OX-26-NGF conjugate for 6 weeks, resulting in a significant improvement in spatial learning in previously impaired rats, but disrupting the learning ability of previously unimpaired rats. Neuroanatomical analyses showed that OX-26-NGF conjugate treatment resulted in a significant increase in cholinergic cell size as well as an upregulation of both low and high affinity NGF receptors in the medial septal region of rats initially impaired in spatial learning. Finally, OX-26-NGF was able to protect striatal cholinergic neurons against excitotoxicity and basal forebrain cholinergic neurons from degeneration associated with chemically-induced loss of target neurons. These results indicate the potential utility of the transferrin receptor antibody delivery system for treatment of neurodegenerative disorders with neurotrophic substances.
Collapse
Affiliation(s)
- A C Granholm
- Department of Basic Science, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dong-Ruyl L, Sawada M, Nakano K. Tryptophan and its metabolite, kynurenine, stimulate expression of nerve growth factor in cultured mouse astroglial cells. Neurosci Lett 1998; 244:17-20. [PMID: 9578134 DOI: 10.1016/s0304-3940(98)00120-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Effects of L-tryptophan and its metabolites were evaluated on expression of nerve growth factor (NGF) in primary culture of mouse astroglial cells. L-Tryptophan produced concentration-dependent increases in accumulation of NGF transcripts in the cells. L-Kynurenine, a metabolite of the kynurenine pathway, markedly increased the levels of mRNAs for NGF, the maximal increases (4-5 fold) occurred at its dose of 1 microM. Kynurenine-induced increase in mRNA levels for NGF occurred as early as 1 h after the addition of the compound, peaked at 4 h and declined thereafter. In contrast to kynurenine, other tryptophan metabolites such as quinolinic acid, kynurenic acid and serotonin had little effect on the levels of NGF mRNA.
Collapse
Affiliation(s)
- L Dong-Ruyl
- Nagoya University Bioscience Center, Chikusa, Japan
| | | | | |
Collapse
|
18
|
Abstract
The implantation of genetically engineered nonneuronal cells can provide an effective method for achieving localized delivery of discrete molecules to the CNS or for providing substrates for regrowth of neural structures. Most primary nonneuronal cells have the advantage of being easily obtainable from the prospective host for ex vivo retrovirus-mediated genetic manipulation (most will be mitotic in culture) and reimplantation as an autologous graft (circumventing the problem of immune rejection). As primary cells, they are unlikely to be tumorigenic. The most vexing problem for such systems remains the apparent loss of transgene expression from viral promoters after prolonged periods of engraftment. Much effort is currently being directed at optimizing sustained transgene expression by varying the promoters, by varying the cell types to be engineered, or by regulating expression by enhancing promoter function or substrate availability. While nonneuronal cells are excellent vehicles for achieving passive delivery of substances to the CNS, they lack the ability to incorporate into the host cytoarchitecture in a functional manner (e.g., make synaptic contacts). For this reason, not only may certain essential circuits not be re-formed, but the regulated release of certain substances through feedback loops may be missing. While apparently unimportant for some substances (e.g., ACh), for others (e.g., NGF), their unregulated, inappropriate, excessive, or ectopic release may actually be inimical to the host. Furthermore, the loss of foreign gene expression (the bane of gene therapy) may leave engineered nonneural cells incapacitated, whereas donor tissue originating from brain may intrinsically produce various CNS factors allowing correction to proceed despite inactivation of the introduced gene. In fact, CNS-derived tissue may provide as-yet-unrecognized endogenous neuralspecific substances which are equally as beneficial to the host as the gene in question. Thus, future developments in gene delivery to the brain for some conditions may emphasize using neurons or neural progenitors for ex vivo genetic manipulation (Fisher, 1997) and refining techniques for the direct injection of therapeutic genes into neurons in vivo (see Snyder and Fisher, 1996). For a wide variety of conditions, however, using nonneuronal cellular vehicles or even nonbiologic synthetic vehicles may be efficient, effective, and safe strategies for the passive delivery of therapeutic molecules to discrete regions of the CNS. In fact, this approach may come closer than any other to immediate human applications.
Collapse
Affiliation(s)
- E Y Snyder
- Department of Neurology, Harvard Medical School, Children's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
19
|
Friden PM. Utilization of an endogenous cellular transport system for the delivery of therapeutics across the blood–brain barrier. J Control Release 1997. [DOI: 10.1016/s0168-3659(96)01580-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Systemic administration of a nerve growth factor conjugate reverses age-related cognitive dysfunction and prevents cholinergic neuron atrophy. J Neurosci 1996. [PMID: 8757256 DOI: 10.1523/jneurosci.16-17-05437.1996] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intraventricular administration of nerve growth factor (NGF) in rats has been shown to reduce age-related atrophy of central cholinergic neurons and the accompanying memory impairment. Intraventricular administration of NGF is necessary because NGF will not cross the blood-brain barrier (BBB). Here we have used a novel carrier system, consisting of NGF covalently linked to an anti-transferrin receptor antibody (OX-26), to transport biologically active NGF across the BBB. In our experiment, aged (24 months old) Fischer 344 rats received intravenous injections of the OX-26-NGF conjugate or a control solution (a mixture of unconjugated OX-26 and NGF) twice weekly for 6 weeks. The OX-26-NGF injections resulted in a significant improvement in spatial learning in previously impaired rats but disrupted the learning ability of previously unimpaired rats. Neuroanatomical analyses showed that OX-26-NGF conjugate treatment resulted in a significant increase in cholinergic cell size in the medial septal region of rats initially impaired in spatial learning. These results indicate the potential use of the transferrin receptor antibody delivery system for treatment of CNS disorders with neurotrophic proteins.
Collapse
|
21
|
Charles V, Mufson EJ, Friden PM, Bartus RT, Kordower JH. Atrophy of cholinergic basal forebrain neurons following excitotoxic cortical lesions is reversed by intravenous administration of an NGF conjugate. Brain Res 1996; 728:193-203. [PMID: 8864482 DOI: 10.1016/0006-8993(96)00398-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nerve growth factor (NGF) has been shown to sustain the viability and modulate the function of cholinergic basal forebrain neurons. However, under normal circumstances, NGF does not cross the blood-brain barrier (BBB) following systemic administration making this neurotrophin unavailable to NGF-responsive neurons within the central nervous system (CNS). Recently, a non-invasive method for delivering NGF to the brain was established in which NGF was conjugated to an antibody directed against the transferrin receptor (OX-26) [15, 16]. This conjugation facilitates the transfer of NGF from the systemic circulation to the CNS via the transferrin transport system. In the present study, we tested whether intravenous administration of an OX-26-NGF conjugate could reverse the atrophy of cholinergic basal forebrain neurons following removal of the target sites. Lesions of the left cerebral cortex were created by epidural application of N-methyl-D-aspartic acid (NMDA). Seventy-five days later, cholinergic nucleus basalis neurons were atrophic ipsilateral to the lesion relative to the contralateral side in control rats receiving intravenous injections of vehicle or a non-conjugated mixture of OX-26 and NGF. In contrast, intravenous injections of the OX-26-NGF conjugate restored the size of nucleus basalis perikarya to within normal limits relative to the unlesioned contralateral side. Immunohistochemical studies using rat serum albumen antisera indicated that the BBB was closed at the time of treatment indicating that this trophic effect did not result from NGF crossing through a compromised BBB at the site of the lesion. These data demonstrate that systemic administration of a neurotrophic factor-antibody conjugate, intended to circumvent the BBB, can provide trophic influences to degenerating cholinergic basal forebrain neurons. These data support the emerging concept that the conjugate method can facilitate the transfer of impermeable therapeutic compounds across the BBB.
Collapse
Affiliation(s)
- V Charles
- Research Center for Brain Repair, Rush Presbyterian Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
22
|
Curtis M, Bergman H, Price ML, Srivastava N, Granholm AC. Hypothalamic tissue stimulates hippocampal pyramidal neuron survival during development: evidence from intraocular double transplants. Hippocampus 1995; 5:584-94. [PMID: 8646284 DOI: 10.1002/hipo.450050609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present study was undertaken to evaluate innervation and possible growth promotion by posterior hypothalamic tissue on different areas that are, or are not, interactive with this brain region during development. Posterolateral hypothalamus was dissected from embryonic day 17 rat fetuses, and inserted into the anterior chamber of the eye of adult rat hosts. Two weeks postgrafting, a second transplant consisting of either fetal hippocampal, cerebellar, or lung tissue was placed adjacent to the first graft. Growth of the intraocular double transplants was monitored weekly by measurements through the cornea. Fetal hippocampal tissue grew significantly larger when placed together with a hypothalamic graft, as compared to single hippocampal transplants. Cerebellar or lung tissue growth was not stimulated by a hypothalamic cograft. Pyramidal neuron cell counts demonstrated a significantly higher final number of these neurons in growth-stimulated hippocampal grafts, as compared to non-stimulated single hippocampal grafts. Immunohistochemistry with antibodies directed against histamine or histidine decarboxylase revealed that hippocampal transplants received the most dense histaminergic innervation. Cerebellar transplants contained occasional histaminergic neurites, and lung tissue never exhibited any histaminergic innervation from the adjacent hypothalamic graft. Taken together, these results demonstrate a growth-promoting effect of posterior hypothalamic tissue on developing hippocampal tissue, as well as target specificity of histaminergic innervation patterns.
Collapse
Affiliation(s)
- M Curtis
- Department of Basic Science, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|