1
|
Taylor RM, Hamer MJ, Rosamond J, Bray CM. Molecular cloning and functional analysis of the Arabidopsis thaliana DNA ligase I homologue. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:75-81. [PMID: 9681027 DOI: 10.1046/j.1365-313x.1998.00094.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A cDNA encoding the DNA ligase I homologue has been isolated from Arabidopsis thaliana using a degenerate PCR approach. The ORF of this cDNA encodes an amino acid sequence of 790 residues, representing a protein with a theoretical molecular mass of 87.8 kDa and an isoelectric point (pi) of 8.20. Alignment of the A. thaliana DNA ligase protein sequence with the sequence of DNA ligases from human (Homo sapiens), murine (Mus musculus), clawed toad (Xenopus laevis) and the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae showed good sequence homology (42-45% identity, 61-66% similarity), particularly around the active site. Sequence data indicate that the Arabidopsis DNA ligase is the homologue of the animal DNA ligase I species. Functional analysis of the cDNA clone demonstrated its ability to complement the conditional lethal phenotype of an S. cerevisiae cdc9 mutant defective in DNA ligase activity, confirming that the cloned sequence encodes an active DNA ligase. The level of the DNA ligase transcript was not increased in A. thaliana seedlings in response to DNA damage induced by a period of enhanced UV-B irradiation. However, the cellular level of the DNA ligase mRNA transcript does correlate with the replicative state of plant cells.
Collapse
Affiliation(s)
- R M Taylor
- School of Biological Sciences, University of Manchester, UK
| | | | | | | |
Collapse
|
2
|
Cardoso MC, Joseph C, Rahn HP, Reusch R, Nadal-Ginard B, Leonhardt H. Mapping and use of a sequence that targets DNA ligase I to sites of DNA replication in vivo. J Cell Biol 1997; 139:579-87. [PMID: 9348276 PMCID: PMC2141708 DOI: 10.1083/jcb.139.3.579] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mammalian nucleus is highly organized, and nuclear processes such as DNA replication occur in discrete nuclear foci, a phenomenon often termed "functional organization" of the nucleus. We describe the identification and characterization of a bipartite targeting sequence (amino acids 1-28 and 111-179) that is necessary and sufficient to direct DNA ligase I to nuclear replication foci during S phase. This targeting sequence is located within the regulatory, NH2-terminal domain of the protein and is dispensable for enzyme activity in vitro but is required in vivo. The targeting domain functions position independently at either the NH2 or the COOH termini of heterologous proteins. We used the targeting sequence of DNA ligase I to visualize replication foci in vivo. Chimeric proteins with DNA ligase I and the green fluorescent protein localized at replication foci in living mammalian cells and thus show that these subnuclear functional domains, previously observed in fixed cells, exist in vivo. The characteristic redistribution of these chimeric proteins makes them unique markers for cell cycle studies to directly monitor entry into S phase in living cells.
Collapse
Affiliation(s)
- M C Cardoso
- Department of Nephrology, Hypertension, and Genetics, Franz Volhard Clinic, Max Delbrück Center for Molecular Medicine, Humboldt University, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
3
|
Abstract
DNA joining enzymes play an essential role in the maintenance of genomic integrity and stability. Three mammalian genes encoding DNA ligases, LIG1, LIG3 and LIG4, have been identified. Since DNA ligase II appears to be derived from DNA ligase III by a proteolytic mechanism, the three LIG genes can account for the four biochemically distinct DNA ligase activities, DNA ligases I, II, III and IV, that have been purified from mammalian cell extracts. It is probable that the specific cellular roles of these enzymes are determined by the proteins with which they interact. The specific involvement of DNA ligase I in DNA replication is mediated by the non-catalytic amino-terminal domain of this enzyme. Furthermore, DNA ligase I participates in DNA base excision repair as a component of a multiprotein complex. Two forms of DNA ligase III are produced by an alternative splicing mechanism. The ubiqitously expressed DNA ligase III-alpha forms a complex with the DNA single-strand break repair protein XRCC1. In contrast, DNA ligase III-beta, which does not interact with XRCC1, is only expressed in male meiotic germ cells, suggesting a role for this isoform in meiotic recombination. At present, there is very little information about the cellular functions of DNA ligase IV.
Collapse
Affiliation(s)
- A E Tomkinson
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio 78245, USA.
| | | |
Collapse
|
4
|
Ramos W, Tappe N, Talamantez J, Friedberg EC, Tomkinson AE. Two distinct DNA ligase activities in mitotic extracts of the yeast Saccharomyces cerevisiae. Nucleic Acids Res 1997; 25:1485-92. [PMID: 9092653 PMCID: PMC146610 DOI: 10.1093/nar/25.8.1485] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Four biochemically distinct DNA ligases have been identified in mammalian cells. One of these enzymes, DNA ligase I, is functionally homologous to the DNA ligase encoded by the Saccharomyces cerevisiae CDC9 gene. Cdc9 DNA ligase has been assumed to be the only species of DNA ligase in this organism. In the present study we have identified a second DNA ligase activity in mitotic extracts of S. cerevisiae with chromatographic properties different from Cdc9 DNA ligase, which is the major DNA joining activity. This minor DNA joining activity, which contributes 5-10% of the total cellular DNA joining activity, forms a 90 kDa enzyme-adenylate intermediate which, unlike the Cdc9 enzyme-adenylate intermediate, reacts with an oligo (pdT)/poly (rA) substrate. The levels of the minor DNA joining activity are not altered by mutation or by overexpression of the CDC9 gene. Furthermore, the 90 kDa polypeptide is not recognized by a Cdc9 antiserum. Since this minor species does not appear to be a modified form of Cdc9 DNA ligase, it has been designated as S. cerevisiae DNA ligase II. Based on the similarities in polynucleotide substrate specificity, this enzyme may be the functional homolog of mammalian DNA ligase III or IV.
Collapse
Affiliation(s)
- W Ramos
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | | | | | |
Collapse
|
5
|
Affiliation(s)
- R L Dusenbery
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
6
|
Doherty AJ, Ashford SR, Wigley DB. Characterization of proteolytic fragments of bacteriophage T7 DNA ligase. Nucleic Acids Res 1996; 24:2281-7. [PMID: 8710497 PMCID: PMC145956 DOI: 10.1093/nar/24.12.2281] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Treatment of T7 DNA ligase with a range of proteases generates two major fragments which are resistant to further digestion. These fragments, of molecular weight 16 and 26 kDa, are derived from the N- and C-termini of the protein, respectively. The presence of ATP or a non-hydrolysable analogue, ADPNP, during limited proteolysis greatly reduces the level of digestion. The N-terminal 16 kDa region of the intact T7 ligase is labelled selectively in the presence of [alpha-32P]ATP, confirming that it contains the active site lysine residue. In common with the intact enzyme, the C-terminal portion of the protein retains the ability to band shift DNA fragments of various lengths, implicating it in DNA binding. It can also inhibit ligation by the intact protein, apparently by competing for target sites on DNA. We conclude that the N-terminal region, which contains the putative active site lysine, plays a role in the transfer of AMP from the enzyme-adenylate complex to the 5'phosphate at the nick site, while the C-terminal 26 kDa fragment appears to position the enzyme at the target site on DNA.
Collapse
Affiliation(s)
- A J Doherty
- Laboratory of Molecular Biophysics, University of Oxford, UK
| | | | | |
Collapse
|
7
|
Matsuda S, Sakaguchi K, Tsukada K, Teraoka H. Characterization of DNA ligase from the fungus Coprinus cinereus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:691-7. [PMID: 8647114 DOI: 10.1111/j.1432-1033.1996.0691p.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DNA ligase was highly purified from the fungus Coprinus cinereus at the miotic recombination stage, pachytene. The pachytene DNA ligase showed three polypeptides with molecular masses of 88, 84 and 80 kDa, as estimated by the [32P]AMP-labeling assay. These three polypeptides were susceptible to reaction with an mAb against a 16-amino-acid sequence in human DNA ligase I, which is conserved in C-terminal regions of mammalian, vaccinia virus and yeast DNA ligases. Since rapidly purified preparations from fresh pachytene cells exhibited a single polypeptide of DNA ligase with a molecular mass of 88 kDa, the smaller polypeptides seemed to be limited-degradation products of the 88-kDa polypeptide during the isolation and purification procedures. K(m) values for ATP and (dT)20 hybridized with (dA)n were 1.5 microM and 90 nM, respectively. This enzyme was capable of joining (dT)20.(rA)n and (rA)12-18 (dT)n as well as (dT)20.(dA)n and able to ligate blunt-ended DNA in the presence of poly(ethylene glycol) 6000. DNA ligases were also partially purified from zygotene cells at the meiotic pairing stage and mitotic mycelium cells. In their molecular mass, immuno-reactivity, K(m) value and substrate specificity, they were indistinguishable from pachytene DNA ligase. These results suggest that the fungus C. cinereus at the pachytene stage contains DNA ligase with a molecular mass of 88 kDa as a main or a single species, which is quite similar to DNA ligases from the zygotene and mycelium cells in molecular and catalytic properties.
Collapse
Affiliation(s)
- S Matsuda
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Japan
| | | | | | | |
Collapse
|
8
|
Chen J, Tomkinson AE, Ramos W, Mackey ZB, Danehower S, Walter CA, Schultz RA, Besterman JM, Husain I. Mammalian DNA ligase III: molecular cloning, chromosomal localization, and expression in spermatocytes undergoing meiotic recombination. Mol Cell Biol 1995; 15:5412-22. [PMID: 7565692 PMCID: PMC230791 DOI: 10.1128/mcb.15.10.5412] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Three biochemically distinct DNA ligase activities have been identified in mammalian cell extracts. We have recently purified DNA ligase II and DNA ligase III to near homogeneity from bovine liver and testis tissue, respectively. Amino acid sequencing studies indicated that these enzymes are encoded by the same gene. In the present study, human and murine cDNA clones encoding DNA ligase III were isolated with probes based on the peptide sequences. The human DNA ligase III cDNA encodes a polypeptide of 862 amino acids, whose sequence is more closely related to those of the DNA ligases encoded by poxviruses than to replicative DNA ligases, such as human DNA ligase I. In vitro transcription and translation of the cDNA produced a catalytically active DNA ligase similar in size and substrate specificity to the purified bovine enzyme. The DNA ligase III gene was localized to human chromosome 17, which eliminated this gene as a candidate for the cancer-prone disease Bloom syndrome that is associated with DNA joining abnormalities. DNA ligase III is ubiquitously expressed at low levels, except in the testes, in which the steady-state levels of DNA ligase III mRNA are at least 10-fold higher than those detected in other tissues and cells. Since DNA ligase I mRNA is also present at high levels in the testes, we examined the expression of the DNA ligase genes during spermatogenesis. DNA ligase I mRNA expression correlated with the contribution of proliferating spermatogonia cells to the testes, in agreement with the previously defined role of this enzyme in DNA replication. In contrast, elevated levels of DNA ligase III mRNA were observed in primary spermatocytes undergoing recombination prior to the first meiotic division. Therefore, we suggest that DNA ligase III seals DNA strand breaks that arise during the process of meiotic recombination in germ cells and as a consequence of DNA damage in somatic cells.
Collapse
Affiliation(s)
- J Chen
- Department of Cell Biology, Glaxo Research Institute, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Husain I, Tomkinson AE, Burkhart WA, Moyer MB, Ramos W, Mackey ZB, Besterman JM, Chen J. Purification and characterization of DNA ligase III from bovine testes. Homology with DNA ligase II and vaccinia DNA ligase. J Biol Chem 1995; 270:9683-90. [PMID: 7721901 DOI: 10.1074/jbc.270.16.9683] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mammalian cell nuclei contain three biochemically distinct DNA ligases. In the present study we have found high levels of DNA ligase I and DNA ligase III activity in bovine testes and have purified DNA ligase III to near homogeneity. The high level of DNA ligase III suggests a role for this enzyme in meiotic recombination. In assays measuring the fidelity of DNA joining, we detected no significant differences between DNA ligases II and III, whereas DNA ligase I was clearly a more faithful enzyme and was particularly sensitive to 3' mismatches. Amino acid sequences of peptides derived from DNA ligase III demonstrated that this enzyme, like DNA ligase II, is highly homologous with vaccinia DNA ligase. The absence of unambiguous differences between homologous peptides from DNA ligases II and III (10 pairs of peptides, 136 identical amino acids) indicates that these enzymes are either derived from a common precursor polypeptide or are encoded from the same gene by alternative splicing. Based on similarities in amino acid sequence and biochemical properties, we suggest that DNA ligases II and III, Drosophila DNA ligase II, and the DNA ligases encoded by the pox viruses constitute a distinct family of DNA ligases that perform specific roles in DNA repair and genetic recombination.
Collapse
Affiliation(s)
- I Husain
- Department of Cell Biology, Glaxo Research Institute, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Teraoka H, Minami H, Iijima S, Tsukada K, Koiwai O, Date T. Expression of active human DNA ligase I in Escherichia coli cells that harbor a full-length DNA ligase I cDNA construct. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80505-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Brown GW, Ray DS. Purification and characterization of DNA ligase I from the trypanosomatid Crithidia fasciculata. Nucleic Acids Res 1992; 20:3905-10. [PMID: 1508676 PMCID: PMC334065 DOI: 10.1093/nar/20.15.3905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A DNA ligase has been purified approximately 5000-fold, to near homogeneity, from the trypanosomatid Crithidia fasciculata. The purified enzyme contains polypeptides with molecular masses of 84 and 80 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both polypeptides formed enzyme-adenylate complexes in the absence of DNA, contained an epitope that is highly conserved between human and bovine DNA ligase I and yeast and vaccinia virus DNA ligases, and were identified in fresh lysates of C. fasciculata by antibodies raised against the purified protein. Hydrodynamic measurements indicate that the enzyme is an asymmetric protein of approximately 80 kDa. The purified DNA ligase can join oligo(dT) annealed to poly(dA), but not oligo(dT) annealed to poly(rA), and can ligate blunt-ended DNA fragments. The enzyme has a low Km for ATP of 0.3 microM. The DNA ligase absolutely requires ATP and Mg2+, and is inhibited by N-ethylmaleimide and by KCI. Substrate specificity, Km for ATP, and the conserved epitope all suggest that the purified enzyme is the trypanosome homologue of DNA ligase I.
Collapse
Affiliation(s)
- G W Brown
- Molecular Biology Institute, University of California, Los Angeles 90024
| | | |
Collapse
|
12
|
Aoufouchi S, Prigent C, Theze N, Philippe M, Thiebaud P. Expression of DNA ligases I and II during oogenesis and early development of Xenopus laevis. Dev Biol 1992; 152:199-202. [PMID: 1628756 DOI: 10.1016/0012-1606(92)90171-c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have analyzed the expression of DNA ligase I protein during oogenesis and early development of Xenopus laevis. The protein is already present in stage I oocytes and then accumulates throughout oogenesis to reach a steady state level by stage VI. It remains at this level at least until tadpole stage. In stage VI oocytes DNA ligase I protein is almost exclusively localized in the germinal vesicle. We have partially purified a DNA ligase II activity from stage VI oocytes, unfertilized eggs, and stage 8 embryos. An 80-kDa polypeptide can be specifically adenylated in all three purified extracts. It is not recognized by antibodies directed against DNA ligase I and is active on oligo(dT)-poly(rA) substrate. It could therefore represent DNA ligase II protein. The presence of both DNA ligases I and II in oocytes and embryos is inconsistent with the DNA ligase model that had been previously proposed for amphibia.
Collapse
Affiliation(s)
- S Aoufouchi
- Laboratoire de Biologie et Génétique du Développement, URA CNRS 256, Université de Rennes I, France
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Abstract
We have purified the major DNA ligase from Xenopus laevis eggs and raised antibodies against it. Estimates from SDS PAGE indicate that this DNA ligase is a 180 kDa protein. This enzyme is similar to the mammalian type I DNA ligase which is presumed to be involved in DNA replication. We have also analysed DNA ligase activity during X. laevis early development. Unfertilized eggs contain the highest level of activity reflecting the requirement for a large amount of DNA replicative enzymes for the period of intense replication following fertilization. In contrast with previous studies on the amphibians axolotl and Pleurodeles, the major DNA ligase activity detected during X. laevis early development is catalysed by a single enzyme: DNA ligase I. And the presence of this DNA ligase I in Xenopus egg before fertilization clearly demonstrates that the exclusion process of two forms of DNA ligase does not occur during X. laevis early development.
Collapse
Affiliation(s)
- S Hardy
- URA CNRS 256, Université de Rennes I, France
| | | | | | | |
Collapse
|
15
|
Takahashi M, Tomizawa K. Purification and characterization of DNA ligase II from Drosophila melanogaster. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:735-40. [PMID: 2120058 DOI: 10.1111/j.1432-1033.1990.tb19284.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Drosophila melanogaster contains DNA ligases I and II. The activity of DNA ligase I is especially high during early embryonic periods, but decreases rapidly afterwards. Although the activity of DNA ligase II is low, it persists throughout all developmental stages. The specific activity of DNA ligase II is high in embryos, but the total activity per body mass was highest in pupae. To characterize the properties of DNA ligase II further and to clarify its differences from DNA ligase I, DNA ligase II was prepared from pupae of D. melanogaster. The enzyme was purified about 3200-fold by ammonium sulfate fractionation (40-70% saturation), phosphocellulose (P11) and Ultrogel column chromatography. Some of the properties have been reported previously. The isoelectric point of DNA ligase II was 6.4 while those of DNA ligase I were 4.9 and 5.8. The optimum pH of DNA ligase II was 7.8-8.1 but 8.0-8.5 for DNA ligase I. The molecular masses of DNA ligase II adducts with AMP were determined as 90 and 70 kDa. These adducts were degraded to 42 and 14.4 kDa by trypsin digestion. For preparation of monoclonal antibodies, a mouse was immunized with the purified enzyme. Two clones, 10-6 and 3-3 IgM, were obtained and purified from mouse ascites. These antibodies showed both binding and neutralizing activities toward DNA ligase II from D. melanogaster, but did not react with DNA ligase I from the same origin. These results showed clearly that DNA ligases I and II have different properties and suggest they have different roles during the developmental stages of D. melanogaster.
Collapse
Affiliation(s)
- M Takahashi
- Mitsubishi Kasei Institute of Life Sciences, Minamiooya, Japan
| | | |
Collapse
|
16
|
Abstract
Recent studies on eukaryotic DNA ligases are briefly reviewed. The two distinguishable enzymes from mammalian cells, DNA ligase I and DNA ligase II, have been purified to homogeneity and characterized biochemically. Two distinct DNA ligases have also been identified in Drosophila melanogaster embryos. The genes encoding DNA ligases from Schizosaccharomyces pombe, Saccharomyces cerevisiae and vaccinia virus have been cloned and sequenced. These 3 proteins exhibit about 30% amino acid sequence identity; the 2 yeast enzymes share 53% amino acid sequence identity or conserved changes. Altered DNA ligase I activity has been found in cell lines from patients with Bloom's syndrome, although a causal link between the enzyme deficiency and the disease has not yet been proven.
Collapse
Affiliation(s)
- D D Lasko
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts., Great Britain
| | | | | |
Collapse
|
17
|
Tomkinson AE, Lasko DD, Daly G, Lindahl T. Mammalian DNA ligases. Catalytic domain and size of DNA ligase I. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38387-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|