1
|
Sakamoto T, Yamaoki Y, Nagata T, Katahira M. Detection of parallel and antiparallel DNA triplex structures in living human cells using in-cell NMR. Chem Commun (Camb) 2021; 57:6364-6367. [PMID: 34137388 DOI: 10.1039/d1cc01761f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We introduced oligodeoxynucleotides (ODNs) that form parallel and antiparallel triplex structures in vitro into living human cells and recorded their in-cell NMR spectra. Observation of landmark signals for triplex structures proved for the first time that parallel and antiparallel triplex structures are formed in living human cells.
Collapse
Affiliation(s)
- Tomoki Sakamoto
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Strmečki S, Trefulka M, Zatloukalová P, Durech M, Vojtesek B, Paleček E. Immunoassays of chemically modified polysaccharides, glycans in glycoproteins and ribose in nucleic acids. Anal Chim Acta 2016; 955:108-115. [PMID: 28088277 DOI: 10.1016/j.aca.2016.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 01/23/2023]
Abstract
Glycosylation of proteins plays an important role in health and diseases. At present new simple and inexpensive methods of glycoprotein analysis are sought. We developed a monoclonal antibody Manost 2.1 in mice after immunization with the adduct of mannan with Os(VI)temed complex (temed is N,N,N',N'-tetramethylethylenediamine). The specificity of this antibody to different biomolecules treated with Os(VI)temed was tested using dot blot immunoassay. Manost 2.1 showed specificity toward Os(VI)temed-modified polysaccharides, glycoproteins and ribonucleotide at the 3'-end in DNA. The antibody recognized neither the unmodified compounds nor the non-glycosylated proteins treated with Os(VI)temed. We also performed western blotting and Coomassie silver blue staining of mixtures of biomacromolecules treated with Os(VI)temed and identified specifically the modified glycoproteins. The immunochemical method using Manost 2.1 was compared with electrochemical analyses based on redox signals of the Os(VI)temed adducts, with similar results in terms of sensitivity. This new antibody-based approach opens the door for rapid and inexpensive analysis of glycans and glycoproteins in various scientific and medical fields, including cancer research and the future application of glycoprotein detection in clinical practice.
Collapse
Affiliation(s)
- Slađana Strmečki
- Institute of Biophysics, Academy of the Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65 Brno, Czechia
| | - Mojmír Trefulka
- Institute of Biophysics, Academy of the Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65 Brno, Czechia
| | - Pavlína Zatloukalová
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Žluty kopec 7, 656 53 Brno, Czechia
| | - Michal Durech
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Žluty kopec 7, 656 53 Brno, Czechia
| | - Borivoj Vojtesek
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Žluty kopec 7, 656 53 Brno, Czechia
| | - Emil Paleček
- Institute of Biophysics, Academy of the Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65 Brno, Czechia; Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Žluty kopec 7, 656 53 Brno, Czechia.
| |
Collapse
|
3
|
Affiliation(s)
- Emil Paleček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612
65 Brno, Czech Republic
| | - Martin Bartošík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612
65 Brno, Czech Republic
| |
Collapse
|
4
|
|
5
|
Son LS, Bacolla A, Wells RD. Sticky DNA: in vivo formation in E. coli and in vitro association of long GAA*TTC tracts to generate two independent supercoiled domains. J Mol Biol 2006; 360:267-84. [PMID: 16764889 DOI: 10.1016/j.jmb.2006.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/04/2006] [Accepted: 05/10/2006] [Indexed: 02/02/2023]
Abstract
The expanded GAA*TTC repeat sequence associated with Friedreich's ataxia (FRDA) adopts non-B DNA structures, (triplexes and sticky DNA). Sticky DNA is formed in plasmids by the association of two long GAA*TTC tracts at lengths that are found in the sequence of the frataxin gene in patients. Most FRDA patients have expanded GAA*TTC repeats (up to 1700 triplets), which inhibit the transcription of the gene, thus diminishing the synthesis of frataxin, a mitochondrial protein involved in iron-sulfur cluster biogenesis. Negative supercoiling and MgCl(2) (or MnCl(2)) are required to stabilize sticky DNA (a dumbbell-shaped structure) in plasmids with a pair of repeat tracts where n> or =60 in the direct repeat orientation in vitro. Since the triplet repeat sequences (TRS) were symmetrically positioned in the plasmids and because a number of unique restriction sites were present in the vector, studies were conducted to evaluate the influence of selectively linearizing one or the other supercoiled domains created by the DNA*DNA associated region, i.e. the stable complex at the pair of TRS's. The two domains behave independently, thus confirming the association of the two tracts and the dumbbell-shaped plasmid in our model for sticky DNA. Linking number investigations were performed on a family of plasmids harboring different lengths (30, 60, or 176 repeats), orientations and number of tracts (one or two) of a GAA*TTC repeat in Escherichia coli to evaluate the in vivo role, if any, of sticky DNA. Unexpectedly, this non-B DNA conformation elicited the formation of a TRS-length dependent change in the global topology of the plasmids, indicative of an apparent compression of the primary helices. Thus, linking number determinations confirm that sticky DNA has an important consequence in vivo.
Collapse
Affiliation(s)
- Leslie S Son
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA
| | | | | |
Collapse
|
6
|
Amiri H, Nekhotiaeva N, Sun JS, Nguyen CH, Grierson DS, Good L, Zain R. Benzoquinoquinoxaline derivatives stabilize and cleave H-DNA and repress transcription downstream of a triplex-forming sequence. J Mol Biol 2005; 351:776-83. [PMID: 16045927 DOI: 10.1016/j.jmb.2005.03.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 03/15/2005] [Accepted: 03/16/2005] [Indexed: 11/29/2022]
Abstract
Oligopyrimidine*oligopurine sequences with potential to form intramolecular triple helix structures (H-DNA) have been found mainly in high eukaryote genomes. However, the natural occurrence and function of H-DNA remains elusive largely because we lack appropriate reagents to demonstrate the formation of these structures in cells. We examined whether a triple-helix specific stabilizing compound, benzoquinoquinoxaline (BQQ), and its 1,10-phenanthroline derivative can be efficiently utilized to study the formation and stabilization of an intramolecular triple-helical DNA structure in growing Escherichia coli cells and in vitro. Cell uptake of BQQ was confirmed by fluorescence microscopy. A plasmid carrying an H-DNA forming sequence upstream of a reporter gene was used to assess the effects of H-DNA formation and stabilization in growing cells. The presence of the H-DNA forming sequence dramatically repressed beta-lactamase expression, and sub-growth-inhibitory doses of BQQ caused a further 40% reduction. Most importantly, repression was dependent on the triple-helix forming sequence and correlated with the addition of BQQ. As the abundance of the H-DNA forming plasmid was not affected by the addition of BQQ, the dose-dependent reduction at the protein level observed here is likely caused by repression of transcription. Finally, the triple-helix specific interaction of BQQ with the target DNA sequence was demonstrated using a triple-helix directed cleavage assay by BQQ-1,10-phenanthroline conjugate in vitro.
Collapse
Affiliation(s)
- Haleh Amiri
- Department of Molecular Biology and Functional Genomics, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Our discovery that plasmids containing the Friedreich's ataxia (FRDA) expanded GAA.TTC sequence, which forms sticky DNA, are prone to form dimers compared with monomers in vivo is the basis of an intracellular assay in Escherichia coli for this unusual DNA conformation. Sticky DNA is a single long GAA.GAA.TTC triplex formed in plasmids harboring a pair of long GAA.TTC repeat tracts in the direct repeat orientation. This requirement is fulfilled by either plasmid dimers of DNAs with a single trinucleotide repeat sequence tract or by monomeric DNAs containing a pair of direct repeat GAA.TTC sequences. DNAs harboring a single GAA.TTC repeat are unable to form this type of triplex conformation. An excellent correlation was observed between the ability of a plasmid to adopt the sticky triplex conformation as assayed in vitro and its propensity to form plasmid dimers relative to monomers in vivo. The variables measured that strongly influenced these measurements are as follows: length of the GAA.TTC insert; the extent of periodic interruptions within the repeat sequence; the orientation of the repeat inserts; and the in vivo negative supercoil density. Nitrogen mustard cross-linking studies on a family of GAA.TTC-containing plasmids showed the presence of sticky DNA in vivo and, thus, serves as an important bridge between the in vitro and in vivo determinations. Biochemical genetic studies on FRDA containing DNAs grown in recA or nucleotide excision repair or ruv-deficient cells showed that the in vivo properties of sticky DNA play an important role in the monomer-dimer-sticky DNA intracellular intercon-versions. Thus, the sticky DNA triplex exists and functions in living cells, strengthening the likelihood of its role in the etiology of FRDA.
Collapse
Affiliation(s)
- Alexandre A Vetcher
- Center for Genome Research, Institute of Biosciences and Technology, Texas A & M University System Health Science Center, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | |
Collapse
|
8
|
Zahedi K, Prada AE, Mulligan A, Prada JA, Davis AE. Normal transcription of the C1 inhibitor gene is dependent upon a polypurine-polypyrimidine region within the promoter. Inflammation 2002; 26:183-91. [PMID: 12184632 DOI: 10.1023/a:1016519813252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Analysis of the transcriptional activity of C1 inhibitor (CIINH) promoter reporter constructs with mutations in the R-Y region indicate that triplex formation by this region is not a predictor of transcriptional activity and that normal promoter function depends on the interaction of trans acting factors with specific elements within this region. Electrophoretic mobility shift assay (EMSA) of Hep3B nuclear extracts using the wild type promoter probe (nucleotides -98 to -9) yielded four major bands. Incubation of the same extracts with probes lacking the HNF-1 site resulted in the disappearance of one band. Supershift assays indicate that HNF-1alpha is the only previously identified protein that is present in the EMSA bands. Southwestern blot analysis detected four bands (M(r)s -130, 75, 65 and 20 kDa). These data suggest that the -98 to -9 region of the C1INH promoter interacts with at least four proteins, one of which is HNF-1alpha.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology and Hypertension, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA.
| | | | | | | | | |
Collapse
|
9
|
Maiti AK, Brahmachari SK. Poly purine.pyrimidine sequences upstream of the beta-galactosidase gene affect gene expression in Saccharomyces cerevisiae. BMC Mol Biol 2001; 2:11. [PMID: 11696239 PMCID: PMC59624 DOI: 10.1186/1471-2199-2-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Accepted: 10/08/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Poly purine.pyrimidine sequences have the potential to adopt intramolecular triplex structures and are overrepresented upstream of genes in eukaryotes. These sequences may regulate gene expression by modulating the interaction of transcription factors with DNA sequences upstream of genes. RESULTS A poly purine.pyrimidine sequence with the potential to adopt an intramolecular triplex DNA structure was designed. The sequence was inserted within a nucleosome positioned upstream of the beta-galactosidase gene in yeast, Saccharomyces cerevisiae, between the cycl promoter and gal 10 Upstream Activating Sequences (UASg). Upon derepression with galactose, beta-galactosidase gene expression is reduced 12-fold in cells carrying single copy poly purine.pyrimidine sequences. This reduction in expression is correlated with reduced transcription. Furthermore, we show that plasmids carrying a poly purine.pyrimidine sequence are not specifically lost from yeast cells. CONCLUSION We propose that a poly purine.pyrimidine sequence upstream of a gene affects transcription. Plasmids carrying this sequence are not specifically lost from cells and thus no additional effort is needed for the replication of these sequences in eukaryotic cells.
Collapse
Affiliation(s)
- Amit K Maiti
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Samir K Brahmachari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
10
|
Becker NA, O'Neill HA, Zimmerman JM, Maher LJ. In vitro and in vivo ligation-mediated polymerase chain reaction analysis of a polypurine/polypyrimidine sequence upstream of the mouse metallothionein-I gene. J Biol Chem 2000; 275:40218-25. [PMID: 10986295 DOI: 10.1074/jbc.m909658199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mouse metallothionein-I homopurine/homopyrimidine (MT-I R/Y) sequence is a 128-base pair element located approximately 1.2 kilobase pairs upstream of the MT-I gene. Previous in vitro studies of this sequence in purified plasmids indicated the formation of a non-B DNA structure stabilized by acidic pH and negative supercoiling. We now present a detailed in vitro and in vivo analysis of the MT-I R/Y sequence using chemical probes of DNA structure and ligation-mediated polymerase chain reaction. In vivo analysis suggests neither profound base unpairing nor protein binding within the MT-I R/Y sequence before or after metal induction of MT-I. We conclude for this element that the propensity to adopt an unusual DNA structure in vitro does not imply the occurrence of such a structure in vivo. We were able to show both in purified genomic DNA and in vivo that only isolated thymines and the 3' terminal thymine in strings of consecutive thymines are modified significantly by KMnO(4), indicating an altered thymine accessibility pattern within the R/Y sequence. This KMnO(4) reactivity pattern is more consistent and predictable within the R/Y sequence when compared with flanking sequences. We propose a simple steric interference model to explain the observed pattern of KMnO(4) modification of thymines.
Collapse
Affiliation(s)
- N A Becker
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
11
|
Bůzek J, Kuderová A, Pexa T, Stanková V, Lauerová L, Palecek E. Monoclonal antibody against DNA adducts with osmium structural probes. J Biomol Struct Dyn 1999; 17:41-50. [PMID: 10496420 DOI: 10.1080/07391102.1999.10508339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Osmium tetroxide complexes with nitrogen ligands (Os,L) have been widely used as probes of the DNA structure. A monoclonal antibody OsBP7H8 against DNA adducts with Os,L was produced in mice. OsBP7H8 does not bind to proteins or total yeast RNA modified with Os,2,2'-bipyridine (bipy) nor to the unmodified nucleic acids and proteins. The antibody recognizes DNA modified with Os,bipy (DNA-Os,bipy) or with OsO4,1,10-phenanthroline (DNA-Os,phen) but it does not cross-react with oxidized DNA and with DNA adducts of osmium tetroxide complexes with other ligands (such as pyridine, TEMED and bathophenanthroline disulfonic acid). The affinity of OsBP7H8 to DNA-Os,phen is about five-fold higher as compared to DNA-Os,bipy. The antibody can be thus applied either for recognition of single-stranded and distorted regions in DNA (after DNA modification with Os,bipy) or for detection of both single-stranded and double-stranded DNAs (after DNA modification with Os,phen). A new simplified procedure for the dot-blot analysis is proposed, not requiring the purification of DNA-osmium adduct prior to its application to the membrane.
Collapse
Affiliation(s)
- J Bůzek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
|
14
|
Electrochemical analysis of formation of polynucleotide complexes in solution and at electrode surfaces. Anal Chim Acta 1997. [DOI: 10.1016/s0003-2670(97)00007-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Brahmachari SK, Sarkar PS, Raghavan S, Narayan M, Maiti AK. Polypurine/polypyrimidine sequences as cis-acting transcriptional regulators. Gene 1997; 190:17-26. [PMID: 9185844 DOI: 10.1016/s0378-1119(97)00034-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genome sequence information has generated increasing evidence for the claim that repetitive DNA sequences present within and around genes could play a important role in the regulation of gene expression. Polypurine/polypyrimidine sequences [poly(Pu/Py)] have been observed in the vicinity of promoters and within the transcribed regions of many genes. To understand whether such sequences influence the level of gene expression, we constructed several prokaryotic and eukaryotic expression vectors incorporating poly(Pu/Py) repeats both within and upstream of a reporter gene, lacZ (encoding beta-galactosidase), and studied its expression in vivo. We find that, in contrast to the situation in Escherichia coli, the presence of poly(Pu/Py) sequences within the gene does not significantly inhibit gene expression in mammalian cells. On the other hand, the presence of such sequences upstream of lacZ leads to a several-fold reduction of gene expression in mammalian cells. Similar down-regulation was observed when a structural cassette containing poly(Pu/Py) sequences upstream of lacZ was integrated into yeast chromosome V. Sequence analysis of the nine totally sequenced yeast chromosomes shows that a large number of such sequences occur upstream of ORFs. On the basis of our experimental results and DNA sequence analysis, we propose that these sequences can function as cis-acting transcriptional regulators.
Collapse
Affiliation(s)
- S K Brahmachari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore.
| | | | | | | | | |
Collapse
|
16
|
Kopel V, Pozner A, Baran N, Manor H. Unwinding of the third strand of a DNA triple helix, a novel activity of the SV40 large T-antigen helicase. Nucleic Acids Res 1996; 24:330-5. [PMID: 8628658 PMCID: PMC145642 DOI: 10.1093/nar/24.2.330] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We present experiments indicating that the SV40 large T-antigen (T-ag) helicase is capable of unwinding the third strand of DNA triple helices. Intermolecular d(TC)(20)d(GA)(20)d(TC)(20) triplexes were generated by annealing, at pH 5.5, a linearized double-stranded plasmid containing a d(TC)(27).d(GA)27 tract with a (32)P-labeled oligonucleotide consisting of a d(TC)(20) tract flanked by a sequence of 15 nt at the 3'-end. The triplexes remained stable at pH 7.2, as determined by agarose gel electrophoresis and dimethyl sulfate footprinting. Incubation with the T-ag helicase caused unwinding of the d(TC)(20) tract and consequent release of the oligonucleotide, while the plasmid molecules remained double-stranded. ATP was required for this reaction and could not be replaced by the non-hydrolyzable ATP analog AMP-PNP. T-ag did not unwind similar triplexes formed with oligonucleotides containing a d(TC)(20) tract and a 5' flanking sequence or no flanking sequence. These data indicate that unwinding of DNA triplexes by the T-ag helicase must be preceded by binding of the helicase to a single-stranded 3' flanking sequence, then the enzyme migrates in a 3'--> 5' direction, using energy provided by ATP hydrolysis, and causes release of the third strand. Unwinding of DNA triplexes by helicases may be required for processes such as DNA replication, transcription, recombination and repair.
Collapse
Affiliation(s)
- V Kopel
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
17
|
Palecek E, Vlk D, Vojtísková M, Boublíková P. Complex of osmium tetroxide with 1,10-phenanthroline binds covalently to double-stranded DNA. J Biomol Struct Dyn 1995; 13:537-46. [PMID: 8825734 DOI: 10.1080/07391102.1995.10508864] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Complex of osmium tetroxide with 1,10-phenanthroline (Os,phen) reacts with double-stranded B-DNA in contrast to osmium tetroxide, pyridine and other osmium structural probes which show a strong preference for single-stranded DNA (ssDNA) (Palecek, E. in Abelson, J.N., and Simon, M.I. (eds), Lilley, D.M.J., and Dahlberg, J.E., (volume eds.), Methods in Enzymology, Vol. 212, DNA Structures, part B., Academic Press, 139-155 (1992)). Modification of negatively supercoiled DNA (scDNA) with Os,phen changes the DNA electrophoretic mobility inducing the DNA relaxation at lower degrees of modification followed by formation of positive supercoils at higher modification extents. Electrophoretic mobility of the Os,phen-modified DNA fragments in agarose gel is almost unchanged while a strong retardation of the same fragments is observed in polyacrylamide gels. Os,phen-modified DNA is hypersensitive to nuclease S1. Cleavage of this DNA by restriction enzymes is selectively inhibited showing a preference of Os,phen for TA and AT dinucleotide steps. DNA modification by Os,phen is inhibited by low and moderate concentrations of MgCl2. The covalent binding of Os,phen to double-stranded DNA (dsDNA) is preceded by noncovalent interactions (probably intercalation) inducing DNA structural changes; the shape of the Os,phen-modified DNA molecule appears to be severely deformed.
Collapse
Affiliation(s)
- E Palecek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno.
| | | | | | | |
Collapse
|
18
|
|
19
|
Shimizu M, Kubo K, Matsumoto U, Shindo H. The loop sequence plays crucial roles for isomerization of intramolecular DNA triplexes in supercoiled plasmids. J Mol Biol 1994; 235:185-97. [PMID: 8289240 DOI: 10.1016/s0022-2836(05)80025-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of base composition in the central region of polypurine.polypyrimidine (Pur.Pyr) tracts on the formation of intramolecular DNA triplexes in plasmids was examined using chemical probes (diethyl pyrocarbonate and OsO4), and two-dimensional (2-D) agarose gel electrophoresis. Two isomers exist for an intramolecular triplex: one with the 3'-half of the Pyr strand as the third strand (H-y3) and the other with the 5'-half of the Pyr strand as the third strand (H-y5). It was shown that the content and position of G + C residues in the triplex loop region (the center of Pur.Pyr tracts) are primary determinants for the isomerization between the H-y3 and H-y5 triplexes. Divalent metal ions such as Mg2+ and negative supercoiling also modulate the isomerization: the H-y5 conformation is stabilized by the divalent metal ions and/or under relatively lower negative supercoiling. 2-D gel analyses revealed that two isomers, H-y3 and H-y5, are topologically non-equivalent: the H-y3 formation relaxes one more supercoil turn than H-y5. As the G + C content in the center of Pur.Pyr tracts increases, the triplex requires more supercoil energy for formation. Therefore, the base-pair opening in the center of Pur.Pyr tracts is the initial and critical step in the pathway for the formation of triplex as well as the isomerization. The role of the triplex loop sequence is explained by a model in which the nucleation process of H-y3 formation requires a wide range of base-pair opening compared to that of H-y5: such unwinding would not be favored for the central region of the duplex with high G + C content and so it would be in the presence of Mg2+, and thereby the H-y5 formation is promoted.
Collapse
Affiliation(s)
- M Shimizu
- Laboratory of Analytical Chemistry, Tokyo College of Pharmacy, Japan
| | | | | | | |
Collapse
|
20
|
|
21
|
Thuong NT, Hélène C. Sequenzspezifische Erkennung und Modifikation von Doppelhelix-DNA durch Oligonucleotide. Angew Chem Int Ed Engl 1993. [DOI: 10.1002/ange.19931050506] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Palecek E, Robert-Nicoud M, Jovin TM. Local opening of the DNA double helix in eukaryotic cells detected by osmium probe and adduct-specific immunofluorescence. J Cell Sci 1993; 104 ( Pt 3):653-61. [PMID: 8314868 DOI: 10.1242/jcs.104.3.653] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of DNA in mouse fibroblast 3T3 cells has been investigated with the single-strand-selective probe, the complex of osmium tetroxide and 2,2′-bipyridine (Os,bipy). DNA-Os,bipy adducts in the cells were detected by immunofluorescence using a highly specific, affinity-purified polyclonal antibody. Treatment of living cells with the chemical probe led to a distinct but nonuniform nuclear staining. We attribute the positive nuclear staining to the existence of single-stranded and distorted DNA regions in the living cell. Confocal laser scanning microscopy revealed dark areas corresponding to nucleoli and regions of condensed chromatin. These conclusions were supported by the results of experiments in which the chemical probe was applied to fixed cells treated with 45% acetic acid or with acidic buffers (pH 1.8-2.5). An inverse staining pattern was obtained, characterized by intense immunofluorescence of the condensed chromatin regions. Thus, the structural transitions and/or chemical alterations (e.g. depurination) induced by acid treatment increase the accessibility of normally unreactive DNA bases. We conclude that open DNA structures recognized by the chemical probe in the cells prior to their fixation are contained mainly in decondensed and transcriptionally active chromatin, but are virtually absent from nucleoli and condensed chromatin.
Collapse
Affiliation(s)
- E Palecek
- Institute of Biophysics, Czechoslovak Academy of Sciences, Brno, CSFR
| | | | | |
Collapse
|
23
|
Cruciform extrusion facilitates intramolecular triplex formation between distal oligopurine.oligopyrimidine tracts: long range effects. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41944-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Central non-Pur.Pyr sequences in oligo(dG.dC) tracts and metal ions influence the formation of intramolecular DNA triplex isomers. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36770-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Kang S, Wohlrab F, Wells R. GC-rich flanking tracts decrease the kinetics of intramolecular DNA triplex formation. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41794-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
26
|
Kohwi Y, Malkhosyan SR, Kohwi-Shigematsu T. Intramolecular dG.dG.dC triplex detected in Escherichia coli cells. J Mol Biol 1992; 223:817-22. [PMID: 1538396 DOI: 10.1016/0022-2836(92)90242-c] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The formation of an intramolecular dG.dG.dC triplex in Escherichia coli cells is demonstrated at single-base resolution. The intramolecular dG.dG.dC triplex structure was probed in situ for E. coli cells containing plasmid DNAs with varying lengths of poly(dG).poly(dC) tracts employing chloroacetaldehyde. This chemical probe reacts specifically with unpaired DNA bases. The triplex structure formed with the poly(dG).poly(dC) tracts of 35 and 44 base-pairs, but not with 25 base-pairs. The triplex was detected only one to two hours after the chloramphenicol treatment: the period at which the extracted plasmid DNA revealed the maximal superhelical density.
Collapse
Affiliation(s)
- Y Kohwi
- La Jolla Cancer Research Foundation, CA 92037
| | | | | |
Collapse
|
27
|
Affiliation(s)
- E Palecek
- Institute of Biophysics, Czechoslovak Academy of Sciences, Brno
| |
Collapse
|
28
|
Kuderová-Krejcová A, Poverenny AM, Palecek E. Probing of DNA structure with osmium tetroxide,2,2'-bipyridine. Adduct-specific antibodies. Nucleic Acids Res 1991; 19:6811-7. [PMID: 1762911 PMCID: PMC329314 DOI: 10.1093/nar/19.24.6811] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Antibodies against DNA modified with a single-strand selective probe, OsO4 in complex with 2,2'-bipyridine (Os,bipy), were raised in rabbits. These antibodies were fractionated using affinity column chromatography and fractions S89-II and S89-III characterized as highly specific for DNA-Os,bipy adduct with no cross reactivity to at least 1000-fold excess of unmodified DNA, RNA and Os,bipy-modified and unmodified proteins. Cross-reactivity to Os,bipy-modified RNA was very small. S89-II showed no cross-reactivity to DNA modified with OsO4 complexed with tetramethylethylenediamine or with bathophenanthroline disulphonic acid and to DNA oxidized with KMnO4. It cross-reacted, however, with DNA modified with OsO4,1,10-phenanthroline complex. The limit of detection of immunodot-blot analysis of extensively Os,bipy-modified DNA was below 0.5 pg. Small extent of Os,bipy-modification of supercoiled and linearized plasmids can be detected by DNA gel retardation and immunoblotting techniques. E. coli cells contain DNA regions in which bases are accessible to the single-strand selective probe.
Collapse
|
29
|
Kabakov AE, Podgorodnichenko VK, Poverenny AM. A monoclonal antibody to DNA modified with osmium tetroxide/2,2'-bipyridine. Immunol Lett 1991; 30:23-6. [PMID: 1959940 DOI: 10.1016/0165-2478(91)90084-n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A murine monoclonal antibody (IgG) has been generated that binds to DNA modified with osmium tetroxide in the presence of 2,2'-bipyridine and does not interact with unmodified DNA. Reactivity of the antibody was tested by gel retardation assay, ELISA, dot-binding assay and immunoblotting. The results obtained suggest that the antibody does not cross-react with modified or unmodified RNA or proteins. The high specificity of the binding reaction is due to the specific recognition of modified deoxythymidine residue by the monoclonal antibody. A possible way of using the antibody produced is discussed.
Collapse
Affiliation(s)
- A E Kabakov
- Institute of Medical Radiology, Academy of Medical Sciences, Obninsk, Kaluga Region, U.S.S.R
| | | | | |
Collapse
|
30
|
|
31
|
Abstract
The DNA double helix exhibits local sequence-dependent polymorphism at the level of the single base pair and dinucleotide step. Curvature of the DNA molecule occurs in DNA regions with a specific type of nucleotide sequence periodicities. Negative supercoiling induces in vitro local nucleotide sequence-dependent DNA structures such as cruciforms, left-handed DNA, multistranded structures, etc. Techniques based on chemical probes have been proposed that make it possible to study DNA local structures in cells. Recent results suggest that the local DNA structures observed in vitro exist in the cell, but their occurrence and structural details are dependent on the DNA superhelical density in the cell and can be related to some cellular processes.
Collapse
Affiliation(s)
- E Palecek
- Max-Planck Institut für Biophysikalische Chemie, Göttingen, BRD
| |
Collapse
|