1
|
Jakubiec A, Yang SW, Chua NH. Arabidopsis DRB4 protein in antiviral defense against Turnip yellow mosaic virus infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:14-25. [PMID: 21883552 PMCID: PMC3240694 DOI: 10.1111/j.1365-313x.2011.04765.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
RNA silencing is an important antiviral mechanism in diverse eukaryotic organisms. In Arabidopsis DICER-LIKE 4 (DCL4) is the primary antiviral Dicer, required for the production of viral small RNAs from positive-strand RNA viruses. Here, we showed that DCL4 and its interacting partner dsRNA-binding protein 4 (DRB4) participate in the antiviral response to Turnip yellow mosaic virus (TYMV), and that both proteins are required for TYMV-derived small RNA production. In addition, our results indicate that DRB4 has a negative effect on viral coat protein accumulation. Upon infection DRB4 expression was induced and DRB4 protein was recruited from the nucleus to the cytoplasm, where replication and translation of viral RNA occur. DRB4 was associated with viral RNA in vivo and directly interacted in vitro with a TYMV RNA translational enhancer, raising the possibility that DRB4 might repress viral RNA translation. In plants the role of RNA silencing in viral RNA degradation is well established, but its potential function in the regulation of viral protein levels has not yet been explored. We observed that severe infection symptoms are not necessarily correlated with enhanced viral RNA levels, but might be caused by elevated accumulation of viral proteins. Our findings suggest that the control of viral protein as well as RNA levels might be important for mounting an efficient antiviral response.
Collapse
Affiliation(s)
- Anna Jakubiec
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Seong Wook Yang
- Department of Plant Biology and Biotechnology, Faculty of Life Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Copenhagen, Denmark
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY 10065, USA
- To whom correspondence should be addressed. Corresponding author: Nam-Hai Chua , Fax number: 1-212-327-8327, Phone number: 1-212-327-8126
| |
Collapse
|
2
|
Hammond JA, Rambo RP, Kieft JS. Multi-domain packing in the aminoacylatable 3' end of a plant viral RNA. J Mol Biol 2010; 399:450-63. [PMID: 20398674 DOI: 10.1016/j.jmb.2010.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
Abstract
Turnip yellow mosaic virus (TYMV) contains a tRNA-like structure (TLS) in its 3' untranslated region (3' UTR). This highly structured element induces valylation of the viral RNA by host cell enzymes and is important for virus proliferation. Directly upstream of the TYMV TLS is an upstream pseudoknot domain (UPD) that has been considered to be structurally distinct from the TLS. However, using a combination of functional, biochemical, and biophysical assays, we show that the entire 3' UTR of the viral genome is a single structured element in the absence of cellular protein. This packing architecture stabilizes the RNA structure and creates a better substrate for aminoacylation, and thus the UPD and TLS are functionally and structurally coupled. It has been proposed that the TYMV TLS acts as a molecular switch between translation and replication. Our results suggest that this putative switch could be based on structural changes within the global architecture of the UTR induced by interactions with the ribosome. The TYMV TLS.UPD might demonstrate how RNA structural plasticity can play a role in regulation of biological processes.
Collapse
Affiliation(s)
- John A Hammond
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|
3
|
Dreher TW. Role of tRNA-like structures in controlling plant virus replication. Virus Res 2008; 139:217-29. [PMID: 18638511 DOI: 10.1016/j.virusres.2008.06.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 06/14/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Transfer RNA-like structures (TLSs) that are sophisticated functional mimics of tRNAs are found at the 3'-termini of the genomes of a number of plant positive strand RNA viruses. Three natural aminoacylation identities are represented: valine, histidine, and tyrosine. Paralleling this variety in structure, the roles of TLSs vary widely between different viruses. For Turnip yellow mosaic virus, the TLS must be capable of valylation in order to support infectivity, major roles being the provision of translational enhancement and down-regulation of minus strand initiation. In contrast, valylation of the Peanut clump virus TLS is not essential. An intermediate situation seems to exist for Brome mosaic virus, whose RNAs 1 and 2, but not RNA 3, need to be capable of tyrosylation to support infectivity. Other known roles for certain TLSs include: (i) the recruitment of host CCA nucleotidyltransferase as a telomerase to maintain intact 3' CCA termini, (ii) involvement in the encapsidation of viral RNAs, and (iii) presentation of minus strand promoter elements for replicase recognition. In the latter role, the promoter elements reside within the TLS but are not functionally dependent on tRNA mimicry. The phylogenetic distribution of TLSs indicates that their evolutionary history includes frequent horizontal exchange, as has been observed for protein-coding regions of plant positive strand RNA viruses.
Collapse
Affiliation(s)
- Theo W Dreher
- Department of Microbiology and Center for Genome Research & Bioinformatics, 220 Nash Hall, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
4
|
Wang HH, Wong SM. Significance of the 3'-terminal region in minus-strand RNA synthesis of Hibiscus chlorotic ringspot virus. J Gen Virol 2004; 85:1763-1776. [PMID: 15166462 DOI: 10.1099/vir.0.79861-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA-dependent RNA polymerase (RdRp) was solubilized from crude extracts of Hibiscus cannabinus infected by Hibiscus chlorotic ringspot virus (HCRSV), a member of the Carmoviridae. After treatment of the extracts with micrococcal nuclease to remove the endogenous templates, the full-length genomic RNA and the two subgenomic RNAs were efficiently synthesized by the partially purified RdRp complex in vitro. When the full-length RNAs of Potato virus X, Tobacco mosaic virus, Odontoglossum ringspot virus and Cucumber mosaic virus were used as templates, no detectable RNA was synthesized. Synthesis of HCRSV minus-strand RNA was shown to initiate opposite the 3'-terminal two C residues at the 3' end in vitro and in vivo. The CCC-3' terminal nucleotide sequence was optimal and nucleotide variations from CCC-3' diminished minus-strand synthesis. In addition, two putative stem-loops (SLs) located within the 3'-terminal 87 nt of HCRSV plus-strand RNA were also essential for minus-strand RNA synthesis. Deletion or disruption of the structure of these two SLs severely reduced or abolished RNA synthesis. HCRSV RNA in which the two SLs were replaced with the SLs of Turnip crinkle virus could replicate in kenaf protoplasts, indicating that functionally conserved structure, rather than nucleotide sequence, plays an important role in the minus-strand synthesis of HCRSV. Taken together, the specific sequence CCC at the 3' terminus and the two SLs structures located in the 3'UTR are essential for efficient minus-strand synthesis of HCRSV.
Collapse
Affiliation(s)
- Hai-He Wang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Kent Ridge, Singapore 117543
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Kent Ridge, Singapore 117543
| |
Collapse
|
5
|
Plante CA, Kim KH, Pillai-Nair N, Osman TA, Buck KW, Hemenway CL. Soluble, template-dependent extracts from Nicotiana benthamiana plants infected with potato virus X transcribe both plus- and minus-strand RNA templates. Virology 2000; 275:444-51. [PMID: 10998342 DOI: 10.1006/viro.2000.0512] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have developed a method to convert membrane-bound replication complexes isolated from Nicotiana benthamiana plants infected with potato virus X (PVX) to a soluble, template-dependent system for analysis of RNA synthesis. Analysis of RNA-dependent RNA polymerase activity in the membrane-bound, endogenous template extracts indicated three major products, which corresponded to double-stranded versions of PVX genomic RNA and the two predominant subgenomic RNAs. The endogenous templates were removed from the membrane-bound complex by treatment with BAL 31 nuclease in the presence of Nonidet P-40 (NP-40). Upon the addition of full-length plus- or minus- strand PVX transcripts, the corresponding-size products were detected. Synthesis was not observed when red clover necrotic mosaic dianthovirus (RCNMV) RNA 2 templates were added, indicating template specificity for PVX transcripts. Plus-strand PVX templates lacking the 3' terminal region were not copied, suggesting that elements in the 3' region were required for initiation of RNA synthesis. Extracts that supported RNA synthesis from endogenous templates could also be solublized using sodium taurodeoxycholate and then rendered template-dependent by BAL 31 nuclease/NP-40 treatment. The solubilized preparations copied both plus- and minus-strand PVX transcripts, but did not support synthesis from RCNMV RNA 2. These membrane-bound and soluble template-dependent systems will facilitate analyses of viral and host components required for PVX RNA synthesis.
Collapse
Affiliation(s)
- C A Plante
- Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | |
Collapse
|
6
|
Chandrika R, Rabindran S, Lewandowski DJ, Manjunath KL, Dawson WO. Full-length tobacco mosaic virus RNAs and defective RNAs have different 3' replication signals. Virology 2000; 273:198-209. [PMID: 10891422 DOI: 10.1006/viro.2000.0414] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The viral replicase complex of positive-stranded RNA viruses interacts with cis-acting elements that are usually located at the termini of the viral RNAs. On comparison of the replication requirement of a tobacco mosaic virus (TMV)-based defective RNA (dRNA) and its helper virus, we found different requirements for replication of TMV RNAs in cis and in trans. The level of replication of full-length TMV RNA decreased substantially in the absence of pseudoknot (pk) 1 and/or 2, whereas identical deletions in dRNAs did not affect their replication. However, pk3 was required for replication of both full-length TMV RNAs and dRNAs. The requirements for homologous sequences were greater for dRNA replication than for replication of full-length TMV RNAs. Defective RNAs with heterologous 3' nontranslated regions (NTRs) failed to be replicated or replicated minimally, whereas replication of similarly mutated full-length RNAs was much less affected. Increasing amounts of contiguous heterologous sequences in the dRNAs compensated for the impaired interactions between the replicase and 3' NTR. The precision requirement appeared to involve the terminal 28 nucleotides, specifically the pseudoknot in the aminoacyl acceptor arm of the tRNA like structure, which was important in replication of both dRNAs and full-length TMV RNAs.
Collapse
Affiliation(s)
- R Chandrika
- Department of Plant Pathology, University of Florida, CREC, Lake Alfred, Florida, 33850, USA
| | | | | | | | | |
Collapse
|
7
|
Héricourt F, Blanc S, Redeker V, Jupin I. Evidence for phosphorylation and ubiquitinylation of the turnip yellow mosaic virus RNA-dependent RNA polymerase domain expressed in a baculovirus-insect cell system. Biochem J 2000; 349:417-25. [PMID: 10880340 PMCID: PMC1221164 DOI: 10.1042/0264-6021:3490417] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All RNA viruses known to date encode an RNA-dependent RNA polymerase (RdRp) that is required for replication of the viral genome. We have expressed and purified the turnip yellow mosaic virus (TYMV) RdRp in insect cells using a recombinant baculovirus, either in its native form, or fused to an hexa-histidine tag. Phosphorylation of the protein was demonstrated by labelling experiments in vivo, as well as phosphatase treatment of the purified protein in vitro. Phospho amino acid analysis and immunoblotting experiments identified serine and threonine residues as being the subject of phosphorylation. Peptide mass mapping using MS analysis of a protein digest revealed that phosphorylation sites are localized within a putative PEST sequence [a sequence rich in proline (P), glutamic acid (E), serine (S) and threonine (T) residues] in the N-terminal region of the protein. Using monoclonal antibodies specific for ubiquitin conjugates, we were able to demonstrate that the TYMV RdRp is conjugated to ubiquitin molecules when expressed in insect cells. These observations suggest that the TYMV RdRp may be processed selectively by the ubiquitin/proteasome degradation system upon phosphorylation of the PEST sequence.
Collapse
Affiliation(s)
- F Héricourt
- Laboratoire de Virologie Moléculaire, Institut Jacques Monod, UMR 7592, CNRS-Universités Paris 6-Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | |
Collapse
|
8
|
Deiman BA, Verlaan PW, Pleij CW. In vitro transcription by the turnip yellow mosaic virus RNA polymerase: a comparison with the alfalfa mosaic virus and brome mosaic virus replicases. J Virol 2000; 74:264-71. [PMID: 10590114 PMCID: PMC111536 DOI: 10.1128/jvi.74.1.264-271.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, we showed that the main determinant in the tRNA-like structure of turnip yellow mosaic virus RNA to initiate minus-strand synthesis in vitro is the 3' ACCA end. By mutational analysis of the 3'-terminal hairpin, we show here that only a non-base-paired ACCA end is functional and that the stability of the wild-type 3'-proximal hairpin is the most favorable, in that it has the lowest DeltaG value and a high transcription efficiency. With a nested set of RNA fragments, we show that the minimum template length is 9 nucleotides and that transcription is improved with increasing the length of the template. The results also suggest that proper base stacking contributes to efficient transcription initiation. Internal initiation is shown to take place on every NPyCPu sequence of a nonstructured template. However, the position of the internal initiation site in the template is important, and competition between the different sites takes place. Internal initiation was also studied with the RNA-dependent RNA polymerase of brome mosaic virus (BMV) and alfalfa mosaic virus (AlMV). The BMV polymerase can start internally on ACCA sequences, though inefficiently. Unexpectedly, the polymerases of both AlMV and BMV can start efficiently on an internal AUGC sequence.
Collapse
Affiliation(s)
- B A Deiman
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
9
|
Oh JW, Ito T, Lai MM. A recombinant hepatitis C virus RNA-dependent RNA polymerase capable of copying the full-length viral RNA. J Virol 1999; 73:7694-702. [PMID: 10438859 PMCID: PMC104296 DOI: 10.1128/jvi.73.9.7694-7702.1999] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/1999] [Accepted: 06/05/1999] [Indexed: 11/20/2022] Open
Abstract
All of the previously reported recombinant RNA-dependent RNA polymerases (RdRp), the NS5B enzymes, of hepatitis C virus (HCV) could function only in a primer-dependent and template-nonspecific manner, which is different from the expected properties of the functional viral enzymes in the cells. We have now expressed a recombinant NS5B that is able to synthesize a full-length HCV genome in a template-dependent and primer-independent manner. The kinetics of RNA synthesis showed that this RdRp can initiate RNA synthesis de novo and yield a full-length RNA product of genomic size (9.5 kb), indicating that it did not use the copy-back RNA as a primer. This RdRp was also able to accept heterologous viral RNA templates, including poly(A)- and non-poly(A)-tailed RNA, in a primer-independent manner, but the products in these cases were heterogeneous. The RdRp used some homopolymeric RNA templates only in the presence of a primer. By using the 3'-end 98 nucleotides (nt) of HCV RNA, which is conserved in all genotypes of HCV, as a template, a distinct RNA product was generated. Truncation of 21 nt from the 5' end or 45 nt from the 3' end of the 98-nt RNA abolished almost completely its ability to serve as a template. Inclusion of the 3'-end variable sequence region and the U-rich tract upstream of the X region in the template significantly enhanced RNA synthesis. The 3' end of minus-strand RNA of HCV genome also served as a template, and it required a minimum of 239 nt from the 3' end. These data defined the cis-acting sequences for HCV RNA synthesis at the 3' end of HCV RNA in both the plus and minus senses. This is the first recombinant HCV RdRp capable of copying the full-length HCV RNA in the primer-independent manner expected of the functional HCV RNA polymerase.
Collapse
Affiliation(s)
- J W Oh
- Howard Hughes Medical Institute and Department of Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, California 90033-1054, USA
| | | | | |
Collapse
|
10
|
Dreher TW. FUNCTIONS OF THE 3'-UNTRANSLATED REGIONS OF POSITIVE STRAND RNA VIRAL GENOMES. ANNUAL REVIEW OF PHYTOPATHOLOGY 1999; 37:151-174. [PMID: 11701820 DOI: 10.1146/annurev.phyto.37.1.151] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Positive strand RNA viral genomes are unique in the viral world in serving a dual role as mRNA and replicon. Since the origin of the minus-strand RNA replication intermediate is at the 3'-end of the genome, the 3'-untranslated region (UTR) clearly plays a role in viral RNA replication. The messenger role of this same RNA likely places functional demands on the 3'-UTR to serve roles typical of cellular mRNAs, including the regulation of RNA stability and translation. Current understanding indicates varied roles for positive strand RNA viral 3'-UTRs, with the dominant roles differing between viruses. Three case studies are discussed: turnip yellow mosaic virus RNA, whose 3' tRNA mimicry is thought to negatively regulate minus strand synthesis; brome mosaic virus, whose 3'-UTR contains a unique promoter element directing minus strand synthesis; and tobacco mosaic virus, whose 3'-UTR contains an enhancer of translational expression.
Collapse
Affiliation(s)
- Theo W. Dreher
- Department of Microbiology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, Oregon 97331-3804; e-mail:
| |
Collapse
|
11
|
Deiman BA, Koenen AK, Verlaan PW, Pleij CW. Minimal template requirements for initiation of minus-strand synthesis in vitro by the RNA-dependent RNA polymerase of turnip yellow mosaic virus. J Virol 1998; 72:3965-72. [PMID: 9557683 PMCID: PMC109623 DOI: 10.1128/jvi.72.5.3965-3972.1998] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
From mutational analysis of the 3'-terminal hairpin of turnip yellow mosaic virus (TYMV) RNA and use of nonstructured C-rich RNA templates, we conclude that the main determinant in the tRNA-like structure of TYMV RNA for initiation of minus-strand synthesis by the viral RNA-dependent RNA polymerase (RdRp) is the non-base-paired 3' ACC(A) end. Base pairing of this 3' end reduces the transcription efficiency drastically, and deletion of only the 3'-terminal A residue results in a fivefold drop in efficiency. The two C residues of the 3' ACCA end are required for efficient transcription, as shown by substitution mutations. However, the 5' A residue is not specifically involved in initiation of transcription, as shown by substitution mutations. Furthermore, the hairpin stem and loop upstream of the 3' ACCA end also do not interact with the RdRp in a base-specific way. However, for efficient transcription, the hairpin stem should be at least five bp in length, while the calculated deltaG value should be less than -10.5 kcal/mol. Unexpectedly, the use of nonstructured C-rich RNA templates showed that the RdRp can start internally on an NCCN or NUCN sequence. Therefore, a possible function of the tRNA-like structure of TYMV RNA may be to prevent internal initiation of minus-strand synthesis.
Collapse
Affiliation(s)
- B A Deiman
- Gorlaeus Laboratories, Leiden Institute of Chemistry, The Netherlands
| | | | | | | |
Collapse
|
12
|
Deiman BA, Kortlever RM, Pleij CW. The role of the pseudoknot at the 3' end of turnip yellow mosaic virus RNA in minus-strand synthesis by the viral RNA-dependent RNA polymerase. J Virol 1997; 71:5990-6. [PMID: 9223489 PMCID: PMC191855 DOI: 10.1128/jvi.71.8.5990-5996.1997] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The tRNA-like structure at the 3' end of turnip yellow mosaic virus (TYMV) RNA was studied in order to determine the role of this structure in the initiation of minus-strand synthesis in vitro. Deletions in the 5'-to-3' direction up to the pseudoknot structure did not result in a decrease of transcription efficiency. However, transcription efficiency was reduced twofold when a fragment of 21 nucleotides, comprising the 3'-terminal hairpin, was used as a template. tRNA(Phe) from yeast, Escherichia coli 5S rRNA, and the 3'-terminal 208 nucleotides of alfalfa mosaic virus RNA 3 could not be transcribed by the RNA-dependent RNA polymerase (RdRp) of TYMV. Various mutations in the sequences of loop regions L1 and L2 or of stem region S1 of the pseudoknot were tested to further investigate the importance of the pseudoknot structure. The results were compared with those obtained in an earlier study on aminoacylation with the same mutants (R. M. W. Mans, M. H. van Steeg, P. W. G. Verlaan, C. W. A. Pleij, and L. Bosch, J. Mol. Biol. 223:221-232; 1992). Mutants which still harbor a stable pseudoknot, as proven by probing its structure, have a transcription efficiency very close to that of the wild-type virus. Disruption of the pseudoknot structure, however, gives rise to a drop in transcription efficiency to about 50%. No indications of base-specific interactions between L1, L2, or S1 of the pseudoknot and the RdRp were found.
Collapse
Affiliation(s)
- B A Deiman
- Leiden Institute of Chemistry, Gorlaeus Laboratories, The Netherlands
| | | | | |
Collapse
|
13
|
Goodwin JB, Skuzeski JM, Dreher TW. Characterization of chimeric turnip yellow mosaic virus genomes that are infectious in the absence of aminoacylation. Virology 1997; 230:113-24. [PMID: 9126267 DOI: 10.1006/viro.1997.8475] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous experiments have characterized the chimeric genome TYMC-TMVPSK, in which the 3'-tRNA-like structure of turnip yellow mosaic virus (TYMV) was replaced by 3' sequences from tobacco mosaic virus. This genome accumulated in turnip protoplasts to a level about 3% of wild type, but was not infectious on plants. In the present study, TYMV sequences introduced into the anticodon loop and amino acid acceptor arm of the 3' region of this chimera led to three- to fourfold increases in viral accumulation. Two such modified chimeric genomes gave rise to stable infections in plants. After further passaging in plants and the accumulation of minor sequence changes in the 3' terminal region, the resultant viruses, TYMC-XX and TYMC-YY, were highly infectious. Viral accumulations in protoplasts were about 40% of wild type on the basis of coat protein levels, and virion yields in plants were about 0.1 mg/g leaf. Extensive assays failed to detect aminoacylation of these genomic RNAs in vitro, but they were active substrates for wheat germ. CCA nucleotidyltransferase. In separate experiments, the 3'-tRNA-like structure of TYMV RNA was replaced by the 3' terminal 96 nucleotides from erysimum latent tymovirus RNA, resulting in a genome that was infectious to plants (isolate TYMC-H). This chimeric virus produced similar symptoms and virion yield in plants as TYMC-XX and -YY, although accumulations of coat protein in protoplasts were 13% of wild type. The viral RNA was a poor substrate for CCA nucleotidyltransferase and could not be aminoacylated. TYMC-XX, -YY, and -H are the first TYMV replicons known to amplify efficiently and infect plants in the absence of aminoacylation. Their viability suggests that other properties can compensate for the absence of aminoacylation.
Collapse
Affiliation(s)
- J B Goodwin
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331-7301, USA
| | | | | |
Collapse
|
14
|
Deiman BA, Séron K, Jaspars EM, Pleij CW. Efficient transcription of the tRNA-like structure of turnip yellow mosaic virus by a template-dependent and specific viral RNA polymerase obtained by a new procedure [corrected]. J Virol Methods 1997; 64:181-95. [PMID: 9079764 DOI: 10.1016/s0166-0934(96)02166-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The RNA-dependent RNA polymerase (RdRp) of turnip yellow mosaic virus (TYMV) was isolated by a simple, new method. An active, template-dependent and specific enzyme was obtained. Although the genomic RNA of TYMV could not be transcribed completely during an in vitro RdRp assay, a complete double-stranded product was obtained when a 3' terminal RNA fragment of 83 nucleotides was used as a template. The reaction product was identified as being of negative polarity by complete digestion with ribonuclease T1. Antibodies directed to part of the N-terminal (Ab140) or C-terminal (Ab66) in vitro autocleavage products of the large non-structural polyprotein of TYMV, could both partially inhibit RdRp activity. Further purification of the RdRp preparation by ion-exchange chromatography resulted in two activity peaks with different protein compositions. Both peak fractions retained high specificity for transcription of TYMV RNA. A protein of approximately 115 kDa was detected by both Ab140 and Ab66.
Collapse
Affiliation(s)
- B A Deiman
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
15
|
Dreher TW, Tsai CH, Skuzeski JM. Aminoacylation identity switch of turnip yellow mosaic virus RNA from valine to methionine results in an infectious virus. Proc Natl Acad Sci U S A 1996; 93:12212-6. [PMID: 8901559 PMCID: PMC37969 DOI: 10.1073/pnas.93.22.12212] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The turnip yellow mosaic virus genomic RNA terminates at its 3' end in a tRNA-like structure that is capable of specific valylation. By directed mutation, the aminoacylation specificity has been switched from valine to methionine, a novel specificity for viral tRNA-like structures. The switch to methionine specificity, assayed in vitro under physiological buffer conditions with wheat germ methionyl-tRNA synthetase, required mutation of the anticodon loop and the acceptor stem pseudoknot. The resultant methionylatable genomes are infectious and stable in plants, but genomes that lack strong methionine acceptance (as previously shown with regard to valine acceptance) replicate poorly. The results indicate that amplification of turnip yellow mosaic virus RNA requires aminoacylation, but that neither the natural (valine) specificity nor interaction specifically with valyl-tRNA synthetase is crucial.
Collapse
Affiliation(s)
- T W Dreher
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331-7301, USA
| | | | | |
Collapse
|
16
|
Kim KH, Hemenway C. The 5' nontranslated region of potato virus X RNA affects both genomic and subgenomic RNA synthesis. J Virol 1996; 70:5533-40. [PMID: 8764066 PMCID: PMC190512 DOI: 10.1128/jvi.70.8.5533-5540.1996] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A tobacco protoplast system was developed to analyze cis-acting sequences required for potato virus X (PVX) replication. Protoplasts inoculated with transcripts derived from a PVX cDNA clone or from clones containing mutations in their 5' nontranslated regions (NTRs) were assayed for RNA production by S1 nuclease protection assays. A time course of plus- and minus-strand-RNA accumulation indicated that both minus- and plus-strand PVX RNAs were detectable at 0.5 h postinoculation. Although minus-strand RNAs accumulated more rapidly than plus-strand RNAs, maximum levels of plus-strand RNAs were 40- to 80-fold higher. On the basis of these data, time points were chosen for determination of RNA levels in protoplasts inoculated with PVX clones containing deletions or an insertion in their 5' NTRs. Deletions of more than 12 nucleotides from the 5' end, internal deletions, and one insertion in the 5' NTR resulted in substantially decreased levels of plus-strand-RNA production. In contrast, all modified transcripts were functional for minus-strand-RNA synthesis, suggesting that elements in the 5' NTR were not essential for minus-strand-RNA synthesis. Further analysis of the 5' NTR deletion mutants indicated that all mutations that decreased genomic plus-strand-RNA synthesis also decreased synthesis of the two major subgenomic RNAs. These data indicate that cis-acting elements from different regions of the 5' NTR are required for plus-strand-RNA synthesis and that this process may be linked to synthesis of subgenomic RNAs.
Collapse
Affiliation(s)
- K H Kim
- Department of Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | |
Collapse
|
17
|
Abstract
Membrane-containing extracts isolated from tobacco plants infected with the plus-strand RNA virus, potato virus X (PVX), supported synthesis of four major, high-molecular-weight PVX RNA products (R1 to R4). Nuclease digestion and hybridization studies indicated that R1 and R2 are a mixture of partially single-stranded replicative intermediates and double-stranded replicative forms. R3 and R4 are double-stranded products containing sequences typical of the two major PVX subgenomic RNAs. The newly synthesized RNAs were demonstrated to have predominantly plus-strand polarity. Synthesis of these products was remarkably stable in the presence of ionic detergents.
Collapse
Affiliation(s)
- S V Doronin
- Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, USA
| | | |
Collapse
|
18
|
Skuzeski JM, Bozarth CS, Dreher TW. The turnip yellow mosaic virus tRNA-like structure cannot be replaced by generic tRNA-like elements or by heterologous 3' untranslated regions known to enhance mRNA expression and stability. J Virol 1996; 70:2107-15. [PMID: 8642631 PMCID: PMC190047 DOI: 10.1128/jvi.70.4.2107-2115.1996] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The tRNA-like structure (TLS) at the 3' end of the turnip yellow mosaic virus genome was replaced with heterologous tRNA-like elements, and with a poly(A) tail, in order to assess its role. Replacement with the valylatable TLSs from two closely related tymoviruses resulted in infectious viruses. In contrast, no systemic symptoms on plants, and only low viral accumulations in protoplasts, were observed for three chimeric genomes with 3' sequences known to enhance mRNA stability and translatability. One of these chimeras had a poly(A) tail, and the others had the TLS with associated upstream pseudoknot tracts from the 3' ends of brome mosaic and tobacco mosaic viruses. The latter two chimeric RNAs were shown to be appropriately folded by demonstrating their aminoacylation in vitro with tyrosine and histidine, respectively. The results show that enhancement of genome stability or gene expression is not the major role of the turnip yellow mosaic virus TLS. The major role is likely to be replicational, dependent on features present in tymoviral TLSs but not in generic tRNA-like structures.
Collapse
Affiliation(s)
- J M Skuzeski
- Department of Agricultural Chemistry, Oregon State University, Corvalis, Oregon 97331-7301, USA
| | | | | |
Collapse
|
19
|
Abstract
It is clear from the experimental data that there are some similarities in RNA replication for all eukaryotic positive-stranded RNA viruses—that is, the mechanism of polymerization of the nucleotides is probably similar for all. It is noteworthy that all mechanisms appear to utilize host membranes as a site of replication. Membranes appear to function not only as a way of compartmentalizing virus RNA replication but also appear to have a central role in the organization and functioning of the replication complex, and further studies in this area are needed. Within virus supergroups, similarities are evident between animal and plant viruses—for example, in the nature and arrangements of replication genes and in sequence similarities of functional domains. However, it is also clear that there has been considerable divergence, even within supergroups. For example, the animal alpha-viruses have evolved to encode proteinases which play a central controlling function in the replication cycle, whereas this is not common in the plant alpha-like viruses and even when it occurs, as in the tymoviruses, the strategies that have evolved appear to be significantly different. Some of the divergence could be host-dependent and the increasing interest in the role of host proteins in replication should be fruitful in revealing how different systems have evolved. Finally, there are virus supergroups that appear to have no close relatives between animals and plants, such as the animal coronavirus-like supergroup and the plant carmo-like supergroup.
Collapse
Affiliation(s)
- K W Buck
- Department of Biology, Imperial College of Science, Technology and Medicine, London, England
| |
Collapse
|
20
|
Abstract
RNA-dependent RNA polymerase from turnip crinkle virus-infected turnip transcribes both strands of a virus-associated satellite RNA, sat-RNA C (356 bases), in vitro. While both plus- and minus-strand sat-RNA C can direct the synthesis of full-length complementary-strand products, transcription of minus-strand RNA also generates two non-template-sized products, L-RNA and S-RNA (C. Song and A. E. Simon, Proc. Natl. Acad. Sci. USA 91:8792-8796, 1994). Here we report that synthesis of L-RNA and S-RNA results from terminal elongation of the 3' end of the template. L-RNA has a panhandle structure and is composed of minus-strand template covalently linked to newly synthesized RNA complementary to its 5' 190 bases. S-RNA is composed of template covalently linked to its full-length complementary strand. All minus-strand templates tested yielded S-RNA. However, synthesis of L-RNA was affected by deletion of the 3' end of the minus-strand template or several internal regions and base alterations near the 5' end or in an internal sequence immediately upstream from the template-product junction that could potentially form a heteroduplex with the 3' end. Furthermore, mutations that disrupted or restored a stem-loop involved in RNA recombination in vivo affected the level of L-RNA produced in vitro, suggesting that the mechanisms for intramolecular formation of panhandle RNAs and intermolecular RNA recombination involve similar features.
Collapse
Affiliation(s)
- C Song
- Department of Biochemistry and Molecular Biology, University of Massachusetts at Amherst 01003, USA
| | | |
Collapse
|
21
|
Cui T, Porter AG. Localization of binding site for encephalomyocarditis virus RNA polymerase in the 3'-noncoding region of the viral RNA. Nucleic Acids Res 1995; 23:377-82. [PMID: 7885833 PMCID: PMC306686 DOI: 10.1093/nar/23.3.377] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We previously showed that encephalomyocarditis (EMC) virus RNA-dependent RNA polymerase (3Dpol) binds specifically to 3'-terminal segments of EMC virus RNA. This binding, which depends on both the 3'-noncoding region (3'-NCR) and 3'-poly (A) tail [together denoted 3'-NCR(A)], may be an important step in the initiation of virus replication. In this paper, the 3'-NCR and 3'-poly(A) were separately transcribed then mixed, but no complex with 3Dpol was obtained, showing that covalent attachment of the 3'-poly(A) to the 3'-NCR is essential for complex formation. Mutational and deletion analyses localized a critical determinant of 3Dpol binding to a U-rich sequence located 38-49 nucleotides upstream of the 3'-poly(A). Similar analyses led to the identification of a sequence of A residues between positions +10 and +15 of the 3'-poly(A) which are also critical for 3Dpol binding. As U-rich and A-rich regions are important for 3Dpol binding, a speculative model is proposed in which 3Dpol induces and stabilizes the base-pairing of the 3'-poly(A) with the adjacent U-rich sequence to form an unusual pseudoknot structure to which 3Dpol binds with high affinity.
Collapse
Affiliation(s)
- T Cui
- Institute of Molecular and Cell Biology, National University of Singapore, Kent Ridge Crescent
| | | |
Collapse
|
22
|
Song C, Simon AE. RNA-dependent RNA polymerase from plants infected with turnip crinkle virus can transcribe (+)- and (-)-strands of virus-associated RNAs. Proc Natl Acad Sci U S A 1994; 91:8792-6. [PMID: 8090725 PMCID: PMC44692 DOI: 10.1073/pnas.91.19.8792] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA-dependent RNA polymerase (RdRp) was solubilized from membranes of turnip infected with turnip crinkle virus (TCV), a single-stranded, monopartite RNA virus. The RdRp activity could be separated into three peaks by Sephacryl S500HR chromatography. RdRp from peak I, which contained substantial amounts of endogenous TCV genomic RNA, and peak II were template-specific, synthesizing full-length complementary strands of exogenous TCV subviral RNAs but not control RNA templates. Peak III RdRp was nonspecific, synthesizing full-sized products for all added RNA templates. Peak II RdRp transcribed several different TCV satellite (sat) and defective interfering RNA templates in both (+)- and (-)-sense orientations but did not transcribe (+)-strands of satellite RNAs associated with unrelated viruses. Monomeric-length sat-RNA C was synthesized from a template containing as many as 220 nonsatellite bases at the 3' ends of either (+)- or (-)-strands, indicating that the RdRp was able to recognize 3'-end sequences in an internal location. Deletion of 95-242 bases from the 3' end of (+)-strand sat-RNA C abolished the synthesis of template-length product. However, transcription of template-length products was not affected by the deletion of at least 257 bases from the 3' end of (-)-strand sat-RNA C template (leaving only the 100 5'-terminal residues), implying that different mechanisms exist for synthesis of (+)-and (-)-strand satellite RNA in vitro.
Collapse
Affiliation(s)
- C Song
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
23
|
Abstract
Many new RNA pseudoknot structures have been detected and proposed in the past year. Although we are still waiting for the first detailed structure of a pseudoknot, their role in processes such as translational autoregulation or ribosomal frameshifting has been extensively studied and is now well established. Pseudoknot structures appear to play a pivotal role in small subunit ribosomal RNA and in the noncoding regions of viral RNAs. There are also strong indications that RNA pseudoknots are highly suitable structural motifs for the recognition and binding of proteins.
Collapse
|
24
|
Zaccomer B, Cellier F, Boyer JC, Haenni AL, Tepfer M. Transgenic plants that express genes including the 3' untranslated region of the turnip yellow mosaic virus (TYMV) genome are partially protected against TYMV infection. Gene 1993; 136:87-94. [PMID: 8294045 DOI: 10.1016/0378-1119(93)90451-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to evaluate new possibilities for protecting plants against virus infection by interference with viral replication, two chimeric genes were constructed in which the (+) strand 3'-terminal 100 nucleotides (nt) of the noncoding region of the turnip yellow mosaic virus (TYMV) genome were placed downstream from the sense or antisense cat coding region. The two chimeric genes were then introduced into the genome of rapeseed (Brassica napus) using an Agrobacterium rhizogenes vector system. Plants expressing high levels of either chimeric gene showed partial protection against infection by TYMV RNA or virions. One interesting feature of the protection is that a proportion of the inoculated transgenic plants does not become infected. Protection was overcome when the inoculum concentration was increased. RNA complementary to the initial transcript was detected after infection.
Collapse
Affiliation(s)
- B Zaccomer
- Laboratoire de Biologie Cellulaire, INRA-Centre de Versailles, France
| | | | | | | | | |
Collapse
|