1
|
Sztachova T, Tomkova A, Cizmar E, Jancura D, Fabian M. Radical in the Peroxide-Produced F-Type Ferryl Form of Bovine Cytochrome c Oxidase. Int J Mol Sci 2022; 23:ijms232012580. [PMID: 36293434 PMCID: PMC9604133 DOI: 10.3390/ijms232012580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
The reduction of O2 in respiratory cytochrome c oxidases (CcO) is associated with the generation of the transmembrane proton gradient by two mechanisms. In one of them, the proton pumping, two different types of the ferryl intermediates of the catalytic heme a3-CuB center P and F forms, participate. Equivalent ferryl states can be also formed by the reaction of the oxidized CcO (O) with H2O2. Interestingly, in acidic solutions a single molecule of H2O2 can generate from the O an additional F-type ferryl form (F•) that should contain, in contrast to the catalytic F intermediate, a free radical at the heme a3-CuB center. In this work, the formation and the endogenous decay of both the ferryl iron of heme a3 and the radical in F• intermediate were examined by the combination of four experimental approaches, isothermal titration calorimetry, electron paramagnetic resonance, and electronic absorption spectroscopy together with the reduction of this form by the defined number of electrons. The results are consistent with the generation of radicals in F• form. However, the radical at the catalytic center is more rapidly quenched than the accompanying ferryl state of heme a3, very likely by the intrinsic oxidation of the enzyme itself.
Collapse
Affiliation(s)
- Tereza Sztachova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovakia
| | - Adriana Tomkova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovakia
| | - Erik Cizmar
- Department of Condensed Matter Physics, Faculty of Science, University of P. J. Safarik, Park Angelinum 9, 040 01 Kosice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovakia
- Correspondence: (D.J.); (M.F.)
| | - Marian Fabian
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovakia
- Correspondence: (D.J.); (M.F.)
| |
Collapse
|
2
|
Manoj KM, Bazhin NM, Tamagawa H, Jaeken L, Parashar A. The physiological role of complex V in ATP synthesis: Murzyme functioning is viable whereas rotary conformation change model is untenable. J Biomol Struct Dyn 2022; 41:3993-4012. [PMID: 35394896 DOI: 10.1080/07391102.2022.2060307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Complex V or FoF1-ATPase is a multimeric protein found in bioenergetic membranes of cells and organelles like mitochondria/chloroplasts. The popular perception on Complex V deems it as a reversible molecular motor, working bi-directionally (breaking or making ATP) via a conformation-change based chemiosmotic rotary ATP synthesis (CRAS) mechanism, driven by proton-gradients or trans-membrane potential (TMP). In continuance of our pursuits against the CRAS model of cellular bioenergetics, herein we demonstrate the validity of the murburn model based in diffusible reactive (oxygen) species (DRS/DROS). Supported by new in silico derived data (that there are ∼12 adenosine nucleotide binding sites on the F1 bulb and not merely 3 sites, as perceived earlier), available structural information, known experimental observations, and thermodynamic/kinetic considerations (that de-solvation of protons from hydronium ions is facile), we deduce that Complex V serves as a physiological chemostat and a murzyme (enzyme working via murburn scheme, employing DRS). That is- Complex V uses ATP (via consumption at ε or proteins of F1 module) as a Michaelis-Menten substrate to serve as a pH-stat by inletting protons via the c-ring of Fo module. Physiologically, Complex V also functions as a murzyme by presenting ADP/Pi (or their reaction intermediates) on the αβ bulb, thereby enabling greater opportunities for DRS/proton-assisted ATP formation. Thus, the murburn paradigm succeeds the CRAS hypothesis for explaining the role of oxygen in mitochondrial physiologies of oxidative phosphorylation, thermogenesis, TMP and homeostasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Biochemistry Department, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Nikolai Mikhailovich Bazhin
- Environmental Chemistry Department, Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Laurent Jaeken
- Industrial Sciences and Technology, Karel de Grote University College, Antwerp University Association, Hoboken, Belgium
| | - Abhinav Parashar
- Biochemistry Department, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| |
Collapse
|
3
|
Direct Interaction of Mitochondrial Cytochrome c Oxidase with Thyroid Hormones: Evidence for Two Binding Sites. Cells 2022; 11:cells11050908. [PMID: 35269529 PMCID: PMC8909594 DOI: 10.3390/cells11050908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Thyroid hormones regulate tissue metabolism to establish an energy balance in the cell, in particular, by affecting oxidative phosphorylation. Their long-term impact is mainly associated with changes in gene expression, while the short-term effects may differ in their mechanisms. Our work was devoted to studying the short-term effects of hormones T2, T3 and T4 on mitochondrial cytochrome c oxidase (CcO) mediated by direct contact with the enzyme. The data obtained indicate the existence of two separate sites of CcO interaction with thyroid hormones, differing in their location, affinity and specificity to hormone binding. First, we show that T3 and T4 but not T2 inhibit the oxidase activity of CcO in solution and on membrane preparations with Ki ≈ 100–200 μM. In solution, T3 and T4 compete in a 1:1 ratio with the detergent dodecyl-maltoside to bind to the enzyme. The peroxidase and catalase partial activities of CcO are not sensitive to hormones, but electron transfer from heme a to the oxidized binuclear center is affected. We believe that T3 and T4 could be ligands of the bile acid-binding site found in the 3D structure of CcO by Ferguson-Miller’s group, and hormone-induced inhibition is associated with dysfunction of the K-proton channel. A possible role of this interaction in the physiological regulation of the enzyme is discussed. Second, we find that T2, T3, and T4 inhibit superoxide generation by oxidized CcO in the presence of excess H2O2. Inhibition is characterized by Ki values of 0.3–5 μM and apparently affects the formation of O2●− at the protein surface. The second binding site for thyroid hormones presumably coincides with the point of tight T2 binding on the Va subunit described in the literature.
Collapse
|
4
|
Manoj KM, Gideon DA, Jaeken L. Why do cells need oxygen? Insights from mitochondrial composition and function. Cell Biol Int 2021; 46:344-358. [PMID: 34918410 DOI: 10.1002/cbin.11746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Mitochondrial membrane-embedded redox proteins are classically perceived as deterministic "electron transport chain" (ETC) arrays cum proton pumps; and oxygen is seen as an "immobile terminal electron acceptor." This is untenable because: (1) there are little free protons to be pumped out of the matrix; (2) proton pumping would be highly endergonic; (3) ETC-chemiosmosis-rotary ATP synthesis proposal is "irreducibly complex"/"non-evolvable" and does not fit with mitochondrial architecture or structural/distribution data of the concerned proteins/components; (4) a plethora of experimental observations do not conform to the postulates/requisites; for example, there is little evidence for viable proton-pumps/pH-gradient in mitochondria, trans-membrane potential (TMP) is non-fluctuating/non-trappable, oxygen is seen to give copious "diffusible reactive (oxygen) species" (DRS/DROS) in milieu, etc. Quite contrarily, the newly proposed murburn model's tenets agree with known principles of energetics/kinetics, and builds on established structural data and reported observations. In this purview, oxygen is needed to make DRS, the principal component of mitochondrial function. Complex V and porins respectively serve as proton-inlet and turgor-based water-exodus portals, thereby achieving organellar homeostasis. Complexes I to IV possess ADP-binding sites and their redox-centers react/interact with O2 /DRS. At/around these complexes, DRS cross-react or activate/oxidize ADP/Pi via fast thermogenic one-electron reaction(s), condensing to form two-electron stabilized products (H2 O2 /H2 O/ATP). The varied architecture and distribution of components in mitochondria validate DRS as (i) the coupling agent of oxidative reactions and phosphorylations, and (ii) the primary reason for manifestation of TMP in steady-state. Explorations along the new precepts stand to provide greater insights on mitochondrial function and pathophysiology.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Kerala, India
| | - Daniel Andrew Gideon
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Kerala, India
| | - Laurent Jaeken
- Industrial Sciences and Technology, Karel de Grote-Hogeschool, Association University and High Schools Antwerp, Antwerpen, Belgium
| |
Collapse
|
5
|
Borisov VB, Siletsky SA, Nastasi MR, Forte E. ROS Defense Systems and Terminal Oxidases in Bacteria. Antioxidants (Basel) 2021; 10:antiox10060839. [PMID: 34073980 PMCID: PMC8225038 DOI: 10.3390/antiox10060839] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) comprise the superoxide anion (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2). ROS can damage a variety of macromolecules, including DNA, RNA, proteins, and lipids, and compromise cell viability. To prevent or reduce ROS-induced oxidative stress, bacteria utilize different ROS defense mechanisms, of which ROS scavenging enzymes, such as superoxide dismutases, catalases, and peroxidases, are the best characterized. Recently, evidence has been accumulating that some of the terminal oxidases in bacterial respiratory chains may also play a protective role against ROS. The present review covers this role of terminal oxidases in light of recent findings.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
- Correspondence: (V.B.B.); (E.F.)
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
| | - Martina R. Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
- Correspondence: (V.B.B.); (E.F.)
| |
Collapse
|
6
|
Sztachova T, Pechova I, Mikulova L, Stupak M, Jancura D, Fabian M. Peroxide stimulated transition between the ferryl intermediates of bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148447. [PMID: 33971156 DOI: 10.1016/j.bbabio.2021.148447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
During catalysis of cytochrome c oxidases (CcO) several ferryl intermediates of the catalytic heme a3-CuB center are observed. In the PM ferryl state, produced by the reaction of two-electron reduced CcO with O2, the ferryl iron of heme a3 and a free radical are present at the catalytic center. The radical reduction stimulates the transition of the PM into another ferryl F state. Similar ferryl states can be also generated from the oxidized CcO (O) in the reaction with H2O2. The PM, the product of the reaction of the O with one molecule of peroxide, is transformed into the F state by the second molecule of H2O2. However, the chemical nature of this transition has not been unambiguously elucidated yet. Here, we examined the redox state of the peroxide-produced PM and F states by the one-electron reduction. The F form and interestingly also the major fraction of the PM sample, likely another P-type ferryl form (PR), were found to be the one oxidizing equivalent above the O state. However, the both P-type forms are transformed into the F state by additional molecule of H2O2. It is suggested that the PR-to-F transition is due to the binding of H2O2 to CuB triggering a structural change together with the uptake of H+ at the catalytic center. In the PM-to-F conversion, these two events are complemented with the annihilation of radical by the intrinsic oxidation of the enzyme.
Collapse
Affiliation(s)
- T Sztachova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovak Republic
| | - I Pechova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovak Republic
| | - L Mikulova
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovak Republic
| | - M Stupak
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, University of P. J. Safarik, Trieda SNP 1, 040 11 Kosice, Slovak Republic
| | - D Jancura
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovak Republic.
| | - M Fabian
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovak Republic.
| |
Collapse
|
7
|
Mikulova L, Pechova I, Jancura D, Stupak M, Fabian M. Thermodynamics of the P-type Ferryl Form of Bovine Cytochrome c Oxidase. BIOCHEMISTRY (MOSCOW) 2021; 86:74-83. [DOI: 10.1134/s0006297921010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Oleynikov IP, Azarkina NV, Vygodina TV, Konstantinov AA. Mechanism of Inhibition of Cytochrome c Oxidase by Triton X-100. BIOCHEMISTRY (MOSCOW) 2021; 86:44-58. [DOI: 10.1134/s0006297921010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Shimada A, Etoh Y, Kitoh-Fujisawa R, Sasaki A, Shinzawa-Itoh K, Hiromoto T, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O 2 activation and unidirectional proton-pump mechanisms. J Biol Chem 2020; 295:5818-5833. [PMID: 32165497 PMCID: PMC7186171 DOI: 10.1074/jbc.ra119.009596] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 03/09/2020] [Indexed: 01/07/2023] Open
Abstract
Cytochrome c oxidase (CcO) reduces O2 to water, coupled with a proton-pumping process. The structure of the O2-reduction site of CcO contains two reducing equivalents, Fe a32+ and CuB1+, and suggests that a peroxide-bound state (Fe a33+-O--O--CuB2+) rather than an O2-bound state (Fe a32+-O2) is the initial catalytic intermediate. Unexpectedly, however, resonance Raman spectroscopy results have shown that the initial intermediate is Fe a32+-O2, whereas Fe a33+-O--O--CuB2+ is undetectable. Based on X-ray structures of static noncatalytic CcO forms and mutation analyses for bovine CcO, a proton-pumping mechanism has been proposed. It involves a proton-conducting pathway (the H-pathway) comprising a tandem hydrogen-bond network and a water channel located between the N- and P-side surfaces. However, a system for unidirectional proton-transport has not been experimentally identified. Here, an essentially identical X-ray structure for the two catalytic intermediates (P and F) of bovine CcO was determined at 1.8 Å resolution. A 1.70 Å Fe-O distance of the ferryl center could best be described as Fe a34+ = O2-, not as Fe a34+-OH- The distance suggests an ∼800-cm-1 Raman stretching band. We found an interstitial water molecule that could trigger a rapid proton-coupled electron transfer from tyrosine-OH to the slowly forming Fe a33+-O--O--CuB2+ state, preventing its detection, consistent with the unexpected Raman results. The H-pathway structures of both intermediates indicated that during proton-pumping from the hydrogen-bond network to the P-side, a transmembrane helix closes the water channel connecting the N-side with the hydrogen-bond network, facilitating unidirectional proton-pumping during the P-to-F transition.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Yuki Etoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Rika Kitoh-Fujisawa
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Ai Sasaki
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Takeshi Hiromoto
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazumasa Muramoto
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan.
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan; Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan.
| |
Collapse
|
10
|
Manoj KM, Soman V, David Jacob V, Parashar A, Gideon DA, Kumar M, Manekkathodi A, Ramasamy S, Pakshirajan K, Bazhin NM. Chemiosmotic and murburn explanations for aerobic respiration: Predictive capabilities, structure-function correlations and chemico-physical logic. Arch Biochem Biophys 2019; 676:108128. [PMID: 31622585 DOI: 10.1016/j.abb.2019.108128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
Since mid-1970s, the proton-centric proposal of 'chemiosmosis' became the acclaimed explanation for aerobic respiration. Recently, significant theoretical and experimental evidence were presented for an oxygen-centric 'murburn' mechanism of mitochondrial ATP-synthesis. Herein, we compare the predictive capabilities of the two models with respect to the available information on mitochondrial reaction chemistry and the membrane proteins' structure-function correlations. Next, fundamental queries are addressed on thermodynamics of mitochondrial oxidative phosphorylation (mOxPhos): (1) Can the energy of oxygen reduction be utilized for proton transport? (2) Is the trans-membrane proton differential harness-able as a potential energy capable of doing useful work? and (3) Whether the movement of miniscule amounts of mitochondrial protons could give rise to a potential of ~200 mV and if such an electrical energy could sponsor ATP-synthesis. Further, we explore critically if rotary ATPsynthase activity of Complex V can account for physiological ATP-turnovers. We also answer the question- "What is the role of protons in the oxygen-centric murburn scheme of aerobic respiration?" Finally, it is demonstrated that the murburn reaction model explains the fast kinetics, non-integral stoichiometry and high yield of mOxPhos. Strategies are charted to further demarcate the two explanations' relevance in the cellular physiology of aerobic respiration.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala, 679122, India.
| | - Vidhu Soman
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vivian David Jacob
- Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala, 679122, India
| | - Abhinav Parashar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522213, India
| | - Daniel Andrew Gideon
- Department of Biotechnology & Bioinformatics, Bishop Heber College (Autonomous), Tennur, Tiruchirappalli, 620017, India
| | - Manish Kumar
- Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala, 679122, India
| | - Afsal Manekkathodi
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Al-Rayyan PO Box 34110, Qatar
| | - Surjith Ramasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Nikolai Mikhailovich Bazhin
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, St. Institutskaya 3, 630090, Novosibirsk, Russia.
| |
Collapse
|
11
|
Manoj KM, Parashar A, David Jacob V, Ramasamy S. Aerobic respiration: proof of concept for the oxygen-centric murburn perspective. J Biomol Struct Dyn 2019; 37:4542-4556. [PMID: 30488771 DOI: 10.1080/07391102.2018.1552896] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inner mitochondrial membrane protein complexes (I-V) and prokaryotic respiratory machinery are examined for a deeper understanding of their structure-function correlations and dynamics. In silico analysis of the structure of complexes I-IV, docking studies and erstwhile literature confirm that they carry sites which are in close proximity to DROS (diffusible reactive oxygen species) generating redox centers. These findings provide supportive evidence for the newly proposed oxygen-centric chemical-coupling mechanism (murburn concept), wherein DROS catalyzes the esterification of inorganic phosphate to ADP. Further, in a reductionist system, we demonstrate that a DROS (like superoxide) can effectively esterify inorganic phosphate to ADP. The impact of these findings and the interactive dynamics of classical inhibitors (rotenone and cyanide), uncouplers (dinitrophenol and uncoupling protein) and other toxins (atractyloside and oligomycin) are briefly discussed. Highlights • Earlier perception: Complexes (I-IV) pump protons and Complex V make ATP (aided by protons) • Herein: Respiratory molecular machinery is probed for new structure-function correlations • Analyses: Quantitative arguments discount proton-centric ATP synthesis in mitochondria and bacteria • In silico data: ADP-binding sites and O2/ diffusible reactive oxygen species (DROS)-accessible channels are unveiled in respiratory proteins • In vitro data: Using luminometry, ATP synthesis is demonstrated from ADP, Pi and superoxide • Inference: Findings agree with decentralized ADP-Pi activation via oxygen-centric murburn scheme Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Abhinav Parashar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research , Vadlamudi , Guntur, Andhra Pradesh, India
| | | | - Surjith Ramasamy
- Department of Biotechnology, Indian Institute of Technology Guwahati , Guwahati , Assam, India
| |
Collapse
|
12
|
Jancura D, Stanicova J, Palmer G, Fabian M. How hydrogen peroxide is metabolized by oxidized cytochrome c oxidase. Biochemistry 2014; 53:3564-75. [PMID: 24840065 PMCID: PMC4059527 DOI: 10.1021/bi401078b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the absence of external electron donors, oxidized bovine cytochrome c oxidase (CcO) exhibits the ability to decompose excess H2O2. Depending on the concentration of peroxide, two mechanisms of degradation were identified. At submillimolar peroxide concentrations, decomposition proceeds with virtually no production of superoxide and oxygen. In contrast, in the millimolar H2O2 concentration range, CcO generates superoxide from peroxide. At submillimolar concentrations, the decomposition of H2O2 occurs at least at two sites. One is the catalytic heme a3-CuB center where H2O2 is reduced to water. During the interaction of the enzyme with H2O2, this center cycles back to oxidized CcO via the intermediate presence of two oxoferryl states. We show that at pH 8.0 two molecules of H2O2 react with the catalytic center accomplishing one cycle. In addition, the reactions at the heme a3-CuB center generate the surface-exposed lipid-based radical(s) that participates in the decomposition of peroxide. It is also found that the irreversible decline of the catalytic activity of the enzyme treated with submillimolar H2O2 concentrations results specifically from the decrease in the rate of electron transfer from heme a to the heme a3-CuB center during the reductive phase of the catalytic cycle. The rates of electron transfer from ferrocytochrome c to heme a and the kinetics of the oxidation of the fully reduced CcO with O2 were not affected in the peroxide-modified CcO.
Collapse
Affiliation(s)
- Daniel Jancura
- Department of Biophysics, University of P. J. Safarik , Kosice, Slovak Republic
| | | | | | | |
Collapse
|
13
|
Ashe D, Alleyne T, Wilson M, Svistunenko D, Nicholls P. Redox equilibration after one-electron reduction of cytochrome c oxidase: radical formation and a possible hydrogen relay mechanism. Arch Biochem Biophys 2014; 554:36-43. [PMID: 24811894 DOI: 10.1016/j.abb.2014.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/09/2014] [Accepted: 04/25/2014] [Indexed: 11/17/2022]
Abstract
Kinetic studies using UV/visible and EPR spectroscopy were carried out to follow the distribution of electrons within beef heart cytochrome c oxidase (CcO), both active and cyanide-inhibited, following addition of reduced cytochrome c as electron donor. In the initial one-electron reduced state the electron is shared between three redox centers, heme a, CuA and a third site, probably CuB. Using a rapid freeze system and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) a protein radical was also detected. The EPR spectrum of the DMPO adduct of this radical was consistent with tyrosyl radical capture. This may be a feature of a charge relay mechanism involved in some part of the CcO electron transfer system from bound cytochrome c via CuA and heme a to the a3CuB binuclear center.
Collapse
Affiliation(s)
- Damian Ashe
- Biochemistry Unit, Department of Pre-Clinical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Trevor Alleyne
- Biochemistry Unit, Department of Pre-Clinical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Michael Wilson
- Molecular Biophysics Research Group, School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Dimitri Svistunenko
- Molecular Biophysics Research Group, School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Peter Nicholls
- Molecular Biophysics Research Group, School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK.
| |
Collapse
|
14
|
True wild type and recombinant wild type cytochrome c oxidase from Paracoccus denitrificans show a 20-fold difference in their catalase activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:319-27. [DOI: 10.1016/j.bbabio.2012.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 11/19/2022]
|
15
|
Interconversions of P and F intermediates of cytochrome c oxidase from Paracoccus denitrificans. Proc Natl Acad Sci U S A 2011; 108:3964-9. [PMID: 21368144 DOI: 10.1073/pnas.1100950108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c oxidase (CcO) is the terminal enzyme of the respiratory chain. This redox-driven proton pump catalyzes the four-electron reduction of molecular oxygen to water, one of the most fundamental processes in biology. Elucidation of the intermediate structures in the catalytic cycle is crucial for understanding both the mechanism of oxygen reduction and its coupling to proton pumping. Using CcO from Paracoccus denitrificans, we demonstrate that the artificial F state, classically generated by reaction with an excess of hydrogen peroxide, can be converted into a new P state (in contradiction to the conventional direction of the catalytic cycle) by addition of ammonia at pH 9. We suggest that ammonia coordinates directly to Cu(B) in the binuclear active center in this P state and discuss the chemical structures of both oxoferryl intermediates F and P. Our results are compatible with a superoxide bound to Cu(B) in the F state.
Collapse
|
16
|
Sedlák E, Fabian M, Robinson NC, Musatov A. Ferricytochrome c protects mitochondrial cytochrome c oxidase against hydrogen peroxide-induced oxidative damage. Free Radic Biol Med 2010; 49:1574-81. [PMID: 20801213 PMCID: PMC2953960 DOI: 10.1016/j.freeradbiomed.2010.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/13/2010] [Accepted: 08/18/2010] [Indexed: 02/06/2023]
Abstract
An excess of ferricytochrome c protects purified mitochondrial cytochrome c oxidase and bound cardiolipin from hydrogen peroxide-induced oxidative modification. All of the peroxide-induced changes within cytochrome c oxidase, such as oxidation of Trp(19,IV) and Trp(48,VIIc), partial dissociation of subunits VIa and VIIa, and generation of cardiolipin hydroperoxide, no longer take place in the presence of ferricytochrome c. Furthermore, ferricytochrome c suppresses the yield of H(2)O(2)-induced free radical detectable by electron paramagnetic resonance spectroscopy within cytochrome c oxidase. These protective effects are based on two mechanisms. The first involves the peroxidase/catalase-like activity of ferricytochrome c, which results in the decomposition of H(2)O(2), with the apparent bimolecular rate constant of 5.1±1.0M(-1)s(-1). Although this value is lower than the rate constant of a specialized peroxidase, the activity is sufficient to eliminate H(2)O(2)-induced damage to cytochrome c oxidase in the presence of an excess of ferricytochrome c. The second mechanism involves ferricytochrome c-induced quenching of free radicals generated within cytochrome c oxidase. These results suggest that ferricytochrome c may have an important role in protection of cytochrome c oxidase and consequently the mitochondrion against oxidative damage.
Collapse
Affiliation(s)
| | | | | | - Andrej Musatov
- Corresponding author. . Telephone: (210) 567-3779. Fax: (210) 567-6595
| |
Collapse
|
17
|
Bolshakov IA, Vygodina TV, Gennis R, Karyakin AA, Konstantinov AA. Catalase Activity of Cytochrome c Oxidase Assayed with Hydrogen Peroxide-Sensitive Electrode Microsensor. BIOCHEMISTRY (MOSCOW) 2010; 75:1352-60. [DOI: 10.1134/s0006297910110064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Nouette-Gaulain K, Quinart A, Letellier T, Sztark F. [Mitochondria in anaesthesia and intensive care]. ACTA ACUST UNITED AC 2007; 26:319-33. [PMID: 17349772 DOI: 10.1016/j.annfar.2007.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Accepted: 01/17/2007] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Mitochondria play a key role in energy metabolism within the cell through the oxidative phosphorylation. They are also involved in many cellular processes like apoptosis, calcium signaling or reactive oxygen species production. The objectives of this review are to understand the interactions between mitochondrial metabolism and anaesthetics or different stress situations observed in ICU and to know the clinical implications. DATA SOURCES References were obtained from PubMed data bank (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) using the following keywords: mitochondria, anaesthesia, anaesthetics, sepsis, preconditioning, ischaemia, hypoxia. DATA SYNTHESIS Mitochondria act as a pharmacological target for the anaesthetic agents. The effects can be toxic like in the case of the local anaesthetics-induced myotoxicity. On the other hand, beneficial effects are observed in the anaesthetic-induced myocardial preconditioning. Mitochondrial metabolism could be disturbed in many critical situations (sepsis, chronic hypoxia, ischaemia-reperfusion injury). The study of the underlying mechanisms should allow to propose in the future new specific therapeutics.
Collapse
Affiliation(s)
- K Nouette-Gaulain
- Département d'anesthésie-réanimation I, CHU Pellegrin, 33076 Bordeaux cedex, France
| | | | | | | |
Collapse
|
19
|
Musser SM, Stowell MH, Chan SI. Cytochrome c oxidase: chemistry of a molecular machine. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 71:79-208. [PMID: 8644492 DOI: 10.1002/9780470123171.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The plethora of proposed chemical models attempting to explain the proton pumping reactions catalyzed by the CcO complex, especially the number of recent models, makes it clear that the problem is far from solved. Although we have not discussed all of the models proposed to date, we have described some of the more detailed models in order to illustrate the theoretical concepts introduced at the beginning of this section on proton pumping as well as to illustrate the rich possibilities available for effecting proton pumping. It is clear that proton pumping is effected by conformational changes induced by oxidation/reduction of the various redox centers in the CcO complex. It is for this reason that the CcO complex is called a redox-linked proton pump. The conformational changes of the proton pump cycle are usually envisioned to be some sort of ligand-exchange reaction arising from unstable geometries upon oxidation/reduction of the various redox centers. However, simple geometrical rearrangements, as in the Babcock and Mitchell models are also possible. In any model, however, hydrogen bonds must be broken and reformed due to conformational changes that result from oxidation/reduction of the linkage site during enzyme turnover. Perhaps the most important point emphasized in this discussion, however, is the fact that proton pumping is a directed process and it is electron and proton gating mechanisms that drive the proton pump cycle in the forward direction. Since many of the models discussed above lack effective electron and/or proton gating, it is clear that the major difficulty in developing a viable chemical model is not formulating a cyclic set of protein conformational changes effecting proton pumping (redox linkage) but rather constructing the model with a set of physical constraints so that the proposed cycle proceeds efficiently as postulated. In our discussion of these models, we have not been too concerned about which electron of the catalytic cycle was entering the site of linkage, but merely whether an ET to the binuclear center played a role. However, redox linkage only occurs if ET to the activated binuclear center is coupled to the proton pump. Since all of the models of proton pumping presented here, with the exception of the Rousseau expanded model and the Wikström model, have a maximum stoichiometry of 1 H+/e-, they inadequately explain the 2 H+/e- ratio for the third and fourth electrons of the dioxygen reduction cycle (see Section V.B). One way of interpreting this shortfall of protons is that the remaining protons are pumped by an as yet undefined indirectly coupled mechanism. In this scenario, the site of linkage could be coupled to the pumping of one proton in a direct fashion and one proton in an indirect fashion for a given electron. For a long time, it was assumed that at least some elements of such an indirect mechanism reside in subunit III. While recent evidence argues against the involvement of subunit III in the proton pump, subunit III may still participate in a regulatory and/or structural capacity (Section II.E). Attention has now focused on subunits I and II in the search for residues intimately involved in the proton pump mechanism and/or as part of a proton channel. In particular, the role of some of the highly conserved residues of helix VIII of subunit I are currently being studied by site directed mutagenesis. In our opinion, any model that invokes heme alpha 3 or CuB as the site of linkage must propose a very effective means by which the presumedly fast uncoupling ET to the dioxygen intermediates is prevented. It is difficult to imagine that ET over the short distance from heme alpha 3 or CuB to the dioxygen intermediate requires more than 1 ns. In addition, we expect the conformational changes of the proton pump to require much more than 1 ns (see Section V.B).
Collapse
Affiliation(s)
- S M Musser
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
20
|
Fabian M, Skultety L, Jancura D, Palmer G. Implications of ligand binding studies for the catalytic mechanism of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:298-305. [PMID: 15100045 DOI: 10.1016/j.bbabio.2003.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 07/17/2003] [Indexed: 11/28/2022]
Abstract
The reaction of oxidized bovine heart cytochrome c oxidase (CcO) with one equivalent of hydrogen peroxide results in the formation of two spectrally distinct species. The yield of these two forms is controlled by the ionization of a group with a pK(a) of 6.6. At basic pH, where this group is deprotonated, an intermediate called P dominates (P, because it was initially believed to be a peroxy compound). At acidic pH where the group is protonated, a different species, called F (ferryl intermediate) is obtained. We previously proposed that the only difference between these two species is the presence of one proton in the catalytic center of F that is absent in P. It is now suggested that the catalytic center of this F form has the same redox and protonation state as a second ferryl intermediate produced at basic pH by two equivalents of hydrogen peroxide; the role of the second equivalent of H(2)O(2) is that of a proton donor in the conversion of P to F. Two chloride-binding sites have been detected in oxidized CcO. One site is located at the binuclear center; the second site was identified from the sensitivity of g=3 signal of cytochrome a to chloride in the EPR spectra of oxidized CcO. Turnover of CcO releases chloride from the catalytic center into the medium probably by one of the hydrophobic channels, proposed for oxygen access, with an orientation parallel to the membrane plane. Chloride in the binuclear center is most likely not involved in CcO catalysis. The influence of the second chloride site upon several reactions of CcO has been assessed. No correlation was found between chloride binding to the second site and the reactions that were examined.
Collapse
Affiliation(s)
- Marian Fabian
- Department of Biochemistry and Cell Biology, Rice University MS 140, P.O. Box 1892, 6100 Main, Houston TX 77005, USA.
| | | | | | | |
Collapse
|
21
|
Chen YR, Mason RP. Mechanism in the reaction of cytochrome c oxidase with organic hydroperoxides: an ESR spin-trapping investigation. Biochem J 2002; 365:461-9. [PMID: 11931642 PMCID: PMC1222682 DOI: 10.1042/bj20020170] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Revised: 03/25/2002] [Accepted: 04/02/2002] [Indexed: 11/17/2022]
Abstract
Organic hydroperoxides are of great utility in probing the reaction mechanism and the toxicological consequences of lipid peroxidation. In the present study, ESR spin-trapping was employed to investigate the peroxidation of mitochondrial cytochrome c oxidase (CcO) with t-butyl hydroperoxide (t-BuOOH) and cumene hydroperoxide (CumOOH). The spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was used to detect the radical species formed from the reaction of CcO with t-BuOOH. The presence of t-BuOOH-derived alkoxyl radical (t-BuO*) as the primary radical indicates reductive scission of the O-O bond by CcO. The ESR signal of DMPO/*Ot-Bu can be partially abolished by cyanide, implying that the reductive cleavage involved the haem a(3)Cu(B) binuclear site of CcO. A nitroso spin trap, 2-methyl-2-nitrosopropane (MNP), was used to detect and identify radical species from the reaction of CcO with CumOOH. In addition to the t-BuOOH-derived methyl, hydroxylmethyl and tertiary carbon-centred radicals, a protein-derived radical was detected. The intensity of the ESR signal from the protein radical increased with the CumOOH concentration at low CumOOH/CcO ratios, with maximal intensity at a ratio of 100 mol of CumOOH/mol of CcO. The immobilized protein radical adduct of MNP was stable and persistent after dialysis; it was also resistant to proteolytic digestion, suggesting that it was formed in the transmembrane region, a region that is not accessible to proteases. Its signal was greatly enhanced when CcO cysteine residues were chemically modified by N-ethylmaleimide, when the tryptophan residues in CcO were oxidized by N-bromosuccimide, and when tyrosine residues on the surface of CcO were iodinated, showing that a radical equilibrium was established among the cysteine, tryptophan and tyrosine residues of the protein-centred radical. Pre-treatment of CcO with cyanide prevented detectable MNP adduct formation, confirming that the haem a(3)-Cu(B) binuclear centre was the initial reaction site. When the CcO was pre-treated with 10 mM (100 equivalents) of CumOOH, the enzyme activity decreased by more than 20%. This inhibition was persistent after dialysis, suggesting that the detected protein-centred radical was, in part, involved in the irreversible inactivation by CumOOH. Visible spectroscopic analysis revealed that the haem a of CcO was not affected during the reaction. However, the addition of pyridine to the reaction mixture under alkaline conditions resulted in the destruction of the haem centre of CcO, suggesting that its protein matrix rather than its haem a is the target of oxidative damage by the organic hydroperoxide.
Collapse
Affiliation(s)
- Yeong-Renn Chen
- The Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
22
|
Pecoraro C, Gennis RB, Vygodina TV, Konstantinov AA. Role of the K-channel in the pH-dependence of the reaction of cytochrome c oxidase with hydrogen peroxide. Biochemistry 2001; 40:9695-708. [PMID: 11583170 DOI: 10.1021/bi010115v] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of cytochrome c oxidase (COX) from Rhodobacter sphaeroides with hydrogen peroxide has been studied at alkaline (pH 8.5) and acidic (pH 6.5) conditions with the aid of a stopped-flow apparatus. Absorption changes in the entire 350-800 nm spectral range were monitored and analyzed by a global fitting procedure. The reaction can be described by the sequential formation of two intermediates analogous to compounds I and II of peroxidases: oxidized COX + H2O2 --> intermediate I --> intermediate II. At pH as high as 8.5, intermediate I appears to be a mixture of at least two species characterized by absorption bands at approximately 607 nm (P607) and approximately 580 nm (F-I580) that rise synchronously. At acidic pH (6.5), intermediate I is represented mainly by a component with an alpha-peak around 575 nm (F-I575) that is probably equivalent to the so-called F* species observed with the bovine COX. The data are consistent with a pH-dependent reaction branching at the step of intermediate I formation. To get further insight into the mechanism of the pH-dependence, the peroxide reaction was studied using two mutants of the R. sphaeroides oxidase, K362M and D132N, that block, respectively, the proton-conducting K- and D-channels. The D132N mutation does not affect significantly the Ox --> intermediate I step of the peroxide reaction. In contrast, K362M replacement exerts a dramatic effect, eliminating the pH-dependence of intermediate I formation. The data obtained allow us to propose that formation of the acidic form of intermediate I (F-I575, F*) requires protonation of some group at/near the binuclear site that follows or is concerted with peroxide binding. The protonation involves specifically the K-channel. Presumably, a proton vacancy can be generated in the site as a consequence of the proton-assisted heterolytic scission of the O-O bond of the bound peroxide. The results are consistent with a proposal [Vygodina, T. V., Pecoraro, C., Mitchell, D., Gennis, R., and Konstantinov, A. A. (1998) Biochemistry 37, 3053-3061] that the K-channel may be involved in the delivery of the first four protons in the catalytic cycle (starting from reduction of the oxidized form) including proton uptake coupled to reduction of the binuclear site and transfer of protons driven by cleavage of the dioxygen O-O bond in the binculear site. Once peroxide intermediate I has been formed, generation of a strong oxene ligand at the heme a3 iron triggers a transition of the enzyme to the "peroxidase conformation" in which the K-channel is closed and the binuclear site becomes protonically disconnected from the bulk aqueous phase.
Collapse
Affiliation(s)
- C Pecoraro
- Department of Biochemistry, University of Illinois, Urbana 61801, USA
| | | | | | | |
Collapse
|
23
|
Bogoyevitch MA, Ng DC, Court NW, Draper KA, Dhillon A, Abas L. Intact mitochondrial electron transport function is essential for signalling by hydrogen peroxide in cardiac myocytes. J Mol Cell Cardiol 2000; 32:1469-80. [PMID: 10900173 DOI: 10.1006/jmcc.2000.1187] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress has been proposed as a mediator of cardiac injury during ischemia and reperfusion. We examined the signalling events initiated by short-term exposure of cardiac myocytes to oxidative stress elicited by hydrogen peroxide. A potent stimulation of tyrosine phosphorylation was observed within 1 to 2 min exposure to 1 m m hydrogen peroxide. Within 5 min, the ERK mitogen-activated protein kinases (ERK MAPKs) were activated. This activation of ERK MAPKs was blocked by N-acetylcysteine (NAC), implicating a role for free radicals in the signalling events. NAC failed to inhibit ERK MAPK activation by the hypertrophic agent, phenylephrine, or hyperosmotic shock. Myxothiazol, an inhibitor of complex III of the mitochondrial electron transport chain, also inhibited ERK MAPK activation by hydrogen peroxide, but not by 12- O -tetradecanoylphorbol-13-acetate (TPA) or hyperosmotic shock. Myxothiazol completely inhibited the increase in tyrosine phosphorylated proteins observed with hydrogen peroxide treatment. A variety of inhibitors which act at different levels of the mitochondrial electron transport chain (rotenone, theonyltrifluoroacetone, antimycin A, cyanide) also inhibited activation of the ERK MAPKs by hydrogen peroxide but not TPA or hyperosmotic shock. These studies suggest a novel mechanism of regulation of the ERK MAPK pathway and oxidative stress signalling by hydrogen peroxide.
Collapse
Affiliation(s)
- M A Bogoyevitch
- Department of Biochemistry, University of Western Australia, Nedlands, Western Australia, 6907, Australia.
| | | | | | | | | | | |
Collapse
|
24
|
Jünemann S, Heathcote P, Rich PR. The reactions of hydrogen peroxide with bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1456:56-66. [PMID: 10611456 DOI: 10.1016/s0005-2728(99)00105-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidised cytochrome c oxidase is known to react with two molecules of hydrogen peroxide to form consecutively 607 nm 'Peroxy' and 580-nm 'Ferryl' species. These are widely used as model compounds for the equivalent P and F intermediates of the catalytic cycle. However, kinetic analysis of the reaction with H(2)O(2) in the pH range 6.0-9.0 reveals a more complex situation. In particular, as the pH is lowered, a 580-nm compound can be formed by reaction with a single H(2)O(2). This species, termed F(&z.rad;), is spectrally similar, but not identical, to F. The reactions are equivalent to those previously reported for the bo type quinol oxidase from Escherichia coli (T. Brittain, R.H. Little, C. Greenwood, N.J. Watmough, FEBS Lett. 399 (1996) 21-25) where it was proposed that F(&z.rad;) is produced directly from P. However, in the bovine oxidase F(&z.rad;) does not appear in samples of the 607-nm form, P(M), produced by CO/O(2) treatment, even at low pH, although this form is shown to be identical to the H(2)O(2)-derived P state, P(H), on the basis of spectral characteristics and kinetics of reaction with H(2)O(2). Furthermore, lowering the pH of a sample of P(M) or P(H) generated at high pH results in F(&z.rad;) formation only on a minutes time scale. It is concluded that P and F(&z.rad;) are not in a rapid, pH-dependent equilibrium, but instead are formed by distinct pathways and cannot interconvert in a simple manner, and that the crucial difference between them lies in their patterns of protonation.
Collapse
Affiliation(s)
- S Jünemann
- The Glynn Laboratory of Bioenergetics, Department of Biology, University College London, Gower Street, London, UK
| | | | | |
Collapse
|
25
|
Proshlyakov DA, Pressler MA, Babcock GT. Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase. Proc Natl Acad Sci U S A 1998; 95:8020-5. [PMID: 9653133 PMCID: PMC20922 DOI: 10.1073/pnas.95.14.8020] [Citation(s) in RCA: 249] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Elucidating the structures of intermediates in the reduction of O2 to water by cytochrome c oxidase is crucial to understanding both oxygen activation and proton pumping by the enzyme. In the work here, the reaction of O2 with the mixed-valence enzyme, in which only heme a3 and CuB in the binuclear center are reduced, has been followed by time-resolved resonance Raman spectroscopy. The results show that O==O bond cleavage occurs within the first 200 micros after reaction initiation; the presence of a uniquely stable Fe---O---O(H) peroxy species is not detected. The product of this rapid reaction is a heme a3 oxoferryl (FeIV==O) species, which requires that an electron donor in addition to heme a3 and CuB must be involved. The available evidence suggests that the additional donor is an amino acid side chain. Recent crystallographic data [Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Yamashita, E., Inoue, N., Yao, M., Fei, M. J., Libeu, C. P., Mizushima, T., et al. Science, in press; Ostermeier, C., Harrenga, A. , Ermler, U. & Michel, H. (1997) Proc. Natl. Acad. Sci. USA 94, 10547-10553] show that one of the CuB ligands, His240, is cross-linked to Tyr244 and that this cross-linked tyrosyl is ideally positioned to participate in dioxygen activation. We propose a mechanism for O---O bond cleavage that proceeds by concerted hydrogen atom transfer from the cross-linked His---Tyr species to produce the product oxoferryl species, CuB2+---OH-, and the tyrosyl radical. This mechanism provides molecular structures for two key intermediates that drive the proton pump in oxidase; moreover, it has clear analogies to the proposed O---O bond forming chemistry that occurs during O2 evolution in photosynthesis.
Collapse
Affiliation(s)
- D A Proshlyakov
- Chemistry Department and Laser Laboratory, Michigan State University, East Lansing, Michigan 48824-1322, USA
| | | | | |
Collapse
|
26
|
Vygodina TV, Pecoraro C, Mitchell D, Gennis R, Konstantinov AA. Mechanism of inhibition of electron transfer by amino acid replacement K362M in a proton channel of Rhodobacter sphaeroides cytochrome c oxidase. Biochemistry 1998; 37:3053-61. [PMID: 9485458 DOI: 10.1021/bi971876u] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The three-dimensional structure of cytochrome coxidase (COX) reveals two potential input proton channels connecting the redox core of the enzyme with the negatively charged (N-) aqueous phase. These are denoted as the K-channel (for the highly conserved lysine residue, K362 in Rhodobacter sphaeroides COX) and the D-channel (for the highly conserved aspartate gating the channel at the N-side, D132 in R. sphaeroides). In this paper, it is shown that the K362M mutant form of COX from R. sphaeroides, although unable to turnover with dioxygen as electron acceptor, can utilize hydrogen peroxide as an electron acceptor, with either cytochrome c or ferrocyanide as electron donors, with turnover that is close to that of the wild-type enzyme. The peroxidase activity is similar to that of the wild-type oxidase and is coupled to the generation of a membrane potential and to proton pumping. In contrast, no peroxidase activity is revealed in the D-channel mutants of COX, D132N, and E286Q. Reduction by dithionite of heme a3 in the fully oxidized oxidase is severely inhibited in the K362M mutant, but not in the D132N mutant. Apparently, mutations in the D-channel arrest COX turnover by inhibiting proton uptake associated with the proton-pumping peroxidase phase of the COX catalytic cycle. In contrast, the K-channel appears to be dispensable for the peroxidase phase of the catalytic cycle, but is required for the initial reduction of the heme-copper binuclear center in the first half of the catalytic cycle.
Collapse
Affiliation(s)
- T V Vygodina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
27
|
Konstantinov AA. Cytochrome c oxidase as a proton-pumping peroxidase: reaction cycle and electrogenic mechanism. J Bioenerg Biomembr 1998; 30:121-30. [PMID: 9623813 DOI: 10.1023/a:1020571930850] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochrome oxidase (COX) is considered to integrate in a single enzyme two consecutive mechanistically different redox activities--oxidase and peroxidase--that can be catalyzed elsewhere by separate hemoproteins. From the viewpoint of energy transduction, the enzyme is essentially a proton pumping peroxidase with a built-in auxiliary eu-oxidase module that activates oxygen and prepares in situ H2O2, a thermodynamically efficient but potentially hazardous electron acceptor for the proton pumping peroxidase. The eu-oxidase and peroxidase phases of the catalytic cycle may be performed by different structural states of COX. Resolution of the proton pumping peroxidase activity of COX and identification of individual charge translocation steps inherent in this reaction are discussed, as well as the specific role of the two input proton channels in proton translocation.
Collapse
Affiliation(s)
- A A Konstantinov
- A. N. Belozersky Institute of Physico-chemical Biology, Moscow State University, Russia
| |
Collapse
|
28
|
Ferrocyanide-peroxidase activity of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1363:11-23. [PMID: 9526032 DOI: 10.1016/s0005-2728(97)00087-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Redox interaction of mitochondrial cytochrome c oxidase (COX) with ferrocyanide/ferricyanide couple is greatly accelerated by polycations, such as poly-l-lysine [Musatov et al. (1991) Biological Membranes 8, 229-234]. This has allowed us to study ferrocyanide oxidation by COX at very high redox potentials of the ferrocyanide/ferricyanide couple either following spectrophotometrically ferricyanide accumulation or measuring proton uptake associated with water formation in the reaction. At low [ferrocyanide]/[ferricyanide] ratios (Eh values around 500 mV) and ambient oxygen concentration, the ferrocyanide-oxidase activity of COX becomes negligibly small as compared to the reaction rate observed with pure ferrocyanide. Oxidation of ferrocyanide under these conditions, is greatly stimulated by H2O2 or ethylhydroperoxide indicating peroxidatic reaction involved. The ferrocyanide-peroxidase activity of COX is strictly polylysine-dependent and is inhibited by heme a3 ligands such as KCN and NaN3. Apparently the reaction involves normal electron pathway, i.e. electron donation through CuA and oxidation via heme a3. The peroxidase reaction shows a pH-dependence similar to that of the cytochrome c oxidase activity of COX. When COX is preequilibrated with excess H2O2, addition of ferrocyanide shifts the initial steady-state concentrations of the Ferryl-Oxo and Peroxy compounds towards approximately 2:1 ratio of the two intermediates. It is suggested that in the peroxidase cycleferrocyanide donates electrons to both P and F intermediates with a comparable efficiency. Isolation of a partial redox activity of COX opens a possibility to study separately proton translocation coupled to the peroxidase half-reaction of the COX reaction cycle. Copyright 1998
Collapse
|
29
|
Fabian M, Palmer G. Hydrogen peroxide is not released following reaction of cyanide with several catalytically important derivatives of cytochrome c oxidase. FEBS Lett 1998; 422:1-4. [PMID: 9475157 DOI: 10.1016/s0014-5793(97)01561-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have looked for the production of hydrogen peroxide following reaction of oxidized cytochrome c oxidase and two oxy derivatives (compounds P and F) with cyanide. In each case the final product was the cyanide adduct of cytochrome c oxidase. In no case release of hydrogen peroxide was detected, as gauged by the scopoletin plus horse radish peroxidase assay. The simplest conclusion is that none of these forms of the enzyme contains intact hydrogen peroxide.
Collapse
Affiliation(s)
- M Fabian
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005-1892, USA
| | | |
Collapse
|
30
|
Moody AJ, Rich PR. The reaction of hydrogen peroxide with pulsed cytochrome bo from Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:731-7. [PMID: 8001590 DOI: 10.1111/j.1432-1033.1994.tb20102.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The reaction of hydrogen peroxide (H2O2) with pulsed cytochrome bo leads to characteristic spectral changes in the enzyme. The difference spectrum shows minima at 401, 494 and 628 nm, and maxima at 420, approximately 468, 526 and 556 nm. delta epsilon 420-epsilon 401 is in the range 73-86 mM-1.cm-1 and delta epsilon 556-epsilon 628 is 7.7-9.6 mM-1.cm-1 (taking delta epsilon 560-epsilon 580 for the reduced minus oxidised spectrum to be 20.5 mM-1.cm-1). The stoichiometry of the reaction, determined by titration of the spectral changes, is 1:1. The second order rate constant for the reaction, which is 1.0-1.5 x 10(3) M-1.s-1 at 20 degrees C, is independent of pH over the range 6.5-8.0. The product of the reaction decays with a first-order rate constant in the range 1-4 x 10(-4) s-1, so the Kd value is apparently in the range 0.05-0.40 microM. The spectral changes observed immediately after quinol-induced turnover, or during steady-state turnover induced by hydrazine or by carbon monoxide, are qualitatively the same as those induced by H2O2 though of lower amplitude. H2O2 addition perturbs the hydrazine-induced or CO-induced steady states by increasing the amplitude of the spectral changes, but there is no qualitative change. From this observation, and the 1:1 stoichiometry of the reaction, we conclude that the intermediate induced by H2O2, which we term F., requires donation of only two electrons to the enzyme from an external source.
Collapse
Affiliation(s)
- A J Moody
- Glynn Research Institute, Bodmin, Cornwall, England
| | | |
Collapse
|
31
|
Selective resonance Raman observation of the “607 nm” form generated in the reaction of oxidized cytochrome c oxidase with hydrogen peroxide. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43890-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Watmough NJ, Cheesman MR, Greenwood C, Thomson AJ. Cytochrome bo from Escherichia coli: reaction of the oxidized enzyme with hydrogen peroxide. Biochem J 1994; 300 ( Pt 2):469-75. [PMID: 8002953 PMCID: PMC1138186 DOI: 10.1042/bj3000469] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oxidized cytochrome bo reacts rapidly with micromolar concentrations of H2O2 to form a single derivative. The electronic absorption spectrum of this compound differs from that of the oxidized form of the enzyme reported by this laboratory [Watmough, Cheesman, Gennis, Greenwood and Thomson (1993) FEBS Lett. 319, 151-154]. It is characterized by a Soret maximum at 411 nm, increased absorbance at 555 nm, and reduced intensity at 624 nm. The apparent dissociation constant for this process is of the order of 4 x 10(-6) M, and the bimolecular rate constant for the formation of the new compound is (1.25-1.7) x 10(3) M-1.s-1. Electronic absorption difference spectroscopy shows this product to be identical with the compound formed from the reaction of the mixed-valence form of the enzyme with dioxygen. Investigation of this compound by room-temperature magnetic c.d. spectroscopy shows haem o to be neither high-spin nor low-spin ferric, but to have a spectrum characteristic of an oxyferryl species. There is no evidence for oxidation of the porphyrin ring. Therefore the binuclear centre of this species must consist of an oxyferryl haem (S = 1) coupled to a Cu(II) ion (S = 1/2) to form a new paramagnetic centre. The reaction was also followed by X-band e.p.r. spectroscopy, and this showed the disappearance in parallel with the formation of the oxyferryl species, of the broad g = 3.7, signal which arises from the weakly coupled binuclear centre in the oxidized enzyme. Since no new e.p.r.-detectable paramagnetic species were observed, the Cu(II) ion is presumed to be coupled to another paramagnet, possibly an organic radical. There is no evidence in the electronic absorption spectrum to indicate further reaction of cytochrome bo with H2O2 to form a second species. We argue that the circumstances of formation of this oxyferryl species are the same as those for the P form of cytochrome c oxidase, a species often regarded as containing a bound peroxide ion. The implications of these observations for the reaction mechanism of haem-copper terminal oxidases are discussed.
Collapse
Affiliation(s)
- N J Watmough
- Centre for Metalloprotein Spectroscopy and Biology, University of East Anglia, Norwich, U.K
| | | | | | | |
Collapse
|
33
|
Cheesman MR, Watmough NJ, Gennis RB, Greenwood C, Thomson AJ. Magnetic-circular-dichroism studies of Escherichia coli cytochrome bo. Identification of high-spin ferric, low-spin ferric and ferryl [Fe(IV)] forms of heme o. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:595-602. [PMID: 8307024 DOI: 10.1111/j.1432-1033.1994.tb19975.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Room-temperature (295 K) magnetic-circular-dichroism spectra at 280-2500 nm have been recorded for Escherichia coli cytochrome bo in its fast form (which has a g = 3.7 EPR signal and reacts rapidly with cyanide) and for its formate, fluoride, cyanide and hydrogen-peroxide derivatives. The spectra of all forms are dominated by signals from low-spin ferric heme b. These include a porphyrin-to-ferric ion charge-transfer transition in the near-infrared region (the near-infrared charge-transfer band) at 1610 nm. High-spin ferric heme o gives rise to a negative magnetic-circular-dichroism feature at 635, 642 and 625 nm (corresponding to a shoulder observed in the electronic absorption spectra) and a derivative charge-transfer feature at 1100, 1180 and 940 nm for the fast, formate and fluoride forms, respectively. The energies of these bands confirm that fluoride and formate are ligands to heme o. The energies of the analogous bands in the spectrum of fast cytochrome bo are typical for high-spin ferric hemes with histidine and water axial ligands. Addition of cyanide ion to fast cytochrome bo causes a red shift in the position of the Soret absorption peak, from 406.5 nm to 413 nm, and results in the loss of the 635-nm feature from the magnetic-circular-dichroism spectrum and of the corresponding shoulder in the electronic absorption spectrum. In the magnetic-circular-dichroism spectrum, the intensities of the Soret and alpha, beta bands are significantly increased. New near-infrared charge-transfer intensity is observed at 1000-2300 nm with a peak near 2050 nm. These changes are interpreted as resulting from a high-spin to low-spin transition at ferric heme o brought about by the binding of cyanide ion. The energy of the near-infrared charge-transfer band suggests that the cyanide ion is bridged to the CuB of the binuclear site. Treatment of fast cytochrome bo with hydrogen peroxide also causes a red shift in the position of the Soret absorbance, to 412 nm, and a loss of the 625-nm absorption shoulder. Changes in the magnetic-circular-dichroism spectrum at 450-600 nm are observed, but there is no significant increase in the intensity of the magnetic-circular-dichroism Soret band and no new near-infrared charge-transfer bands are detected, ruling out a similar high-spin to low-spin transition at heme o.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M R Cheesman
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences, University of East Anglia, England
| | | | | | | | | |
Collapse
|
34
|
Konstantinov AA, Capitanio N, Vygodina TV, Papa S. pH changes associated with cytochrome c oxidase reaction with H2O2. Protonation state of the peroxy and oxoferryl intermediates. FEBS Lett 1992; 312:71-4. [PMID: 1330683 DOI: 10.1016/0014-5793(92)81412-f] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
pH changes associated with the mitochondrial cytochrome oxidase reaction with H2O2 have been studied. In the presence of ferricyanide or Tris-phenanthroline complex of CoIII as electron acceptors, reaction of H2O2 with the oxidized cytochrome oxidase is accompanied by a steady proton release with a rate constant of ca. 3 M-1.s-1 at pH 6.8. The acidification is completely inhibited by superoxide dismutase and its pre-steady-state kinetics correlates with that of the oxoferryl compound (F) accumulation. Apparently, the proton release is linked to superoxide generation by cytochrome oxidase under these conditions. In the presence of superoxide dismutase and without the electron acceptors, the H2O2-induced transitions of cytochrome oxidase from the oxidized to the peroxy (P) and from the peroxy to the oxoferryl state are not associated with any significant proton release or uptake. The results point to the following mechanism of O2- generation and protonation states of the cytochrome oxidase compounds P and F: [formula: see text]
Collapse
Affiliation(s)
- A A Konstantinov
- Institute of Biochemistry and Medical Chemistry, University of Bari, Italy
| | | | | | | |
Collapse
|
35
|
Mitchell R, Mitchell P, Rich PR. Protonation states of the catalytic intermediates of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOENERGETICS 1992. [DOI: 10.1016/0005-2728(92)90221-m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|