1
|
De Los Rios P, Rebeaud ME, Goloubinoff P. An outmoded in vitro-inferred mechanism for chaperonin-accelerated protein refolding is confirmed in cells by cryo-electron tomography. Cell Stress Chaperones 2024; 29:764-768. [PMID: 39549734 PMCID: PMC11638601 DOI: 10.1016/j.cstres.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024] Open
Affiliation(s)
- Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, Switzerland; Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, Switzerland.
| | - Mathieu E Rebeaud
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Lu L, Zhang J, Gan P, Wu L, Zhang X, Peng C, Zhou J, Chen X, Su J. Novel Functions of CD147 in the Mitochondria Exacerbates Melanoma Metastasis. Int J Biol Sci 2021; 17:285-297. [PMID: 33390850 PMCID: PMC7757041 DOI: 10.7150/ijbs.52043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Melanoma is an aggressive form of skin cancer characterized by rapid invasion and metastasis. CD147 is known to be functioning in cell invasion. In this study, we showed that CD147 was translocated from the cell membrane to the mitochondria in advanced melanoma. Melanoma patients with CD147 localized to the mitochondria confer a worse prognosis. The mitochondrial CD147 levels are correlated with the invasion potential of various melanoma cell lines as well as mitochondrial energy metabolism. Depletion of CD147 decreased the activity of mitochondrial complex V. STRING analysis for protein-protein interaction networks (PPIN) in CD147-depleted melanoma cells showed that mitochondrial proteins HSP60 and ATP5B, a subunit of mitochondrial complex V, were node proteins. HSP60 upregulation was correlated with a worse prognosis of melanoma patients. Co-immunoprecipitation (Co-IP) assay indicates that CD147 interacts with HSP60. These data suggested that mitochondrial CD147 may prompt HSP60 to activate ATP5B, thereby promoting the mitochondrial aerobic oxidation and the invasive abilities of melanoma cells. Correlation analysis of the data acquired from patients was helpful to draw a 5-year survival curve for patients who screened positive and negative for mitochondrial CD147. This study unravels the function of CD147 in tumor invasion and highlights it as a potential tumor therapeutic target.
Collapse
Affiliation(s)
- Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Jianglin Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Pingping Gan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Lisha Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Xu Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Jianda Zhou
- Department of Plastic surgery, Xiangya Third Hospital, Central South University, Changsha, Hunan China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| |
Collapse
|
3
|
Abstract
This chronologue seeks to document the discovery and development of an understanding of oligomeric ring protein assemblies known as chaperonins that assist protein folding in the cell. It provides detail regarding genetic, physiologic, biochemical, and biophysical studies of these ATP-utilizing machines from both in vivo and in vitro observations. The chronologue is organized into various topics of physiology and mechanism, for each of which a chronologic order is generally followed. The text is liberally illustrated to provide firsthand inspection of the key pieces of experimental data that propelled this field. Because of the length and depth of this piece, the use of the outline as a guide for selected reading is encouraged, but it should also be of help in pursuing the text in direct order.
Collapse
|
4
|
Bigman LS, Horovitz A. Reconciling the controversy regarding the functional importance of bullet- and football-shaped GroE complexes. J Biol Chem 2019; 294:13527-13529. [PMID: 31371450 DOI: 10.1074/jbc.ac119.010299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/31/2019] [Indexed: 11/06/2022] Open
Abstract
The chaperonin GroEL and its co-chaperonin GroES form both GroEL-GroES bullet-shaped and GroEL-GroES2 football-shaped complexes. The residence time of protein substrates in the cavities of these complexes is about 10 and 1 s, respectively. There has been much controversy regarding which of these complexes is the main functional form. Here, we show using computational analysis that GroEL protein substrates have a bimodal distribution of folding times, which matches these residence times, thereby suggesting that both bullet-shaped and football-shaped complexes are functional. More generally, co-existing complexes with different stoichiometries are not mutually exclusive with respect to having a functional role and can complement each other.
Collapse
Affiliation(s)
- Lavi S Bigman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Noshiro D, Ando T. Substrate protein dependence of GroEL-GroES interaction cycle revealed by high-speed atomic force microscopy imaging. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0180. [PMID: 29735734 DOI: 10.1098/rstb.2017.0180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 11/12/2022] Open
Abstract
A double-ring-shaped tetradecameric GroEL complex assists proper protein folding in cooperation with the cochaperonin GroES. The dynamic GroEL-GroES interaction reflects the allosteric intra- and inter-ring communications and the chaperonin reaction. Therefore, revealing this dynamic interaction is essential to understanding the allosteric communications and the operation mechanism of GroEL. Nevertheless, how this interaction proceeds in the chaperonin cycle has long been controversial. Here, we directly image the dynamic GroEL-GroES interaction under conditions with and without foldable substrate protein using high-speed atomic force microscopy. Then, the imaging results obtained under these conditions and our previous results in the presence of unfoldable substrate are compared. The molecular movies reveal that the entire reaction pathway is highly complicated but basically identical irrespective of the substrate condition. A prominent (but moderate) difference is in the population distribution of intermediate species: symmetric GroEL : GroES2 and asymmetric GroEL : GroES1 complexes, and GroES-unbound GroEL. This difference is mainly attributed to the longer lifetime of GroEL : GroES1 complexes in the presence of foldable substrate. Moreover, the inter-ring communication, which is the basis for the alternating action of the two rings, occurs at two distinct (GroES association and dissociation) steps in the main reaction pathway, irrespective of the substrate condition.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Daisuke Noshiro
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan .,CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| |
Collapse
|
6
|
Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:1-60. [PMID: 30635079 DOI: 10.1016/bs.apcsb.2018.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To be able to perform their biological function, a protein needs to be correctly folded into its three dimensional structure. The protein folding process is spontaneous and does not require the input of energy. However, in the crowded cellular environment where there is high risk of inter-molecular interactions that may lead to protein molecules sticking to each other, hence forming aggregates, protein folding is assisted. Cells have evolved robust machinery called molecular chaperones to deal with the protein folding problem and to maintain proteins in their functional state. Molecular chaperones promote efficient folding of newly synthesized proteins, prevent their aggregation and ensure protein homeostasis in cells. There are different classes of molecular chaperones functioning in a complex interplay. In this review, we discuss the principal characteristics of different classes of molecular chaperones, their structure-function relationships, their mode of regulation and their involvement in human disorders.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
7
|
Zhao Q, Liu C. Chloroplast Chaperonin: An Intricate Protein Folding Machine for Photosynthesis. Front Mol Biosci 2018; 4:98. [PMID: 29404339 PMCID: PMC5780408 DOI: 10.3389/fmolb.2017.00098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/28/2017] [Indexed: 11/13/2022] Open
Abstract
Group I chaperonins are large cylindrical-shaped nano-machines that function as a central hub in the protein quality control system in the bacterial cytosol, mitochondria and chloroplasts. In chloroplasts, proteins newly synthesized by chloroplast ribosomes, unfolded by diverse stresses, or translocated from the cytosol run the risk of aberrant folding and aggregation. The chloroplast chaperonin system assists these proteins in folding into their native states. A widely known protein folded by chloroplast chaperonin is the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), an enzyme responsible for the fixation of inorganic CO2 into organic carbohydrates during photosynthesis. Chloroplast chaperonin was initially identified as a Rubisco-binding protein. All photosynthetic eucaryotes genomes encode multiple chaperonin genes which can be divided into α and β subtypes. Unlike the homo-oligomeric chaperonins from bacteria and mitochondria, chloroplast chaperonins are more complex and exists as intricate hetero-oligomers containing both subtypes. The Group I chaperonin requires proper interaction with a detachable lid-like co-chaperonin in the presence of ATP and Mg2+ for substrate encapsulation and conformational transition. Besides the typical Cpn10-like co-chaperonin, a unique co-chaperonin consisting of two tandem Cpn10-like domains joined head-to-tail exists in chloroplasts. Since chloroplasts were proposed as sensors to various environmental stresses, this diversified chloroplast chaperonin system has the potential to adapt to complex conditions by accommodating specific substrates or through regulation at both the transcriptional and post-translational levels. In this review, we discuss recent progress on the unique structure and function of the chloroplast chaperonin system based on model organisms Chlamydomonas reinhardtii and Arabidopsis thaliana. Knowledge of the chloroplast chaperonin system may ultimately lead to successful reconstitution of eukaryotic Rubisco in vitro.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cuimin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Weiss C, Jebara F, Nisemblat S, Azem A. Dynamic Complexes in the Chaperonin-Mediated Protein Folding Cycle. Front Mol Biosci 2016; 3:80. [PMID: 28008398 PMCID: PMC5143341 DOI: 10.3389/fmolb.2016.00080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/23/2016] [Indexed: 11/13/2022] Open
Abstract
The GroEL–GroES chaperonin system is probably one of the most studied chaperone systems at the level of the molecular mechanism. Since the first reports of a bacterial gene involved in phage morphogenesis in 1972, these proteins have stimulated intensive research for over 40 years. During this time, detailed structural and functional studies have yielded constantly evolving concepts of the chaperonin mechanism of action. Despite of almost three decades of research on this oligomeric protein, certain aspects of its function remain controversial. In this review, we highlight one central aspect of its function, namely, the active intermediates of its reaction cycle, and present how research to this day continues to change our understanding of chaperonin-mediated protein folding.
Collapse
Affiliation(s)
- Celeste Weiss
- George S. Weiss Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Fady Jebara
- George S. Weiss Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Shahar Nisemblat
- George S. Weiss Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Abdussalam Azem
- George S. Weiss Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
9
|
Iizuka R, Funatsu T. Chaperonin GroEL uses asymmetric and symmetric reaction cycles in response to the concentration of non-native substrate proteins. Biophys Physicobiol 2016; 13:63-69. [PMID: 27924258 PMCID: PMC5042173 DOI: 10.2142/biophysico.13.0_63] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/07/2016] [Indexed: 12/01/2022] Open
Abstract
The Escherichia coli chaperonin GroEL is an essential molecular chaperone that mediates protein folding in association with its cofactor, GroES. It is widely accepted that GroEL alternates the GroES-sealed folding-active rings during the reaction cycle. In other words, an asymmetric GroEL–GroES complex is formed during the cycle, whereas a symmetric GroEL–(GroES)2 complex is not formed. However, this conventional view has been challenged by the recent reports indicating that such symmetric complexes can be formed in the GroEL–GroES reaction cycle. In this review, we discuss the studies of the symmetric GroEL–(GroES)2 complex, focusing on the molecular mechanism underlying its formation. We also suggest that GroEL can be involved in two types of reaction cycles (asymmetric or symmetric) and the type of cycle used depends on the concentration of non-native substrate proteins.
Collapse
Affiliation(s)
- Ryo Iizuka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Abstract
Chaperonins are nanomachines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space owing to complex allosteric regulation. They consist of two back-to-back stacked oligomeric rings with a cavity at each end where protein substrate folding can take place. Here, we focus on the GroEL/GroES chaperonin system from Escherichia coli and, to a lesser extent, on the more poorly characterized eukaryotic chaperonin CCT/TRiC. We describe their various functional (allosteric) states and how they are affected by substrates and allosteric effectors that include ATP, ADP, nonfolded protein substrates, potassium ions, and GroES (in the case of GroEL). We also discuss the pathways of intra- and inter-ring allosteric communication by which they interconvert and the coupling between allosteric transitions and protein folding reactions.
Collapse
Affiliation(s)
- Ranit Gruber
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
11
|
Skjærven L, Cuellar J, Martinez A, Valpuesta JM. Dynamics, flexibility, and allostery in molecular chaperonins. FEBS Lett 2015; 589:2522-32. [PMID: 26140986 DOI: 10.1016/j.febslet.2015.06.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022]
Abstract
The chaperonins are a family of molecular chaperones present in all three kingdoms of life. They are classified into Group I and Group II. Group I consists of the bacterial variants (GroEL) and the eukaryotic ones from mitochondria and chloroplasts (Hsp60), while Group II consists of the archaeal (thermosomes) and eukaryotic cytosolic variants (CCT or TRiC). Both groups assemble into a dual ring structure, with each ring providing a protective folding chamber for nascent and denatured proteins. Their functional cycle is powered by ATP binding and hydrolysis, which drives a series of structural rearrangements that enable encapsulation and subsequent release of the substrate protein. Chaperonins have elaborate allosteric mechanisms to regulate their functional cycle. Long-range negative cooperativity between the two rings ensures alternation of the folding chambers. Positive intra-ring cooperativity, which facilitates concerted conformational transitions within the protein subunits of one ring, has only been demonstrated for Group I chaperonins. In this review, we describe our present understanding of the underlying mechanisms and the structure-function relationships in these complex protein systems with a particular focus on the structural dynamics, allostery, and associated conformational rearrangements.
Collapse
Affiliation(s)
- Lars Skjærven
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Jorge Cuellar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - José María Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
12
|
Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proc Natl Acad Sci U S A 2015; 112:6044-9. [PMID: 25918392 DOI: 10.1073/pnas.1411718112] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Human mitochondria harbor a single type I chaperonin system that is generally thought to function via a unique single-ring intermediate. To date, no crystal structure has been published for any mammalian type I chaperonin complex. In this study, we describe the crystal structure of a football-shaped, double-ring human mitochondrial chaperonin complex at 3.15 Å, which is a novel intermediate, likely representing the complex in an early stage of dissociation. Interestingly, the mitochondrial chaperonin was captured in a state that exhibits subunit asymmetry within the rings and nucleotide symmetry between the rings. Moreover, the chaperonin tetradecamers show a different interring subunit arrangement when compared to GroEL. Our findings suggest that the mitochondrial chaperonins use a mechanism that is distinct from the mechanism of the well-studied Escherichia coli system.
Collapse
|
13
|
Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes. J Mol Biol 2015; 427:2244-55. [PMID: 25912285 DOI: 10.1016/j.jmb.2015.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 11/21/2022]
Abstract
The chaperonin GroEL, a cylindrical complex consisting of two stacked heptameric rings, and its lid-like cofactor GroES form a nano-cage in which a single polypeptide chain is transiently enclosed and allowed to fold unimpaired by aggregation. GroEL and GroES undergo an ATP-regulated interaction cycle that serves to close and open the folding cage. Recent reports suggest that the presence of non-native substrate protein alters the GroEL/ES reaction by shifting it from asymmetric to symmetric complexes. In the asymmetric reaction mode, only one ring of GroEL is GroES bound and the two rings function sequentially, coupled by negative allostery. In the symmetric mode, both GroEL rings are GroES bound and are folding active simultaneously. Here, we find that the results of assays based on fluorescence resonance energy transfer recently used to quantify symmetric complexes depend strongly on the fluorophore pair used. We therefore developed a novel assay based on fluorescence cross-correlation spectroscopy to accurately measure GroEL:GroES stoichiometry. This assay avoids fluorophore labeling of GroEL and the use of GroEL cysteine mutants. Our results show that symmetric GroEL:GroES2 complexes are substantially populated only in the presence of non-foldable model proteins, such as α-lactalbumin and α-casein, which "over-stimulate" the GroEL ATPase and uncouple the negative GroEL inter-ring allostery. In contrast, asymmetric complexes are dominant both in the absence of substrate and in the presence of foldable substrate proteins. Moreover, uncoupling of the GroEL rings and formation of symmetric GroEL:GroES2 complexes is suppressed at physiological ATP:ADP concentration. We conclude that the asymmetric GroEL:GroES complex represents the main folding active form of the chaperonin.
Collapse
|
14
|
Taguchi H. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate. J Mol Biol 2015; 427:2912-8. [PMID: 25900372 DOI: 10.1016/j.jmb.2015.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/12/2015] [Accepted: 04/14/2015] [Indexed: 11/13/2022]
Abstract
Chaperonin GroEL is an essential chaperone that assists in protein folding in the cell. Since one GroEL ring binds one GroES heptamer, the GroEL double ring permits the formation of two types of GroEL:GroES complexes: asymmetric 1:1 "bullet"-shaped and symmetric 1:2 "football"-shaped GroEL:GroES2 complexes. There have been continuing debates about the mechanism and which complex is critical to the chaperonin-assisted folding. In this review, I summarize the recent progress on the football complex.
Collapse
Affiliation(s)
- Hideki Taguchi
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
15
|
Koike-Takeshita A, Mitsuoka K, Taguchi H. Asp-52 in combination with Asp-398 plays a critical role in ATP hydrolysis of chaperonin GroEL. J Biol Chem 2014; 289:30005-11. [PMID: 25202010 DOI: 10.1074/jbc.m114.593822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists protein folding with the aid of GroES and ATP. Asp-398 in GroEL is known as one of the critical residues on ATP hydrolysis because GroEL(D398A) mutant is deficient in ATP hydrolysis (<2% of the wild type) but not in ATP binding. In the archaeal Group II chaperonin, another aspartate residue, Asp-52 in the corresponding E. coli GroEL, in addition to Asp-398 is also important for ATP hydrolysis. We investigated the role of Asp-52 in GroEL and found that ATPase activity of GroEL(D52A) and GroEL(D52A/D398A) mutants was ∼ 20% and <0.01% of wild-type GroEL, respectively, indicating that Asp-52 in E. coli GroEL is also involved in the ATP hydrolysis. GroEL(D52A/D398A) formed a symmetric football-shaped GroEL-GroES complex in the presence of ATP, again confirming the importance of the symmetric complex during the GroEL ATPase cycle. Notably, the symmetric complex of GroEL(D52A/D398A) was extremely stable, with a half-time of ∼ 150 h (∼ 6 days), providing a good model to characterize the football-shaped complex.
Collapse
Affiliation(s)
- Ayumi Koike-Takeshita
- From the Department of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Kaoru Mitsuoka
- Technology Research Association for Next Generation Natural Products Chemistry, AIST Tokyo Waterfront, 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan, and
| | - Hideki Taguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
16
|
Nisemblat S, Parnas A, Yaniv O, Azem A, Frolow F. Crystallization and structure determination of a symmetrical 'football' complex of the mammalian mitochondrial Hsp60-Hsp10 chaperonins. Acta Crystallogr F Struct Biol Commun 2014; 70:116-9. [PMID: 24419632 PMCID: PMC3943094 DOI: 10.1107/s2053230x1303389x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/15/2013] [Indexed: 11/10/2022] Open
Abstract
The mitochondrial Hsp60-Hsp10 complex assists the folding of various proteins impelled by ATP hydrolysis, similar to the bacterial chaperonins GroEL and GroES. The near-atomic structural details of the mitochondrial chaperonins are not known, despite the fact that almost two decades have passed since the structures of the bacterial chaperonins became available. Here, the crystallization procedure, diffraction experiments and structure determination by molecular replacement of the mammalian mitochondrial chaperonin HSP60 (E321K mutant) and its co-chaperonin Hsp10 are reported.
Collapse
Affiliation(s)
- Shahar Nisemblat
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
- The Daniella Rich Institute for Structural Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Avital Parnas
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
- The Daniella Rich Institute for Structural Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Oren Yaniv
- The Daniella Rich Institute for Structural Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
- The Daniella Rich Institute for Structural Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Felix Frolow
- The Daniella Rich Institute for Structural Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
17
|
Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange. Proc Natl Acad Sci U S A 2013; 110:E4289-97. [PMID: 24167257 DOI: 10.1073/pnas.1317702110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complex kinetics of Pi and ADP release by the chaperonin GroEL/GroES is influenced by the presence of unfolded substrate protein (SP). Without SP, the kinetics of Pi release are described by four phases: a "lag," a "burst" of ATP hydrolysis by the nascent cis ring, a "delay" caused by ADP release from the nascent trans ring, and steady-state ATP hydrolysis. The release of Pi precedes the release of ADP. The rate-determining step of the asymmetric cycle is the release of ADP from the trans ring of the GroEL-GroES1 "bullet" complex that is, consequently, the predominant species. In the asymmetric cycle, the two rings of GroEL function alternately, 180° out of phase. In the presence of SP, a change in the kinetic mechanism occurs. With SP present, the kinetics of ADP release are also described by four phases: a lag, a "surge" of ADP release attributable to SP-induced ADP/ATP exchange, and a "pause" during which symmetrical "football" particles are formed, followed by steady-state ATP hydrolysis. SP catalyzes ADP/ATP exchange on the trans ring. Now ADP release precedes the release of Pi, and the rate-determining step of the symmetric cycle becomes the hydrolysis of ATP by the symmetric GroEL-GroES2 football complex that is, consequently, the predominant species. A FRET-based analysis confirms that asymmetric GroEL-GroES1 bullets predominate in the absence of SP, whereas symmetric GroEL-GroES2 footballs predominate in the presence of SP. This evidence suggests that symmetrical football particles are the folding functional form of the chaperonin machine in vivo.
Collapse
|
18
|
Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine. Proc Natl Acad Sci U S A 2013; 110:E4298-305. [PMID: 24167279 DOI: 10.1073/pnas.1318862110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using calibrated FRET, we show that the simultaneous occupancy of both rings of GroEL by ATP and GroES occurs, leading to the rapid formation of symmetric GroEL:GroES2 "football" particles regardless of the presence or absence of substrate protein (SP). In the absence of SP, these symmetric particles revert to asymmetric GroEL:GroES1 "bullet" particles. The breakage of GroES symmetry requires the stochastic hydrolysis of ATP and the breakage of nucleotide symmetry. These asymmetric particles are both persistent and dynamic; they turnover via the asymmetric cycle. When challenged with SP, however, they revert to symmetric particles within a second. In the presence of SP, the symmetric particles are also persistent and dynamic. They turn over via the symmetric cycle. Under these conditions, the stochastic hydrolysis of ATP and the breakage of nucleotide symmetry also occur within the ensemble of particles. However, on account of SP-catalyzed ADP/ATP exchange, GroES symmetry is rapidly restored. The residence time of both GroES and SP on functional GroEL is reduced to ∼1 s, enabling many more iterations than was previously believed possible, consistent with the iterative annealing mechanism. This result is inconsistent with currently accepted models. Using a foldable SP, we show that as the SP folds to the native state and the population of unfolded SP declines, the population of symmetric particles reverts to asymmetric particles in parallel, a result that is consistent with the former being the folding functional form.
Collapse
|
19
|
Denatured proteins facilitate the formation of the football-shaped GroEL-(GroES)2 complex. Biochem J 2010; 427:247-54. [PMID: 20121703 DOI: 10.1042/bj20091845] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Controversy exists over whether the chaperonin GroEL forms a GroEL-(GroES)2 complex (football-shaped complex) during its reaction cycle. We have revealed previously the existence of the football-shaped complex in the chaperonin reaction cycle using a FRET (fluorescence resonance energy transfer) assay [Sameshima, Ueno, Iizuka, Ishii, Terada, Okabe and Funatsu (2008) J. Biol. Chem. 283, 23765-23773]. Although denatured proteins alter the ATPase activity of GroEL and the dynamics of the GroEL-GroES interaction, the effect of denatured proteins on the formation of the football-shaped complex has not been characterized. In the present study, a FRET assay was used to demonstrate that denatured proteins facilitate the formation of the football-shaped complex. The presence of denatured proteins was also found to increase the rate of association of GroES to the trans-ring of GroEL. Furthermore, denatured proteins decrease the inhibitory influence of ADP on ATP-induced association of GroES to the trans-ring of GroEL. From these findings we conclude that denatured proteins facilitate the dissociation of ADP from the trans-ring of GroEL and the concomitant association of ATP and the second GroES.
Collapse
|
20
|
Thomsen ND, Berger JM. Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Mol Microbiol 2008; 69:1071-90. [PMID: 18647240 PMCID: PMC2538554 DOI: 10.1111/j.1365-2958.2008.06364.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many fundamental cellular processes depend on enzymes that utilize chemical energy to catalyse unfavourable reactions. Certain classes of ATPases provide a particularly vivid example of the process of energy conversion, employing cycles of nucleotide turnover to move and/or rearrange biological polymers such as proteins and nucleic acids. Four well-characterized classes of ATP-dependent protein/nucleic acid translocases and remodelling factors are found in all three domains of life (bacteria, archaea and eukarya): additional strand catalytic 'E' (ASCE) P-loop NTPases, GHL proteins, actin-fold enzymes and chaperonins. These unrelated protein superfamilies have each evolved the ability to couple ATP binding and hydrolysis to the generation of motion and force along or within their substrates. The past several years have witnessed the emergence of a wealth of structural data that help explain how such molecular engines link nucleotide turnover to conformational change. In this review, we highlight several recent advances to illustrate some of the mechanisms by which each family of ATP-dependent motors facilitates the rearrangement and movement of proteins, protein complexes and nucleic acids.
Collapse
Affiliation(s)
- Nathan D. Thomsen
- Quantitative Biology Institute and Dept. of Molecular and Cell Biology, 374D Stanley Hall #3220, University of California at Berkeley, Berkeley, CA 94720
| | - James M. Berger
- Quantitative Biology Institute and Dept. of Molecular and Cell Biology, 374D Stanley Hall #3220, University of California at Berkeley, Berkeley, CA 94720
| |
Collapse
|
21
|
Koike-Takeshita A, Yoshida M, Taguchi H. Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant. J Biol Chem 2008; 283:23774-81. [PMID: 18567584 DOI: 10.1074/jbc.m802542200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists in protein folding with the aid of GroES and ATP. It is believed that GroEL alternates the folding-active rings and that the substrate protein (and GroES) can bind to the open trans-ring only after ATP in the cis-ring is hydrolyzed. However, we found that a substrate protein prebound to the trans-ring remained bound during the first ATP cycle, and this substrate was assisted by GroEL-GroES when the second cycle began. Moreover, a slow ATP-hydrolyzing GroEL mutant (D398A) in the ATP-bound form bound a substrate protein and GroES to the trans-ring. The apparent discrepancy with the results from an earlier study (Rye, H. S., Roseman, A. M., Chen, S., Furtak, K., Fenton, W. A., Saibil, H. R., and Horwich, A. L. (1999) Cell 97, 325-338) can be explained by the previously unnoticed fact that the ATP-bound form of the D398A mutant exists as a symmetric 1:2 GroEL-GroES complex (the "football"-shaped complex) and that the substrate protein (and GroES) in the medium is incorporated into the complex only after the slow turnover. In light of these results, the current model of the GroEL-GroES reaction cycle via the asymmetric 1:1 GroEL-GroES complex deserves reexamination.
Collapse
Affiliation(s)
- Ayumi Koike-Takeshita
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | | |
Collapse
|
22
|
Asymmetry of the GroEL-GroES complex under physiological conditions as revealed by small-angle x-ray scattering. Biophys J 2007; 94:1392-402. [PMID: 17981896 DOI: 10.1529/biophysj.107.114710] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the well-known functional importance of GroEL-GroES complex formation during the chaperonin cycle, the stoichiometry of the complex has not been clarified. The complex can occur either as an asymmetric 1:1 GroEL-GroES complex or as a symmetric 1:2 GroEL-GroES complex, although it remains uncertain which type is predominant under physiological conditions. To resolve this question, we studied the structure of the GroEL-GroES complex under physiological conditions by small-angle x-ray scattering, which is a powerful technique to directly observe the structure of the protein complex in solution. We evaluated molecular structural parameters, the radius of gyration and the maximum dimension of the complex, from the x-ray scattering patterns under various nucleotide conditions (3 mM ADP, 3 mM ATP gamma S, and 3 mM ATP in 10 mM MgCl(2) and 100 mM KCl) at three different temperatures (10 degrees C, 25 degrees C, and 37 degrees C). We then compared the experimentally observed scattering patterns with those calculated from the known x-ray crystallographic structures of the GroEL-GroES complex. The results clearly demonstrated that the asymmetric complex must be the major species stably present in solution under physiological conditions. On the other hand, in the presence of ATP (3 mM) and beryllium fluoride (10 mM NaF and 300 microM BeCl(2)), we observed the formation of a stable symmetric complex, suggesting the existence of a transiently formed symmetric complex during the chaperonin cycle.
Collapse
|
23
|
Kuwajima K, Inobe T, Arai M. The allosteric transition of the chaperonin groel fromescherichia coli as studied by solution X-ray scattering. Macromol Res 2006. [DOI: 10.1007/bf03218504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Sot B, Bañuelos S, Valpuesta JM, Muga A. GroEL stability and function. Contribution of the ionic interactions at the inter-ring contact sites. J Biol Chem 2003; 278:32083-90. [PMID: 12796493 DOI: 10.1074/jbc.m303958200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chaperonin GroEL consists of a double ring structure made of identical subunits that display different modes of allosteric communication. The protein folding cycle requires the simultaneous positive intra-ring and negative inter-ring cooperativities of ATP binding. This ensures GroES binding to one ring and release of the ligands from the opposite one. To better characterize inter-ring allosterism, the thermal stability as well as the temperature dependence of the functional and conformational properties of wild type GroEL, a single ring mutant (SR1) and two single point mutants suppressing one interring salt bridge (E434K and E461K) were studied. The results indicate that ionic interactions at the two interring contact sites are essential to maintain the negative cooperativity for protein substrate binding and to set the protein thermostat at 39 degrees C. These electrostatic interactions contribute distinctly to the stability of the inter-ring interface and the overall protein stability, e.g. the E434K thermal inactivation curve is shifted to lower temperatures, and its unfolding temperature and activation energy are also lowered. An analysis of the ionic interactions at the inter-ring contact sites reveals that at the so called "left site" a network of electrostatic interactions involving three charged residues might be established, in contrast to what is found at the "right site" where only two oppositely charged residues interact. Our data suggest that electrostatic interactions stabilize protein-protein interfaces depending on both the number of ionic interactions and the number of residues engaged in each of these interactions. In the case of GroEL, this combination sets the thermostat of the protein so that the chaperonin distinguishes physiological from stress temperatures.
Collapse
Affiliation(s)
- Begoña Sot
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas-Universidad del País Vasco Euskal Herriko Unibertsitatea and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|
25
|
Abstract
Type I chaperonins play an essential role in the folding of newly translated and stress-denatured proteins in eubacteria, mitochondria and chloroplasts. Since their discovery, the bacterial chaperonins have provided an excellent model system for investigating the mechanism by which chaperonins mediate protein folding. Due to the high conservation of the primary sequence among Type I chaperonins, it is generally accepted that organellar chaperonins function similar to the bacterial ones. However, recent studies indicate that the chloroplast and mitochondrial chaperonins possess unique structural and functional properties that distinguish them from their bacterial homologs. This review focuses on the unique properties of organellar chaperonins.
Collapse
Affiliation(s)
- Galit Levy-Rimler
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69778, Tel Aviv, Israel
| | | | | | | |
Collapse
|
26
|
Sot B, Galán A, Valpuesta JM, Bertrand S, Muga A. Salt bridges at the inter-ring interface regulate the thermostat of GroEL. J Biol Chem 2002; 277:34024-9. [PMID: 12110685 DOI: 10.1074/jbc.m205733200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chaperonin GroEL consists of a double-ring structure made of identical subunits and displays unusual allosteric properties caused by the interaction between its constituent subunits. Cooperative binding of ATP to a protein ring allows binding of GroES to that ring, and at the same time negative inter-ring cooperativity discharges the ligands from the opposite ring, thus driving the protein-folding cycle. Biochemical and electron microscopy analysis of wild type GroEL, a single-ring mutant (SR1), and two mutants with one inter-ring salt bridge of the chaperonin disrupted (E461K and E434K) indicate that these ion pairs form part of the interactions that allow the inter-ring allosteric signal to be transmitted. The wild type-like activities of the ion pair mutants at 25 degrees C are in contrast with their lack of inter-ring communication and folding activity at physiological temperatures. These salt bridges stabilize the inter-ring interface and maintain the inter-ring spacing so that functional communication between protein heptamers takes place. The characterization of GroEL hybrids containing different amounts of wild type and mutant subunits also indicates that as the number of inter-ring salt bridges increases the functional properties of the hybrids recover. Taken together, these results strongly suggest that inter-ring salt bridges form a stabilizing ring-shaped, ionic zipper that ensures inter-ring communication at the contact sites and therefore a functional protein-folding cycle. Furthermore, they regulate the chaperonin thermostat, allowing GroEL to distinguish physiological (37 degrees C) from stress temperatures (42 degrees C).
Collapse
Affiliation(s)
- Begoña Sot
- Unidad de Biofisica (Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea) y Departamento de Bioquimica y Biologia Molecular, Universidad del Pais Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
27
|
Walters C, Errington N, Rowe AJ, Harding SE. Hydrolysable ATP is a requirement for the correct interaction of molecular chaperonins cpn60 and cpn10. Biochem J 2002; 364:849-55. [PMID: 12049650 PMCID: PMC1222635 DOI: 10.1042/bj20011643] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over recent years the binding ability of the molecular chaperone cpn60 (GroEL14) and its co-chaperone cpn10 (GroES7) has been reported to occur under an assortment of specific conditions from the use of non-hydrolysable ATP analogues (namely adenosine 5'-[gamma-thio]triphosphate) to requiring hydrolysable ATP for any interaction to occur. We have investigated this further using the molecular hydrodynamic methods (hydrodynamic bead modelling, sedimentation-velocity analytical ultracentrifugation and dynamic light-scattering), allowing the process to be followed under physiologically relevant dilute solution conditions, combined with absorption spectrophotometry to determine GroES7-GroEL14 interaction through the rate inhibition of the cpn60's ATPase activity by GroES7. The results found here indicate that the presence of hydrolysable ATP is required to facilitate correct GroES7 interaction with GroEL14 in solution.
Collapse
Affiliation(s)
- Chris Walters
- The National Centre for Macromolecular Hydrodynamics, School of Biological Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicester LE12 5RD, UK
| | | | | | | |
Collapse
|
28
|
|
29
|
Abstract
Proteins are linear polymers synthesized by ribosomes from activated amino acids. The product of this biosynthetic process is a polypeptide chain, which has to adopt the unique three-dimensional structure required for its function in the cell. In 1972, Christian Anfinsen was awarded the Nobel Prize for Chemistry for showing that this folding process is autonomous in that it does not require any additional factors or input of energy. Based on in vitro experiments with purified proteins, it was suggested that the correct three-dimensional structure can form spontaneously in vivo once the newly synthesized protein leaves the ribosome. Furthermore, proteins were assumed to maintain their native conformation until they were degraded by specific enzymes. In the last decade this view of cellular protein folding has changed considerably. It has become clear that a complicated and sophisticated machinery of proteins exists which assists protein folding and allows the functional state of proteins to be maintained under conditions in which they would normally unfold and aggregate. These proteins are collectively called molecular chaperones, because, like their human counterparts, they prevent unwanted interactions between their immature clients. In this review, we discuss the principal features of this peculiar class of proteins, their structure-function relationships, and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Stefan Walter
- Institut für Organische Chemie & Biochemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Deutschland
| | | |
Collapse
|
30
|
Steinbacher S, Ditzel L. Review: nucleotide binding to the thermoplasma thermosome: implications for the functional cycle of group II chaperonins. J Struct Biol 2001; 135:147-56. [PMID: 11580264 DOI: 10.1006/jsbi.2001.4382] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural information on group II chaperonins became available during recent years from electron microscopy and X-ray crystallography. Three conformational states have been identified for both archaeal and eukaryotic group II chaperonins: an open state, a spherical closed conformation, and an intermediate asymmetric bullet-shaped form. However, the functional cycle of group II chaperonins appears less well understood, although major principles are conserved when compared to group I chaperonins: binding of the substrate polypeptide to the apical domains of the open state and MgATP-driven conformational changes that result in encapsulation of the substrate where folding can proceed presumably in the closed ring of the bullet-shaped form. Binding of the transition state analogue MgADP-AlF3-H2O in the crystal structure of the Thermoplasma acidophilum thermosome suggests that the closed geometry is the enzymatically active conformation that performs ATP hydrolysis. Domain movements observed by electron microscopy suggest a coupling of ATP hydrolysis and domain movement similar to that in the GroE system. The hydrophilic interior of the closed thermosome corresponds to the cis-ring of the asymmetric GroEL-GroES complex implicated in protein folding.
Collapse
Affiliation(s)
- S Steinbacher
- Abteilung für Strukturforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, Martinsried, 82152, Germany.
| | | |
Collapse
|
31
|
Abstract
The GroE chaperone system consists of two ring-shaped oligomeric components whose association creates different functional states. The most remarkable property of the GroE system is the ability to fold proteins under conditions where spontaneous folding cannot occur. To achieve this, a fully functional system consisting of GroEL, the cochaperone GroES, and ATP is necessary. Driven by ATP binding and hydrolysis, this system cycles through different conformational stages, which allow binding, folding, and release of substrate proteins. Some aspects of the ATP-driven reaction cycle are still under debate. One of these open questions is the importance of so-called "football" complexes consisting of GroEL and two bound GroES rings. Here, we summarize the evidence for the functional relevance of these complexes and their involvement in the efficient folding of substrate proteins.
Collapse
Affiliation(s)
- H Grallert
- Institut für Organische Chemie und Biochemie, Technische Universität München, Garching, 85747, Germany
| | | |
Collapse
|
32
|
Galan A, Sot B, Llorca O, Carrascosa JL, Valpuesta JM, Muga A. Excluded volume effects on the refolding and assembly of an oligomeric protein. GroEL, a case study. J Biol Chem 2001; 276:957-64. [PMID: 11020386 DOI: 10.1074/jbc.m006861200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the effect of macromolecular crowding reagents, such as polysaccharides and bovine serum albumin, on the refolding of tetradecameric GroEL from urea-denatured protein monomers. The results show that productive refolding and assembly strongly depends on the presence of nucleotides (ATP or ADP) and background macromolecules. Nucleotides are required to generate an assembly-competent monomeric conformation, suggesting that proper folding of the equatorial domain of the protein subunits into a native-like structure is essential for productive assembly. Crowding modulates GroEL oligomerization in two different ways. First, it increases the tendency of refolded, monomeric GroEL to undergo self-association at equilibrium. Second, crowding can modify the relative rates of the two competing self-association reactions, namely, productive assembly into a native tetradecameric structure and unproductive aggregation. This kinetic effect is most likely exerted by modifications of the diffusion coefficient of the refolded monomers, which in turn determine the conformational properties of the interacting subunits. If they are allowed to become assembly-competent before self-association, productive oligomerization occurs; otherwise, unproductive aggregation takes place. Our data demonstrate that the spontaneous refolding and assembly of homo-oligomeric proteins, such as GroEL, can occur efficiently (70%) under crowding conditions similar to those expected in vivo.
Collapse
Affiliation(s)
- A Galan
- Unidad de Biofisica (Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco (CSIC-UPV)) y Departamento de Bioquimica y Biologia Molecular, Universidad del Pais Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Chaperonins are key components of the cell machinery and are involved in the productive folding of proteins. Most chaperonins share a common general morphology based in a cylinder composed of two rings of 7-9 subunits, with a conspicuous cavity inside the particle. Chaperonins have been classified into two groups according to their sequence homologies: type I, whose better known member is GroEL, and type II comprising the eukaryotic cytosolic CCT and the archaebacterial thermosome, among others. Although the basic structure of both chaperonin types is rather similar, there are a number of basic differences among them. Whereas GroEL is rather non-specific regarding its substrate, CCT is more specialized, and plays a fundamental role in the folding of cytoskeletal proteins. Another important difference is that GroEL is an homopolymer, while CCT is an heteromeric complex built up of eight different polypeptides. Furthermore, GroEL requires a cofactor (GroES) that is not present in the type II chaperonins. Recent studies of the structure of CCT have allowed a deeper insight into its function. Electron microscopic analyses have revealed a different behavior of this chaperonin after binding to nucleotides, respect to GroEL. The atomic structure of the thermosome fits into the electron microscopy reconstructed volume of the CCT. This fitting gives clues to compare the structural transitions of GroEL and CCT during the folding cycle. The different changes undergone by the two chaperonins suggest the existence of differences in the way they bind substrates and enlarge the internal cavity, as well as a different type of signaling between the two rings of the types I and II chaperonins.
Collapse
Affiliation(s)
- J L Carrascosa
- Department of Macromolecular Structure, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | | | | |
Collapse
|
34
|
Turk B, Awad R, Usova EV, Björk I, Eriksson S. A pre-steady-state kinetic analysis of substrate binding to human recombinant deoxycytidine kinase: a model for nucleoside kinase action. Biochemistry 1999; 38:8555-61. [PMID: 10387103 DOI: 10.1021/bi990162b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deoxycytidine kinase (dCK) is an enzyme with broad substrate specificity which can phosphorylate pyrimidine and purine deoxynucleosides, including important antiviral and cytostatic agents. In this study, stopped-flow experiments were used to monitor intrinsic fluorescence changes induced upon binding of various phosphate donors (ATP, UTP, and the nonhydrolyzable analogue AMP-PNP) and the acceptor dCyd to recombinant dCK. Monophasic kinetics were observed throughout. The nucleotides as well as dCyd bound to the enzyme by a two-step mechanism, involving a rapid initial equilibrium step, followed by a protein conformational change that is responsible for the fluorescence change. The bimolecular association rate constants for nucleotide binding [(4-10) x 10(3) M-1 s-1] were 2-3 orders of magnitude lower than those for dCyd binding [(1.3-1.5 x 10(6) M-1 s-1]. This difference most likely is due predominantly to the large difference in the forward rate constants of the conformational changes (0.04-0.26 s-1 vs 560-710 s-1). Whereas the kinetics of the binding of ATP, UTP, and AMP-PNP to dCK showed some differences, UTP exhibiting the tightest binding, no significant differences were observed for the binding of dCyd to dCK in the presence or absence of phosphate donors. However, the binding of dCyd to dCK in the presence of ATP or UTP was accompanied by a 1.5- or 3-fold higher quenching amplitude as compared with dCyd alone or in the presence of AMP-PNP. We conclude that ATP and UTP induce a conformational change in the enzyme, thereby enabling efficient phosphoryl transfer.
Collapse
Affiliation(s)
- B Turk
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Uppsala
| | | | | | | | | |
Collapse
|
35
|
Beissinger M, Rutkat K, Buchner J. Catalysis, commitment and encapsulation during GroE-mediated folding. J Mol Biol 1999; 289:1075-92. [PMID: 10369783 DOI: 10.1006/jmbi.1999.2780] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli GroE chaperones assist protein folding under conditions where no spontaneous folding occurs. To achieve this, the cooperation of GroEL and GroES, the two protein components of the chaperone system, is an essential requirement. While in many cases GroE simply suppresses unspecific aggregation of non-native proteins by encapsulation, there are examples where folding is accelerated by GroE. Using maltose-binding protein (MBP) as a substrate for GroE, it had been possible to define basic requirements for catalysis of folding. Here, we have analyzed key steps in the interaction of GroE and the MBP mutant Y283D during catalyzed folding. In addition to high temperature, high ionic strength was shown to be a restrictive condition for MBP Y283D folding. In both cases, the complete GroE system (GroEL, GroES and ATP) compensates the deceleration of MBP Y283D folding. Combining kinetic folding experiments and electron microscopy of GroE particles, we demonstrate that at elevated temperatures, symmetrical GroE particles with GroES bound to both ends of the GroEL cylinder play an important role in the efficient catalysis of MBP Y283D refolding. In principle, MBP Y283D folding can be catalyzed during one encapsulation cycle. However, because the commitment to reach the native state is low after only one cycle of ATP hydrolysis, several interaction cycles are required for catalyzed folding.
Collapse
Affiliation(s)
- M Beissinger
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, 93040, Germany
| | | | | |
Collapse
|
36
|
Hayer-Hartl MK, Ewalt KL, Hartl FU. On the role of symmetrical and asymmetrical chaperonin complexes in assisted protein folding. Biol Chem 1999; 380:531-40. [PMID: 10384959 DOI: 10.1515/bc.1999.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cylindrical chaperonin GroEL of E. coli and its ring-shaped cofactor GroES cooperate in mediating the ATP-dependent folding of a wide range of polypeptides in vivo and in vitro. By binding to the ends of the GroEL cylinder, GroES displaces GroEL-bound polypeptide into an enclosed folding cage, thereby preventing protein aggregation during folding. The dynamic interaction of GroEL and GroES is regulated by the GroEL ATPase and involves the formation of asymmetrical GroEL:GroES1 and symmetrical GroEL: GroES2 complexes. The proposed role of the symmetrical complex as a catalytic intermediate of the chaperonin mechanism has been controversial. It has also been suggested that the formation of GroEL:GroES2 complexes allows the folding of two polypeptide molecules per GroEL reaction cycle, one in each ring of GroEL. By making use of a procedure to stabilize chaperonin complexes by rapid crosslinking for subsequent analysis by native PAGE, we have quantified the occurrence of GroEL:GroES1 and GroEL:GroES2 complexes in active refolding reactions under a variety of conditions using mitochondrial malate dehydrogenase (mMDH) as a substrate. Our results show that the symmetrical complexes are neither required for chaperonin function nor does their presence significantly increase the rate of mMDH refolding. In contrast, chaperonin-assisted folding is strictly dependent on the formation of asymmetrical GroEL:GroES1 complexes. These findings support the view that GroEL:GroES2 complexes have no essential role in the chaperonin mechanism.
Collapse
Affiliation(s)
- M K Hayer-Hartl
- Max-Planck-Institut für Biochemie, Department of Cellular Biochemistry, Martinsried, Germany
| | | | | |
Collapse
|
37
|
Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, Saibil HR, Horwich AL. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 1999; 97:325-38. [PMID: 10319813 DOI: 10.1016/s0092-8674(00)80742-4] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The double-ring chaperonin GroEL mediates protein folding in the central cavity of a ring bound by ATP and GroES, but it is unclear how GroEL cycles from one folding-active complex to the next. We observe that hydrolysis of ATP within the cis ring must occur before either nonnative polypeptide or GroES can bind to the trans ring, and this is associated with reorientation of the trans ring apical domains. Subsequently, formation of a new cis-ternary complex proceeds on the open trans ring with polypeptide binding first, which stimulates the ATP-dependent dissociation of the cis complex (by 20- to 50-fold), followed by GroES binding. These results indicate that, in the presence of nonnative protein, GroEL alternates its rings as folding-active cis complexes, expending only one round of seven ATPs per folding cycle.
Collapse
Affiliation(s)
- H S Rye
- Howard Hughes Medical Institute, and Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
von Germar F, Galán A, Llorca O, Carrascosa JL, Valpuesta JM, Mäntele W, Muga A. Conformational changes generated in GroEL during ATP hydrolysis as seen by time-resolved infrared spectroscopy. J Biol Chem 1999; 274:5508-13. [PMID: 10026164 DOI: 10.1074/jbc.274.9.5508] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in the vibrational spectrum of the chaperonin GroEL in the presence of ADP and ATP have been followed as a function of time using rapid scan Fourier transform infrared spectroscopy. The interaction of nucleotides with GroEL was triggered by the photochemical release of the ligands from their corresponding biologically inactive precursors (caged nucleotides; P3-1-(2-nitro)phenylethyl nucleotide). Binding of either ADP or ATP induced the appearance of small differential signals in the amide I band of the protein, sensitive to protein secondary structure, suggesting a subtle and localized change in protein conformation. Moreover, conformational changes associated with ATP hydrolysis were detected that differed markedly from those observed upon nucleotide binding. Both, high-amplitude absorbance changes and difference bands attributable to modifications in the interaction between oppositely charged residues were observed during ATP hydrolysis. Once this process had occurred, the protein relaxed to an ADP-like conformation. Our results suggest that the secondary structure as well as salt bridges of GroEL are modified during ATP hydrolysis, as compared with the ATP and ADP bound protein states.
Collapse
Affiliation(s)
- F von Germar
- Institut für Physikalische und Theoretische Chemie der Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Galán A, Llorca O, Valpuesta JM, Pérez-Pérez J, Carrascosa JL, Menéndez M, Bañuelos S, Muga A. ATP hydrolysis induces an intermediate conformational state in GroEL. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:347-55. [PMID: 9914513 DOI: 10.1046/j.1432-1327.1999.00045.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The conformational properties of the molecular chaperone GroEL in the presence of ATP, its non-hydrolyzable analog 5'-adenylimidodiphosphate (AMP-PNP), and ADP have been analyzed by differential scanning calorimetry (DSC), Fourier-transform infra-red (FT-IR) and fluorescence spectroscopy. Nucleotide binding to one ring promotes a decrease in the Tm value of the GroEL thermal transition that is reversed when both rings are filled with nucleotide, indicating that the sequential occupation of the two protein rings by these nucleotides has different effects on the GroEL thermal denaturation process. In addition, ATP induces a conformational change in GroEL characterized by (a) the appearance of a reversible low temperature endotherm in the DSC profiles of the protein, and (b) an enhanced binding of the hydrophobic probe 8-anilino-naphthalene-1-sulfonate (ANS), which strictly depends on ATP hydrolysis. The similar sensitivity to K+ of the temperature range where activation of the GroEL ATPase activity, the low temperature endotherm, and the increase of the ANS fluorescence are abserved strongly indicates the existence of a conformational state of GroEL during ATP hydrolysis, different from that generated on ADP or AMP-PNP binding. To achieve this intermediate conformation, GroEL mainly modifies its tertiary and quaternary structures, leading to an increased exposure of hydrophobic surfaces, with minor rearrangements of its secondary structure.
Collapse
Affiliation(s)
- A Galán
- Department de Bioquímica y Biología Molecular, Unidad asociada al CSIC, Universidad del París Vaco, Bilbao, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Llorca O, Galán A, Carrascosa JL, Muga A, Valpuesta JM. GroEL under heat-shock. Switching from a folding to a storing function. J Biol Chem 1998; 273:32587-94. [PMID: 9829996 DOI: 10.1074/jbc.273.49.32587] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chaperonin GroEL from Escherichia coli, together with its cochaperonin GroES, are proteins involved in assisting the folding of polypeptides. GroEL is a tetradecamer composed of two heptameric rings, which enclose a cavity where folding takes place through multiple cycles of substrate and GroES binding and release. GroEL and GroES are also heat-shock proteins, their synthesis being increased during heat-shock conditions to help the cell coping with the thermal stress. Our results suggest that, as the temperature increases, GroEL decreases its protein folding activity and starts acting as a "protein store." The molecular basis of this behavior is the loss of inter-ring signaling, which slows down GroES liberation from GroEL and therefore the release of the unfolded protein from the GroEL cavity. This behavior is reversible, and after heat-shock, GroEL reverts to its normal function. This might have a physiological meaning, since under thermal stress conditions, it may be inefficient for the cell to fold thermounstable proteins that are prone to denaturation.
Collapse
Affiliation(s)
- O Llorca
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
41
|
Llorca O, Smyth MG, Marco S, Carrascosa JL, Willison KR, Valpuesta JM. ATP binding induces large conformational changes in the apical and equatorial domains of the eukaryotic chaperonin containing TCP-1 complex. J Biol Chem 1998; 273:10091-4. [PMID: 9553054 DOI: 10.1074/jbc.273.17.10091] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chaperonin-containing TCP-1 complex (CCT) is a heteromeric particle composed of eight different subunits arranged in two back-to-back 8-fold pseudo-symmetric rings. The structural and functional implications of nucleotide binding to the CCT complex was addressed by electron microscopy and image processing. Whereas ADP binding to CCT does not reveal major conformational differences when compared with nucleotide-free CCT, ATP binding induces large conformational changes in the apical and equatorial domains, shifting the latter domains up to 40 degrees (with respect to the inter-ring plane) compared with 10 degrees for nucleotide-free CCT or ADP-CCT. This equatorial ATP-induced shift has no counterpart in GroEL, its prokaryotic homologue, which suggests differences in the folding mechanism for CCT.
Collapse
Affiliation(s)
- O Llorca
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Kad NM, Ranson NA, Cliff MJ, Clarke AR. Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings. J Mol Biol 1998; 278:267-78. [PMID: 9571049 DOI: 10.1006/jmbi.1998.1704] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ATPase cycle of GroE chaperonins has been examined by transient kinetics to dissect partial reactions in complexes where GroEL is asymmetrically loaded with nucleotides. The occupation of one heptameric ring by ADP does not inhibit the loading of the other with ATP nor does it prevent the consequent structural rearrangement to the "open" state. However, ADP binding completely inhibits ATP hydrolysis in the asymmetric complex, i.e. ATP cannot by hydrolysed when ADP is bound to the other ring. This non-competitive inhibition of the ATPase by ADP is consistent with a ring-switching, or "two-stroke", mechanism of the type: ATP:GroEL --> ADP:GroEL --> ADP:GroEL:ATP --> GroEL:ATP --> GroEL:ADP, i.e. with respect to the GroEL rings, ATP turns over in an alternating fashion. When the ATP-stabilized, "open" state is challenged with hexokinase and glucose, to quench the free ATP, the open state relaxes slowly (0.44 s-1) back to the apo (or closed) conformation. This rate, however, is three times faster than the hydrolytic step, showing that bound ATP is not committed to hydrolysis. When GroES is bound to the GroEL:ATP complex and the system is quenched in the same way, approximately half of the bound ATP undergoes hydrolysis on the chaperonin complex showing that the co-protein increases the degree of commitment. Thus, non-competitive inhibition of ATP hydrolysis, combined with the ability of the co-protein to block ligand exchange between rings has the effect of imposing a reciprocating cycle of reactions with ATP hydrolysing, and GroES binding, on each of the GroEL rings in turn. Taken together, these data imply that the dominant, productive steady state reaction in vivo is: GroEL:ATP:GroES --> GroEL:ADP:GroES --> ATP:GroEL:ADP:GroES --> ATP:GroEL:ADP --> GroES:ATP:GroEL:ADP --> GroES:ATP:GroEL for a hemi-cycle, and that significant inhibi tion of hydrolysis may arise through the formation of a dead-end ADP:GroEL:ATP:GroES complex.
Collapse
Affiliation(s)
- N M Kad
- Department of Biochemistry, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
43
|
Azem A, Weiss C, Goloubinoff P. Structural analysis of GroE chaperonin complexes using chemical cross-linking. Methods Enzymol 1998; 290:253-68. [PMID: 9534168 DOI: 10.1016/s0076-6879(98)90024-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this chapter, we have shown how chemical cross-linking with a bifunctional reagent, GA, can be used to investigate the structure of large oligomeric complexes such as GroEL14GroES7 and GroEL14(GroES7)2. Cross-linking, followed by denaturing electrophoresis, confirmed the number and arrangement of GroEL and GroES subunits within each individual oligomer, which was previously known from EM analysis. Furthermore, cross-linking permitted a close examination of the effect of regulatory factors, such as nucleotides and free divalent cations, on the molecular structure of GroEL14, GroEL14GroES7, and GroEL14GroES7. Finally, cross-linking analysis permitted characterization and quantitation of various chaperonin heterooligomeric complexes, GroEL14, GroEL14GroES7, and GroEL14GroES7 in solution, under conditions that also supported protein folding and ATP hydrolysis. It was shown that GA does not induce the artifactual association or the dissociation of GroES7 from the chaperonin. On the contrary, chemical cross-linking is an obligatory procedure when the subsequent analysis is carried out using methods that can displace the equilibrium.
Collapse
Affiliation(s)
- A Azem
- Department of Botany, Alexander Silbermann Institute of Life Sciences, Hebrew University of Jerusalem, Israel
| | | | | |
Collapse
|
44
|
Ditzel L, Löwe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 1998; 93:125-38. [PMID: 9546398 DOI: 10.1016/s0092-8674(00)81152-6] [Citation(s) in RCA: 318] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have determined to 2.6 A resolution the crystal structure of the thermosome, the archaeal group II chaperonin from T. acidophilum. The hexadecameric homolog of the eukaryotic chaperonin CCT/TRiC shows an (alphabeta)4(alphabeta)4 subunit assembly. Domain folds are homologous to GroEL but form a novel type of inter-ring contact. The domain arrangement resembles the GroEL-GroES cis-ring. Parts of the apical domains form a lid creating a closed conformation. The lid substitutes for a GroES-like cochaperonin that is absent in the CCT/TRiC system. The central cavity has a polar surface implicated in protein folding. Binding of the transition state analog Mg-ADP-AIF3 suggests that the closed conformation corresponds to the ATP form.
Collapse
Affiliation(s)
- L Ditzel
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Llorca O, Pérez-Pérez J, Carrascosa JL, Galán A, Muga A, Valpuesta JM. Effects of the inter-ring communication in GroEL structural and functional asymmetry. J Biol Chem 1997; 272:32925-32. [PMID: 9407071 DOI: 10.1074/jbc.272.52.32925] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chaperonin GroEL consists of a double-ring structure that assists protein folding in the presence of GroES and ATP. Recent studies suggest that the 7-mer ring is the functional unit where protein folding takes place. Nevertheless, both GroEL rings are required to complete the reaction cycle through signals transmitted between the two rings. Electron microscopy, image processing, and biochemical analysis of GroEL, a single-ring mutant (SR1) and a inter-ring communication affected mutant (A126V), in the presence of ATP and adenylyl imidodiphosphate, have allowed the identification of a conformational change in the apical domains that is strictly dependent on the communication between the two GroEL rings. It is deduced from these results that the binding of nucleotide to both GroEL rings generates, as a consequence of the inter-ring communication, a functionally and structurally asymmetric particle. This asymmetric particle has a ring with a small conformational change in its apical domains and high affinity toward unfolded substrate and GroES, and the other ring has a larger conformational change in its apical domains and lower affinity toward substrate and GroES.
Collapse
Affiliation(s)
- O Llorca
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
46
|
de León P, Marco S, Isiegas C, Marina A, Carrascosa JL, Mellado RP. Streptomyces lividans groES, groEL1 and groEL2 genes. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 11):3563-3571. [PMID: 9387235 DOI: 10.1099/00221287-143-11-3563] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Streptomyces lividans groES/EL1 operon and groEL2 gene were cloned and their respective DNA sequences determined. The sequenced DNA comprised the genes and their respective regulatory regions in both cases. Transcription of both groES/EL1 and groEL2 seemed to be subjected to temporal control at 30 degrees C. At 45 degrees C the amount of the groEL2 transcript increased considerably in comparison to that of groES/EL1. Among the proteins synthesized under heat shock by S. lividans, a fraction enriched in GroEL2 showed the presence of a ring-shaped structure that resembles that of other chaperonins and was active in a rhodanase folding assay.
Collapse
Affiliation(s)
- Patricia de León
- Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Sergio Marco
- Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Carolina Isiegas
- Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Anabel Marina
- Centra de Biología Molecular Severo Ochoa, Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - José L Carrascosa
- Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Rafael P Mellado
- Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
47
|
Dubaquié Y, Looser R, Rospert S. Significance of chaperonin 10-mediated inhibition of ATP hydrolysis by chaperonin 60. Proc Natl Acad Sci U S A 1997; 94:9011-6. [PMID: 9256426 PMCID: PMC23004 DOI: 10.1073/pnas.94.17.9011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/1997] [Accepted: 05/29/1997] [Indexed: 02/05/2023] Open
Abstract
Chaperonins are essential for the folding of proteins in bacteria, mitochondria, and chloroplasts. We have functionally characterized the yeast mitochondrial chaperonins hsp60 and hsp10. In the presence of ADP, one molecule of hsp10 binds to hsp60 with an apparent Kd of 0.9 nM and a second molecule of hsp10 binds with a Kd of 24 nM. In the presence of ATP, the purified yeast chaperonins mediate the refolding of mitochondrial malate dehydrogenase. Hsp10 inhibits the ATPase activity of hsp60 by about 40%. Hsp10(P36H) is a point mutant of hsp10 that confers temperature-sensitive growth to yeast. Consistent with the in vivo phenotype, refolding of mitochondrial malate dehydrogenase in the presence of purified hsp10(P36H) and hsp60 is reduced at 25 degrees C and abolished at 30 degrees C. The affinity of hsp10(P36H) to hsp60 as well as to Escherichia coli GroEL is reduced. However, this decrease in affinity does not correlate with the functional defect, because hsp10(P36H) fully assists the GroEL-mediated refolding of malate dehydrogenase at 30 degrees C. Refolding activity, rather, correlates with the ability of hsp10(P36H) to inhibit the ATPase of GroEL but not that of hsp60. Based on our findings, we propose that the inhibition of ATP hydrolysis is mechanistically coupled to chaperonin-mediated protein folding.
Collapse
Affiliation(s)
- Y Dubaquié
- Department of Biochemistry, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
48
|
Melki R, Batelier G, Soulié S, Williams RC. Cytoplasmic chaperonin containing TCP-1: structural and functional characterization. Biochemistry 1997; 36:5817-26. [PMID: 9153422 DOI: 10.1021/bi962830o] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Actin and tubulin polypeptide chains acquire their native conformation in the presence of the cytoplasmic chaperonin containing TCP-1 (CCT, also called TRiC) and, in the case of alpha- and beta-tubulin, additional protein cofactors. It has been previously demonstrated that nucleotide exchange and ATP hydrolysis act to switch CCT between conformations that interact either strongly or weakly with unfolded substrates [Melki, R., & Cowan, N.J. (1994) Mol. Cell. Biol. 14, 2895-2904]. The present study further documents the conformational changes and function of CCT. It is first shown, by the use of a range of labeled denatured substrate proteins and a radiolabeled total soluble HeLa cell extract, that CCT in the absence of nucleotides can bind any of a large number of proteins in vitro with high affinity. Second, by the use of denatured labeled beta-actin and beta-tubulin as model substrates for binding to CCT, we demonstrate that the CCT particle can contain two substrate protein chains simultaneously. Third, by electron microscopy, sedimentation velocity, and intrinsic fluorescence measurements, we document the conformational difference between CCT in its ATP- and ADP-bound forms, as well as the change that results from binding of substrate protein. A model summarizes substrate association with CCT and the role of the nucleotide in regulating the affinity of CCT for target proteins.
Collapse
Affiliation(s)
- R Melki
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
49
|
Behlke J, Ristau O, Schönfeld HJ. Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions. Biochemistry 1997; 36:5149-56. [PMID: 9136876 DOI: 10.1021/bi962755h] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Binding of heptameric GroES to the tetradecameric chaperonin GroEL in the absence or presence of nucleotides was investigated by analytical ultracentrifugation. In the absence of nucleotides, the association constant for the binding of GroES to GroEL, K1, was found to be approximately equal to 3 x 10(5) M(-1). The binding of a second GroES heptamer with only one-fourth the affinity of the first one can be neglected at subequimolecular concentrations relative to GroEL. Under these conditions, mainly an asymmetric "bullet"-shaped complex is formed [see also Schmidt et al. (1994) Science 265, 656-659]. In the presence of ADP or ATP analogues such as ATP-gamma-S or AMP-PNP, the affinity to bind GroES increases by at least 2 orders of magnitude depending on the nucleotide concentration. With increasing GroES:GroEL ratios in the presence of 1 mM ATP analogue, up to two GroES oligomers were bound to one GroEL oligomer, forming the symmetrical "American football"-shaped complex with apparently high affinity for the first GroES ring and considerably lower for the second one. These are the first results that provide an accurate and quantitative description of the equilibrium between asymmetrical and symmetrical complexes at relatively high concentrations of GroEL and GroES that are proposed to exist in vivo. We suggest that the increased affinity of GroEL for GroES plays a role in releasing substrate proteins from the central cavity of GroEL after folding under "non-permissive" conditions.
Collapse
Affiliation(s)
- J Behlke
- Institute of Biology, Humboldt-University, Berlin, FRG.
| | | | | |
Collapse
|
50
|
Goloubinoff P, Diamant S, Weiss C, Azem A. GroES binding regulates GroEL chaperonin activity under heat shock. FEBS Lett 1997; 407:215-9. [PMID: 9166902 DOI: 10.1016/s0014-5793(97)00348-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chaperonins GroEL14 and GroES7 are heat-shock proteins implicated in the molecular response to stress. Protein fluorescence, crosslinking and kinetic analysis revealed that the bond between the two otherwise thermoresistant oligomers is regulated by temperature. As temperature increased, the affinity of GroES7 and the release of bound proteins from the chaperonin concomitantly decreased. After heat shock, GroES7 rebinding to GroEL14 and GroEL14GroES7 particles correlated with the restoration of optimal protein folding/release activity. Chaperonins thus behave as a molecular thermometer which can inhibit the release of aggregation-prone proteins during heat shock and restore protein folding and release after heat shock.
Collapse
Affiliation(s)
- P Goloubinoff
- Department of Plant Sciences, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel.
| | | | | | | |
Collapse
|