1
|
Li Z, Liu T, Wang S, Chen T, Wang X, Xu X, Liu Q. Yinhuang buccal tablet alters airway microbiota composition and metabolite profile in healthy humans. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118043. [PMID: 38490289 DOI: 10.1016/j.jep.2024.118043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/04/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Perturbations in airway microbiota composition and disruption of microbe-metabolite interactions have been observed in respiratory infectious diseases (RIDs). The Yinhuang (YH) buccal tablet, as an ancient Chinese medicinal formula, has been traditionally employed for the management of upper RIDs. However, there is a lack of evidence for the effects of YH buccal tablets on upper respiratory tract microbiota and circulating metabolites. AIM OF THE STUDY The aim of this study was to analyze the changes in respiratory microbiota composition and circulating metabolite profile after YH buccal tablets administration. MATERIALS AND METHODS Throat swab samples and serum samples were collected from 60 healthy subjects for high-throughput 16S ribosomal RNA gene (16S rRNA) sequencing and non-targeted Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. RESULTS Airway microbial composition changed significantly after YH administration. The abundance of Actinomyces and Prevotella_7 increased, while the abundance of potentially pathogenic Pseudomonas and Corynebacterium decreased. A total of 168 significant HMDB taxonomic metabolites were identified in serum samples, of which lipid metabolites accounted for the largest proportion. Correlation analysis showed that circulatory metabolites were significantly correlated with changes in airway microbiota composition. CONCLUSIONS YH buccal tablets can inhibit opportunistic pathogens, increase beneficial microorganisms in the upper respiratory tract, and regulate the body's metabolic pathways. These findings provide insights into the mechanism of action of YH buccal tablets in the treatment and prevention of respiratory diseases.
Collapse
Affiliation(s)
- Zhenxuan Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Capital Medical University, Beijing, 100069, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| | - Tengwen Liu
- Chengdu University of Traditional Chinese Medicine, Basic Medical College, Chengdu, Sichuan Province, 610075, China.
| | - Shuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Tengfei Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Capital Medical University, Beijing, 100069, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Capital Medical University, Beijing, 100069, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Capital Medical University, Beijing, 100069, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| |
Collapse
|
2
|
Kalam Y, Graudins A. The effects of fructose-1,6-diphosphate on haemodynamic parameters and survival in a rodent model of propranolol and verapamil poisoning. Clin Toxicol (Phila) 2012; 50:546-54. [DOI: 10.3109/15563650.2012.705847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Wheeler TJ, Chien S. Protection of rat cardiac myocytes by fructose-1,6-bisphosphate and 2,3-butanedione. PLoS One 2012; 7:e35023. [PMID: 22558110 PMCID: PMC3338745 DOI: 10.1371/journal.pone.0035023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 03/12/2012] [Indexed: 01/23/2023] Open
Abstract
Earlier studies by our group showed that fructose-1,6-bisphosphate (FBP) enhances the hypothermic preservation of rat cardiac myocytes and the functional recovery of animal hearts after hypothermic storage. However, the mechanisms involved were not clear. We extended the cardiomyocyte studies by testing whether the FBP effects were due to chelation of extracellular calcium, leading to lower intracellular levels. We also tested effects of 2,3-butanedione monoxime (BDM), pyruvate, and adenine nucleotide precursors. Cardiomyocytes were incubated in ischemic suspension at 3°C, and aliquots examined over 48 to 72 hours for retention of rod-shaped morphology, a measure of viability. Cytosolic Ca2+ levels were measured in some experiments. FBP at 5 mM reduced the death rate even when added after one or two days of incubation. It caused cytosolic calcium levels that were 33% lower than controls in freshly-isolated cells and 70% lower after one day of incubation. EGTA protected against cell death similarly to FBP. These results indicated that one of the mechanisms by which FBP exerts protective effects is through chelation of extracellular calcium. BDM was strongly protective and reduced cytosolic calcium by 30% after one day of incubation. As with FBP, BDM was effective when added after one or two days of incubation. BDM may be useful in combination with FBP in preserving heart tissue. Pyruvate, adenine, and ribose provided little or no protection during hypothermia.
Collapse
Affiliation(s)
- Thomas J. Wheeler
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Sufan Chien
- Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
4
|
Wheeler TJ, Chien S. Characterization of the high-affinity uptake of fructose-1,6-bisphosphate by cardiac myocytes. Mol Cell Biochem 2012; 366:31-9. [PMID: 22426779 DOI: 10.1007/s11010-012-1279-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 03/02/2012] [Indexed: 12/22/2022]
Abstract
Previously, we reported that fructose-1,6-bisphosphate (FBP) was taken up by rat cardiac myocytes by two processes: a component that was saturable at micromolar levels and a nonsaturable component that dominated at millimolar levels. Here, we continued to characterize the saturable high-affinity component, with the aim of identifying the physiological substrate and role for this activity. ATP, ADP, and AMP inhibited the uptake of FBP with apparent affinities of 0.2-0.5 mM. Fumarate and succinate were very weak inhibitors. Several phosphorylated sugars (ribulose-1,5-phosphate, fructose-1-phosphate, ribose-5-phosphate, and inositol-2-phosphate) inhibited FBP uptake with apparent affinities of 40-500 μM. As in our previous study, no tested compound appeared to bind as well as FBP. The data suggest that the best ligands have two phosphoryl groups separated by at least 8 Å. The rates of FBP uptake were measured from 3° to 37°. The calculated activation energy was 15-50 kJ/mol, similar to other membrane transport processes. Uptake of FBP was tested in several types of cells other than cardiac myocytes, and compared to the uptake of 2-deoxyglucose and L: -glucose. While FBP uptake in excess of that of L: -glucose was observed in some cells, in no case was the uptake as high as in cardiac myocytes. The physiological substrate and role for the high-affinity FBP uptake activity remain unknown.
Collapse
Affiliation(s)
- Thomas J Wheeler
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, USA
| | | |
Collapse
|
5
|
Fructose 1-6 Bisphosphate Versus University of Wisconsin Solution for Rat Liver Preservation: Does FBP Prevent Early Mitochondrial Injury? Transplant Proc 2011; 43:1468-73. [DOI: 10.1016/j.transproceed.2011.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/07/2011] [Indexed: 11/21/2022]
|
6
|
de Oliveira LM, Pires MGS, Magrisso AB, Munhoz TP, Roesler R, de Oliveira JR. Fructose-1,6-bisphosphate inhibits in vitro and ex vivo platelet aggregation induced by ADP and ameliorates coagulation alterations in experimental sepsis in rats. J Thromb Thrombolysis 2009; 29:387-94. [PMID: 19705256 DOI: 10.1007/s11239-009-0387-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/04/2009] [Indexed: 01/14/2023]
Abstract
Sepsis is a systemic response to an infection that leads to a generalized inflammatory reaction. There is an intimate relationship between procoagulant and proinflammatory activities, and coagulation abnormalities are common in septic patients. Pharmaceutical studies have focused to the development of substances that act on coagulation abnormalities and on the link between coagulation and inflammation. Fructose-1,6-bisphosphate (FBP) is a high-energy glycolitic metabolite that in the past two decades has been shown therapeutic effects in great number of pathological situations, including sepsis. The aims of this study were to assess the effects of FBP on platelet aggregation in vitro and ex vivo in healthy and septic rats and evaluate the use of FBP as a treatment for thrombocytopenia and coagulation abnormalities in abdominal sepsis in rat. FBP inhibited platelet aggregation (P < 0.001) in vitro in healthy rats from the smallest dose tested, 2.5 mM, in a dose-dependent manner. The mean effective dose calculated was 10.6 mM. The highest dose tested, 40 mM, completely inhibited platelet aggregation (P < 0.001) induced by ADP. Platelet aggregation in plasma from septic rats was inhibited only with higher doses of FBP, starting from 20 mM (P < 0.001). The calculated mean effective dose was 19.3 mM. Ex vivo platelet aggregation in septic rats was significantly lower (P < 0.05) than healthy rats and the treatment with FBP, at the dose of 2 g/kg, diminished the platelet aggregation at the extension of 27% (P < 0.001), suggesting that FBP is a potent platelet aggregation inhibitor in vivo. Moreover, treatment with FBP 2 g/kg prevented thrombocytopenia (P < 0.001), prolongation of prothrombin and partial thromboplastin time (P < 0.001), but not fibrinogen, in septic rats. The most important findings in this study are that FBP is a potent platelet aggregation inhibitor, in vitro and ex vivo. It presents protective effects on coagulation abnormalities, which can represent a treatment against DIC. The mechanisms for these effects remain under investigation.
Collapse
Affiliation(s)
- Luciana M de Oliveira
- Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga 6681, Porto Alegre, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
7
|
Wang M, Yao J, Chen JY, Bai WX, Mei SY, Pan WN, Pan YY, Yu FL. A subchronic intravenous toxicity study of magnesium fructose-1,6-diphosphate in beagle dogs. Basic Clin Pharmacol Toxicol 2008; 104:93-100. [PMID: 19053993 DOI: 10.1111/j.1742-7843.2008.00335.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnesium fructose-1,6-diphosphate is a novel agent of antimyocardial ischaemia. In the present study, the subchronic toxicity of magnesium fructose-1,6-diphosphate was investigated after 13-week repeated intravenous administration in beagle dogs. The animals received doses of 0, 75, 150 and 300 mg/kg/day (three males and three females for each dose). During the study period, clinical signs, mortality, body weights, food consumption, electrocardiogram, urinalysis, haematology, clinical biochemistry, macroscopic findings, organ weights and histopathology were examined. The administration of magnesium fructose-1,6-diphosphate resulted in increased incidence of clinical signs, including salivation and emesis. These effects were transient and were noted in almost all dogs given 300 mg/kg/day and occasionally noted in the 150 mg/kg/day dose-treated animals. Serum magnesium in the 150 mg/kg/day and 300 mg/kg/day dose-treated animals was significantly increased after 6- and 13-week administration, but recovered at the end of a 2-week recovery period. At 6 weeks, a statistically significant decrease in serum electrolytes, including sodium and potassium, was observed in the treatment groups. There were no other treatment-related findings. Under the conditions of the present study, magnesium fructose-1,6-diphosphate did not show any evidence of target organ toxicity. The no-observed-adverse-effect level for 13-week intravenous administration of magnesium fructose-1,6-diphosphate to beagle dogs was considered 75 mg/kg/day based on observations of clinical signs and serum electrolytes.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Provincial Institute of Materia Medica, Nanjing University of Technology, Nanjing, China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Juel IS, Solligård E, Tvedt KE, Skogvoll E, Jynge P, Beisvag V, Erlandsen SE, Sandvik AK, Aadahl P, Grønbech JE. Post-ischaemic restituted intestinal mucosa is more resistant to further ischaemia than normal mucosa in the pig. Scandinavian Journal of Clinical and Laboratory Investigation 2007; 68:106-16. [PMID: 17852833 DOI: 10.1080/00365510701534833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Ischaemic preconditioning may protect the intestine from subsequent prolonged ischaemia. This study evaluates whether a much longer initial ischaemia, encountered clinically, may modify intestinal resistance to further ischaemia in a pig model. MATERIAL AND METHODS After cross-clamping of the superior mesenteric artery for 1 h, the intestine was either reperfused for 8 h or a second cross-clamping for 1 h was performed at 4 h of reperfusion. Based on microarray analysis of intestinal samples at 1, 4 and 8 h of reperfusion, mRNA of selected genes was measured with QRT-PCR. RESULTS The first ischaemic period caused exfoliation of surface epithelial cells from the basement membrane comprising about 90 % of the villi tips, a marked increase in permeability and depletion of ATP. The second ischaemic challenge caused about 30 % less denudation of the basement membrane (p = 0.008), no increase in permeability (p = 0.008) and less depletion of ATP (p = 0.039). mRNAs for superoxide dismutase 2, heat shock proteins and signal transducer and activator of transcription 3, which may protect against ischaemia/reperfusion injury, were up-regulated throughout the reperfusion period. mRNAs for matrix metalloproteinase 1, connexin 43 and peripheral myelin 22, which may be associated with cell migration or tight junctions, showed a particular up-regulation at 4 h of reperfusion. CONCLUSION One hour of initial ischaemia followed by 4 h of reperfusion is associated with increased intestinal resistance to further ischaemia. The differential regulation of genes identified in this study provides working hypotheses for mechanisms behind this observation.
Collapse
Affiliation(s)
- Ingebjørg S Juel
- Department of Surgery, St. Olav University Hospital, NO-7006 Trondheim, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ahn SM, Hwang JS, Lee SH. Fructose 1,6-Diphosphate Alleviates UV-Induced Oxidative Skin Damage in Hairless Mice. Biol Pharm Bull 2007; 30:692-7. [PMID: 17409504 DOI: 10.1248/bpb.30.692] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) are involved in the deleterious effects of UV light on skin. The antioxidant defense system is considered to be crucial for protecting skin from ROS. Recently, we showed that fructose 1,6-diphosphate (FDP), a glycolytic metabolite, reduced oxidative stress in UVB-irradiated keratinocytes. This study set out to determine whether topically applied FDP could exert protective effects against UV-induced skin damage in hairless mice. An in vitro skin permeation study using Franz-type diffusion cells showed that the amount of [14C]-FDP that diffused through the skin increased in a time-dependent manner, and about 3.5% of the applied FDP penetrated the skin after 24 h. Topical application of FDP (1%) preserved the endogenous antioxidant capacity of skin such as catalase and glutathione, which were significantly reduced after UVB irradiation without FDP. FDP also reversed the loss of catalase protein and prevented the accumulation of carbonylated proteins induced by UVB irradiation. These results provide evidence that topically administered FDP could penetrate into the skin and attenuate UVB-induced oxidative skin damage in hairless mice.
Collapse
Affiliation(s)
- Soo-Mi Ahn
- Department of Physiology, Ajou University School of Medicine, Republic of Korea
| | | | | |
Collapse
|
10
|
Influence of fructose-1,6-diphosphate on endotoxin-induced lung injuries in sheep. J Surg Res 2006; 138:45-50. [PMID: 17161427 DOI: 10.1016/j.jss.2006.06.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 05/19/2006] [Accepted: 06/12/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND Fructose-1,6-diphosphate (FDP) is reported to have a salutary effect in endotoxin shock and sepsis. This investigation describes the effect of FDP on pulmonary and systemic hemodynamics, lung lymph protein clearance, and leukocyte count in sheep infused with Escherichia coli endotoxin. MATERIALS AND METHODS Anesthetized sheep (n = 18), some of which underwent thoracotomy to cannulate lymphatic nodes, were used in this study. After stabilization, all sheep received E. coli endotoxin, 5 microg/kg i.v. infusion over 30 min. Concomitant with the endotoxin infusion, half of the animals were randomly selected to receive an i.v. bolus of FDP (10%), 50 mg/kg, followed by a continuous infusion of 5 mg.kg(-1).min(-1) for 4 h; the rest were treated in the same manner with glucose (10%) in 0.9% NaCl. RESULTS Pulmonary artery pressure (PAP) and resistance in the glucose group increased from 20.8 +/- 1.6 to 36.7 +/- 3.2 mmHg (P < 0.007) and from 531 +/- 114 to 1137 +/- 80 dyn.s(-1).cm(-5), respectively (P < 0.005). Despite an increase during endotoxin infusion, these parameters in the FDP group returned to control values. There were no differences in left ventricular pressures, cardiac output, heart rate, and arterial oxygen tension between the groups. In the glucose group, lymph protein clearance was higher (P < 0.01) and blood leukocyte count was lower (P < 0.02). The wet/dry lung weight ratio (g/g) for the glucose group was 5.57 +/- 0.04 and for the FDP-treated group 4.76 +/- 0.06 (P < 0.0005). CONCLUSION FDP treatment attenuated significantly the characteristic pulmonary hypertension, lung lymph protein clearance, and pulmonary vascular leakage seen in sheep infused with endotoxin.
Collapse
|
11
|
Antunes N, Martinusso CA, Takiya CM, da Silva AJR, de Ornellas JFR, Elias PR, Leite M, Cardoso LR. Fructose-1,6 diphosphate as a protective agent for experimental ischemic acute renal failure. Kidney Int 2006; 69:68-72. [PMID: 16374425 DOI: 10.1038/sj.ki.5000013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cold ischemia time is a risk factor for the development of acute renal failure in the immediate post-transplant period. In this study, we aimed to determine if intravenous fructose-1,6-diphosphate (FDP), given before nephrectomy, attenuates renal cell injury in a cold ischemia model. Male adult Wistar rats were subjected to infusion of either FDP 350 mg/kg (group F, n=6), an equal volume of 0.9% NaCl (group S, n=6), an equal volume/osmolality of mannitol (group M, n=6) or no infusion (group C, n=7). Kidneys were then perfused in situ with Collins solution and nephrectomy was performed. Other kidney slices were stored in Collins solution at 4 degrees C. Adenosine triphosphate (ATP) levels and lactate dehydrogenase (LDH) release were examined at 0, 24, 48 and 72 h. Other slices, obtained after 50 min immersion in Collins solution at 37 degrees C, were frozen for characterization of cytoskeletal preservation using phalloidin-FITC staining. Apical fluorescence intensity of proximal tubule cells, indicative of the F-actin concentration, was measured in a fluorescence microscope interfaced with computer image analysis system. Adenosine triphosphate levels, after up to 72 h of tissue incubation, were higher (P<0.05) in the FDP group when compared to other groups. In addition, LDH release was smaller (P<0.0001) in the FDP group. The F-actin concentration of proximal tubule cells cells was greater in the FDP group (P<0.0001). Results indicate that FDP is a useful tool to increase tissue viability in a rat kidney subjected to cold ischemia, by maintaining ATP cell content, decreasing LDH release and preventing microfilament disruption of proximal tubule cells.
Collapse
Affiliation(s)
- N Antunes
- Universidade Federal do Rio de Janeiro: Nefrologica, HUCFF, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cohly H, Jenkins J, Skelton T, Meydrech E, Markov AK. Fructose-1,6-diphosphate suppresses T-lymphocyte proliferation, promotes apoptosis and inhibits interleukins-1, 6, beta-actin mRNAs, and transcription factors expression. Immunol Invest 2005; 33:407-21. [PMID: 15624699 DOI: 10.1081/imm-200038668] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The overall objective of this study was to determine the role fructose 1,6-diphosphate (FDP), a naturally occurring glycolytic intermediate, plays in activated T-lymphocytes. The hypothesis is twofold. First, we propose that FDP inhibits T cell proliferation to a greater extent than fructose-1-phosphate (F1P), fructose-6-phosphate (F6P) and mannose-6-phosphate (M6P); second, we argue that FDP suppresses immune activation by inhibiting inflammatory cytokine expression, inhibiting expression of key transcription factors, and by inducing apoptosis in immune cells. Rat spleen cells were incubated with concanavalin A (ConA) and increasing concentrations of FDP. Proliferation was determined by tritiated thymidine uptake. FDP inhibited splenocyte proliferation in a dose-related manner while F1P, F6P, M6P demonstrated inhibition only at high concentrations (5000 microg/ml). RNA was harvested from FDP and ConA-treated cells and IL-1 and IL-6 gene expression was analyzed by RT-PCR. IL-1 and IL-6 mRNA expression was completely inhibited at 500-5000 microg/ml FDP. Apoptosis in FDP-treated lymphocytes was determined by DNA fragmentation and flow cytometry. Propidium iodide (PI) staining demonstrated a 39% rate of apoptosis in splenocytes treated with ConA and 5000 microg/ml FDP. Extensive DNA fragmentation was present at 250-5000 microg/ml FDP, and maximal inhibition occurred at 5 microg/ml. F1P, F6P and M6P showed maximal inhibition only at 5000 microg/ml. Nuclear extracts from FDP-treated splenocytes were analyzed by electrophoretic mobility shift assay. ConA activation of NF-kappaB and AP-1 was dramatically inhibited by FDP. Interestingly, beta-actin showed extensive inhibition with FDP and ConA, thus suggesting new possibilities of its being used as a therapeutic modality in arterial injury where the beta-actin, an important cytoskeleton element, plays a very important role. These data indicate that FDP may be a useful immunosuppressive agent. In conclusion, FDP is not only an immunosuppressant but also an anti-inflammatory agent.
Collapse
Affiliation(s)
- H Cohly
- Division of Plastic Surgery, Department of Surgery, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216, USA
| | | | | | | | | |
Collapse
|
13
|
Marangos PJ, Fox AW, Riedel BJ, Royston D, Dziewanowska ZE. Potential therapeutic applications of fructose-1,6-diphosphate. Expert Opin Investig Drugs 2005; 7:615-23. [PMID: 15991998 DOI: 10.1517/13543784.7.4.615] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ischaemia-related tissue injury is the leading cause of death in developed countries. Drugs that can reduce ischaemic injury would be beneficial in treatment of myocardial infarction (MI), surgical trauma and stroke. Fructose-1,6-diphosphate (FDP) is a key intermediate in anaerobic glycolysis and is the product of the major regulatory enzyme in the pathway (phosphofructokinase). Preclinical and clinical data suggest that FDP has substantial cytoprotective effects in a variety of ischaemia-reperfusion injury scenarios. Evidence indicates that FDP has a direct effect on ATP pools, reduces ischaemia-induced tissue damage and has positive inotropic effects on heart function. The clinical data suggest that FDP may be a useful drug in a variety of ischaemic and inflammatory clinical settings where acute management of tissue injury is desired. Potential uses include: iv. administration for the reduction of ischaemic injury in sickle cell anaemia, bypass surgery, congestive heart failure, myocardial infarction, as well as organ preservation in transplants.
Collapse
Affiliation(s)
- P J Marangos
- Cypros Pharmaceutical Corporation, 2714 Loker Avenue West, Carlsbad, CA 92008, USA
| | | | | | | | | |
Collapse
|
14
|
Sola A, De Oca J, Alfaro V, Xaus C, Jaurrieta E, Hotter G. Protective effects of exogenous fructose-1,6-biphosphate during small bowel transplantation in rats. Surgery 2004; 135:518-26. [PMID: 15118589 DOI: 10.1016/j.surg.2003.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND We assessed the effect of adding exogenous fructose-1,6-biphosphate (F16BP) to the preservation solution (University of Wisconsin storage solution) used during an experimental procedure of small bowel transplantation in rats. METHODS We studied levels of the nucleotides hypoxanthine/xanthine and adenosine in tissue after cold ischemia, as well as histologic changes and associated deleterious processes such as bacterial translocation produced by the reperfusion associated with the transplantation. RESULTS The groups of rats treated with F16BP showed the lowest levels of hypoxanthine/xanthine and uric acid, the highest levels of adenosine, and the lowest levels of histologic damage and lactate dehydrogenase release to the bloodstream. Consumption of intestinal hypoxanthine during reperfusion was lowest in the groups treated with F16BP, as was the incidence of bacterial translocation. CONCLUSIONS This study shows a protective effect of exogenous F16BP added to University of Wisconsin solution during experimental intestinal transplantation in rats. This protective effect, reflected by decreased intestinal damage and bacterial translocation, was related to a decrease in adenosine triphosphate depletion during cold ischemia before intestinal transplantation, and to the reduced availability of xanthine oxidase substrates for free radical generation during reperfusion.
Collapse
Affiliation(s)
- Anna Sola
- Department of Medical Bioanalysis, Instituto de Investigaciones Biomédicas, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Riedel BJ, Gal J, Ellis G, Marangos PJ, Fox AW, Royston D. Myocardial protection using fructose-1,6-diphosphate during coronary artery bypass graft surgery: a randomized, placebo-controlled clinical trial. Anesth Analg 2004; 98:20-29. [PMID: 14693576 DOI: 10.1213/01.ane.0000094336.97693.90] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED In vitro and in vivo studies suggest that fructose-1,6-diphosphate (FDP), an intermediary glycolytic pathway metabolite, ameliorates ischemic tissue injury through increased high-energy phosphate levels and may therefore have cardioprotective properties in patients undergoing coronary artery bypass graft (CABG) surgery. We designed a randomized, placebo-controlled, double-blinded, sequential-cohort, dose-ranging safety study to test 5 FDP dosage regimens in patients (n = 120; 60 FDP, 60 control) undergoing CABG surgery. Of these dosage regimens, 3 produced no benefit, 1 produced improved cardiac function, and 1 required adjustment as a result of metabolic acidosis. This suggests that we achieved the intended effect of a dose-ranging study. The expected response was observed in patients treated with 250 mg/kg FDP IV before surgery and 2.5 mM FDP as a cardioplegic additive (n = 15). These patients had lower serum creatine kinase-MB levels 2, 4, and 6 h after reperfusion (P < 0.05), fewer perioperative myocardial infarctions (P < 0.05), and improved postoperative cardiac function, as evidenced by higher left ventricular stroke work index (LVSWI) 6, 12, and 16 h (P < 0.01) and cardiac index (CI) at 12 and 16 h (P < 0.05) after reperfusion. Overall efficacy of FDP was tested across all regimens that included IV FDP (n = 88; 44 FDP, 44 control) using 2 (FDP versus placebo) x 3 (dose size) factorial analyses. Area-under-curve (AUC) analysis demonstrated a significant increase in CI (AUC-16h, P = 0.013) and LVSWI (AUC-16h, P = 0.003) and reduction in CK-MB levels (AUC-16h, P < 0.05) in FDP-treated patients. The internal consistency of this dataset suggests that FDP may provide myocardial protection in CABG surgery and supports previous laboratory and clinical studies of FDP in ischemic heart disease. IMPLICATIONS Fructose-1,6-diphosphate (FDP) may increase high-energy phosphate levels under anaerobic conditions and therefore ameliorate ischemic injury. A dose-ranging safety study for FDP was conducted in patients undergoing coronary artery surgery. Preischemic provision of FDP significantly improved cardiac function and reduced perioperative ischemic injury. These myocardial protective effects may improve patient outcome after cardiac surgery.
Collapse
Affiliation(s)
- Bernhard J Riedel
- *Department of Anesthesiology, Royal Brompton & Harefield NHS Trust, London, UK and †Cypros Pharmaceutical Corporation, Carlsbad, California (now incorporated into Questcor Pharmaceuticals, Inc., Hayward, California)
| | | | | | | | | | | |
Collapse
|
16
|
Wu XT, Li JS, Zhao XF, Li N, Ma YK, Zhuang W, Zhou Y, Yang G. Effects of n-3 fatty acid, fructose-1, 6-diphosphate and glutamine on mucosal cell proliferation and apoptosis of small bowel graft after transplantation in rats. World J Gastroenterol 2003; 9:1323-6. [PMID: 12800249 PMCID: PMC4611809 DOI: 10.3748/wjg.v9.i6.1323] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effects of n-3 fatty acids (n-3FA), fructose-1, 6-diphosphate (FDP) and glutamine (GLN) on mucosal cell proliferation and apoptosis of small bowel graft.
METHODS: One hundred and ninety-six inbred strain Wistar rats were grouped as donors and recipients, and underwent heterotopic small bowel transplantation (SBT). n-3FA, FDP and GLN were administered via gastric tube as well as venous infusion for 10 d before and after surgery, respectively. The proliferation and apoptosis of mucosal cells were analyzed with flow cytometry and in situ cell death detection kits.
RESULTS: Apparent apoptosis and minor proliferation of mucosal cells of small bowel graft after transplantation were observed. A higher mucosal cell proliferative index and lower apoptotic index were found in all small bowel grafts after supplying with n-3FA, FDP and GLN.
CONCLUSION: Nutritional support with n-3FA, FDP and GLN promotes mucosal cell proliferation significantly, and prevents mucosal cell from undergoing apoptosis with different degrees. These regulatory effects on the apoptosis alter the structure and absorption function of transplanted small bowel favorably.
Collapse
Affiliation(s)
- Xiao-Ting Wu
- Department of General Surgery, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, Sichuan Province, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hua D, Zhuang X, Ye J, Wilson D, Chiang B, Chien S. Using fructose-1,6-diphosphate during hypothermic rabbit-heart preservation: a high-energy phosphate study. J Heart Lung Transplant 2003; 22:574-82. [PMID: 12742421 DOI: 10.1016/s1053-2498(02)00661-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND In this study, we evaluated the effects of fructose-1,6-diphosphate (FDP) on high-energy phosphate metabolism during 18-hour hypothermic rabbit-heart preservation. METHODS Under general anesthesia and artificial ventilation, hearts from 42 adult New Zealand white rabbits were harvested, flushed, and preserved in St. Thomas solution at 4(o)C for 18 hours. In the study group (n = 15), FDP (5 mmol/liter) was added to the St. Thomas solution, whereas in the control group (n = 17), fructose (5 mmol/liter) was added. Another 10 hearts did not undergo hypothermic storage, but were used as the normal group for high-energy phosphate concentration comparison. RESULTS After 18 hours of hypothermic preservation, myocardial high-energy phosphate content decreased in both preservation groups. In the study group, left ventricular adenosine triphosphate (ATP) content was 33% of that in the normal hearts, but in the control group, ATP decreased to 14% of normal. Adenosine diphosphate (ADP) content, energy charge, and ATP-to-ADP ratio showed similar decreases. The high-energy phosphate profile (content in the atria and ventricles and the ratio of ATP to ADP to AMP) was maintained in the study group but not in the control group. High-energy phosphate metabolites such as inosine monophosphate (IMP), inosine, and hypoxanthine increased in both preservation groups, but the increase was more prominent in the control group. CONCLUSION Adding FDP to St. Thomas solution attenuated the depletion of high-energy phosphate concentration in the preserved hearts. This difference was especially prominent in the left and right ventricles. The protective effect of FDP during hypothermic heart preservation deserves further study.
Collapse
Affiliation(s)
- Dongping Hua
- Jewish Hospital Cardiovascular Surgical Research Institute, Department of Surgery, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | | | |
Collapse
|
18
|
Nunes FB, Graziottin CM, Alves Filho JCF, Lunardelli A, Pires MGS, Wächter PH, De Oliveira JR. An assessment of fructose-1,6-bisphosphate as an antimicrobial and anti-inflammatory agent in sepsis. Pharmacol Res 2003; 47:35-41. [PMID: 12526859 DOI: 10.1016/s1043-6618(02)00255-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tissue lesion mechanisms provoked by sepsis include the infectious process, inflammation, and cellular energy deficit. We chose to test fructose-1,6-bisphosphate (FBP) because of its possible anti-inflammatory and antimicrobial actions. Wistar rats were used and divided into three experimental groups: a control group (n=10), in which a capsule was introduced into the peritoneum of the animals; a septic group (n=10), in which a capsule containing non-sterile fecal matter was introduced together with Escherichia coli (1.5 x 10(9)CFU); and a septic group treated with FBP 500 mg/kg (n=10). The blood cell tests revealed that levels of leukocytes increased significantly in the septic group when compared to both the septic group treated with FBP and the control group. The blood cultures were 100% positive in both the septic group and the septic group treated with bisphosphorylated sugar. The antibiogram only revealed an inhibitory halo in the case of the antibiotic ampicillin, there was no such indication for FBP. The anti-inflammatory power of FBP remained at 60% for 5 h in the rats that received the carrageenan injection. What is more, the sugar reduced the levels of ionic calcium in relation to the control group. This data proves the validity of using FBP in the treatment of sepsis, possibly due to its anti-inflammatory rather than antimicrobial action.
Collapse
Affiliation(s)
- Fernanda B Nunes
- Laboratório de Pesquisa em Biofísica, Departamento de Ciências Fisiológicas, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Rio Grande do Sul 91530-170, Brazil.
| | | | | | | | | | | | | |
Collapse
|
19
|
Sola A, Panés J, Xaus C, Hotter G. Fructose-1,6-biphosphate and nucleoside pool modifications prevent neutrophil accumulation in the reperfused intestine. J Leukoc Biol 2003; 73:74-81. [PMID: 12525564 DOI: 10.1189/jlb.0602299] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fructose-1,6-biphosphate (F16BP) attenuates ischemia/reperfusion (I/R) injury by inhibiting microvascular leukocyte adhesion or reducing neutrophil-derived oxygen free-radical production, but the causes of this action, the mechanisms in vivo, and the possible implication of nucleoside pool modifications are still controversial issues. We explored whether F16BP's inhibition of free-radical production and neutrophil recruitment is a result of its effect on adenosine (Ado) accumulation during intestinal I/R injury. The effects of F16BP administration were tested on the nucleotide/nucleoside metabolism at the end of the ischemic period and on microvascular neutrophil recruitment and free-radical production after reperfusion in vivo, in the presence or absence of Ado deaminase (ADA). Infusion of F16BP markedly increased endogenous Ado, decreased xanthine accumulation during the ischemic period, and inhibited neutrophil recruitment and subsequent neutrophil free-radical generation during reperfusion. Administration of ADA reversed these processes. The results provide strong evidence that F16BP prevents neutrophil accumulation and neutrophil free-radical generation during intestinal I/R by a key mechanism that modifies the nucleoside pool, leading to an endogenous accumulation of Ado and to a reduction of xanthine during ischemia.
Collapse
Affiliation(s)
- Anna Sola
- Department of Medical Bioanalysis, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC-IDIBAPS), C/Rosselló 161, 7a Planta, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|
20
|
Ahn SM, Yoon HY, Lee BG, Park KC, Chung JH, Moon CH, Lee SH. Fructose-1,6-diphosphate attenuates prostaglandin E2 production and cyclo-oxygenase-2 expression in UVB-irradiated HaCaT keratinocytes. Br J Pharmacol 2002; 137:497-503. [PMID: 12359631 PMCID: PMC1573518 DOI: 10.1038/sj.bjp.0704896] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Revised: 07/16/2002] [Accepted: 07/26/2002] [Indexed: 11/08/2022] Open
Abstract
1. Fructose-1,6-diphosphate (FDP), a glycolytic metabolite, is reported to ameliorate inflammation and inhibit the nitric oxide production in murine macrophages stimulated with endotoxin. It is also reported that FDP has cytoprotective effects against hypoxia or ischaemia/reperfusion injury in brain and heart. However, underlying mechanisms of its various biological activities are not completely understood. 2. In this study, we examined the effects of FDP on UVB-induced prostaglandin production in HaCaT keratinocytes. 3. Ultraviolet B (UVB, 280-320 nm) irradiation (30 mJ cm(-2)) increased prostaglandin E(2)(PGE(2)) production, which was significantly decreased by FDP in a concentration dependent manner. NS-398, a cyclo-oxygenase-2 (COX-2) selective inhibitor completely inhibited UVB-induced PGE(2) production showing that COX-2 activity is responsible for the increase in PGE(2) production under our experimental conditions. 4. UVB irradiation increased total COX activity and COX-2 mRNA in HaCaT keratinocytes, which were significantly blocked by FDP in a concentration dependent manner. 5. N-acetylcysteine (NAC) significantly attenuated UVB-induced PGE(2) production, COX activity and COX-2 mRNA expression indicating oxidative components might contribute to these events. 6. FDP reduced UVB-induced increase in cellular reactive oxygen species (ROS) level although it did not show direct radical scavenging effect in the experiment using 1,1-diphenyl-2picrylhydrazil (DPPH). FDP preserved the cellular antioxidant capacity including catalase activity and GSH content after irradiation. 7. Our data obtained hitherto suggest that FDP may have a protective role in UVB-injured keratinocyte by attenuating PGE(2) production and COX-2 expression, which are possibly through blocking intracellular ROS accumulation.
Collapse
Affiliation(s)
- Soo Mi Ahn
- Skin Research Team, Skin Research Institute, Pacific Corporation, Yongin 449729, Korea
| | - Hyoung-Young Yoon
- Department of Physiology, School of Medicine, Ajou University, Suwon 442-749, Korea
| | - Byung Gon Lee
- Skin Research Team, Skin Research Institute, Pacific Corporation, Yongin 449729, Korea
| | - Kyoung Chan Park
- Department of Dermatology, College of Medicine, Seoul National University, Seoul 110-744, Korea
| | - Jin Ho Chung
- Department of Dermatology, College of Medicine, Seoul National University, Seoul 110-744, Korea
| | - Chang-Hyun Moon
- Department of Physiology, School of Medicine, Ajou University, Suwon 442-749, Korea
| | - Soo Hwan Lee
- Department of Physiology, School of Medicine, Ajou University, Suwon 442-749, Korea
| |
Collapse
|
21
|
Nunes FB, Simões Pires MG, Alves Filho JCF, Wächter PH, Rodrigues De Oliveira J. Physiopathological studies in septic rats and the use of fructose 1,6-bisphosphate as cellular protection. Crit Care Med 2002; 30:2069-74. [PMID: 12352043 DOI: 10.1097/00003246-200209000-00020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this research project was to test the ability of fructose 1,6-bisphosphate (FBP), which has anti-inflammatory effects and maintains cellular energy levels, to inhibit the septic process in an experimental model in rats. DESIGN Prospective, controlled animal trial. SETTING Research laboratory. SUBJECTS Fed male Wistar rats. INTERVENTIONS Three experimental groups were formed for the test: control group, untreated septic group, and septic group treated with FBP (500 mg/kg). MEASUREMENTS AND MAIN RESULTS In the control group, there were no deaths; in the untreated septic group, the mortality rate was 100% within 15 hrs; in the septic group treated with FBP, the mortality rate reached 20% within 15 hrs. The blood cell tests revealed that concentrations of hematocrit, leukocytes, monocytes, and immature cells increased significantly in the untreated septic group compared with both the FBP-treated septic group and the control group. The histologic lesions verified in the heart, lungs, liver, and kidneys of septic animals were smaller and even absent in those treated with FBP. CONCLUSION FBP reduced the mortality rate provoked by experimental sepsis and ameliorated hematologic and histologic alterations.
Collapse
Affiliation(s)
- Fernanda Bordignon Nunes
- Laboratório de Pesquisa em Biofísica, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
22
|
Chu SJ, Chang DM, Wang D, Chen YH, Hsu CW, Hsu K. Fructose-1,6-diphosphate attenuates acute lung injury induced by ischemia-reperfusion in rats. Crit Care Med 2002; 30:1605-9. [PMID: 12130986 DOI: 10.1097/00003246-200207000-00034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether fructose-1,6-diphosphate (FDP) pretreatment can attenuate acute lung injury induced by ischemia-reperfusion in our isolated lung model in rats. DESIGN Randomized, controlled study. SETTING Animal care facility procedure room. SUBJECTS Twenty-four adult male Sprague-Dawley rats each weighing 250-350 g. INTERVENTIONS Typical acute lung injury in rats was induced successfully by 10 mins of hypoxia followed by 75 mins of ischemia and 50 mins of reperfusion. Ischemia-reperfusion significantly increased microvascular permeability as measured by the capillary filtration coefficient, lung weight gain, lung weight to body weight ratio, pulmonary arterial pressure, and protein concentration of bronchoalveolar lav-age fluid. MEASUREMENTS AND MAIN RESULTS Pretreatment with FDP significantly attenuated the acute lung injury induced by ischemia-reperfusion as shown by a significant decrease in all of the assessed variables (p <.05 p <.001). The protective effect of FDP was nearly undetectable when promazine (an ecto-adenosine 5-triphosphatase inhibitor) was added before FDP pretreatment. CONCLUSIONS Pretreatment with FDP significantly ameliorates acute lung injury induced by ischemia-reperfusion in rats.
Collapse
Affiliation(s)
- Shi-Jye Chu
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
23
|
Hardin CD, Lazzarino G, Tavazzi B, Di Pierro D, Roberts TM, Giardina B, Rovetto MJ. Myocardial metabolism of exogenous FDP is consistent with transport by a dicarboxylate transporter. Am J Physiol Heart Circ Physiol 2001; 281:H2654-60. [PMID: 11709435 DOI: 10.1152/ajpheart.2001.281.6.h2654] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extent to and the mechanism by which fructose-1,6-bisphosphate (FDP) crosses cell membranes are unknown. We hypothesized that its transport is either via band 3 or a dicarboxylate transporter. The question was addressed in isolated Langendorff rat hearts perfused under normoxic conditions. Groups of hearts received the following metabolic substrates (in mM): 5 FDP; 5 FDP + either 5, 10, or 20 fumarate; 10 FDP and either 5, 10, or 20 fumarate; or 5 FDP + 2 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS), a band 3 inhibitor. FDP uptake and metabolism were measured as production of [(13)C]lactate from [(13)C]FDP or (14)CO(2) and [(14)C]lactate from uniformly labeled [(14)C]FDP in sample perfusates. During 30 min of perfusion, FDP metabolism was 12.4 +/- 2.6 and 31.2 +/- 3.0 micromol for 5 and 10 mM FDP, respectively. Addition of 20 mM fumarate reduced FDP metabolism over a 30-min perfusion period to 3.1 +/- 0.6 and 6.3 +/- 0.5 micromol for 5 and 10 mM FDP groups, respectively. DNDS did not affect FDP utilization. These data are consistent with transport of FDP by a dicarboxylate transport system.
Collapse
Affiliation(s)
- C D Hardin
- Department of Physiology, University of Missouri, Columbia, 65212, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Figueroa AH, Stone RH, Cohly HH, Lehan PH, Markov AK. Effect of fructose-1, 6-diphosphate versus diphenhydramine on mortality in compound 48/80-induced shock. Toxicol Lett 2001; 122:141-8. [PMID: 11439220 DOI: 10.1016/s0378-4274(01)00357-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fructose-1,6-diphosphate (FDP) has a salutary effect on hemorrhagic, traumatic and endotoxic shock. The role of FDP on compound 48/80-induced shock was therefore investigated. Sprague Dawley aged male rats (448+/-7.4 gm body weight) were randomly assigned into three groups and treated intraperitoneally with diphenhydramine (DPHM) 15 mg/kg (n=11), 12.5 ml of 10% FDP (n=10) and 12.5 ml saline (n=10). The rats were injected with compound 48/80 (5 mg/kg) 30 min later, and monitored every 10 min for 60 min. Arterial pressure was higher in FDP rats than in DPHM (P<0.01) or saline (P<0.005) groups. Plasma potassium (K(+)) was lower in the FDP group (P<0.01). Arterial pO2 and pCO2 were within physiological range in all groups. A profound decrease in arterial pH and bicarbonate (HCO3(-)) was also observed in all groups. Mortality at 48 h in the saline group was 100%, in the DPHM group 91%, and in the FDP group 20% (P<0.001 and P<0.005, respectively). FDP improved survival significantly in this study.
Collapse
Affiliation(s)
- A H Figueroa
- Department of Medicine, Division of Cardiovascular Diseases, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | | | | | | | | |
Collapse
|
25
|
Markov AK, Neely WA, Didlake RH, Terry J, Causey A, Lehan PH. Metabolic responses to fructose-1,6-diphosphate in healthy subjects. Metabolism 2000; 49:698-703. [PMID: 10877192 DOI: 10.1053/meta.2000.6249] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fructose-1,6-diphosphate (FDP) is an important naturally occurring intracellular metabolite with a direct regulatory role in many metabolic pathways. The most important and widely studied of the FDP effects has been its regulation of glycolysis, particularly the enzyme that synthesizes FDP--phosphofructokinase (PFK). Since it was observed experimentally that FDP does indeed modulate carbohydrate metabolism, we investigated whether FDP would similarly enhance carbohydrate utilization in man. The study used indirect calorimetry and was open to healthy adults (N = 45) of either sex and above legal age. After a steady metabolic state was obtained, 5 g of FDP (10%) was infused into a brachial vein. In 10 subjects, glucose (5 g) or FDP (5 g) was sequentially infused. The rapid intravenous infusion of FDP produced a slight but significant decrease in heart and respiration rates (P < .05). A significant increase in the serum concentration of inorganic phosphate (P < .0001) and the intraerythrocytic concentration of adenosine triphosphate (ATP) (P < .01) was also observed. The FDP infusion produced a decrease in plasma cholesterol and triglycerides (P < .001 and P < .01, respectively). The indirect calorimetric data indicate that the infusion produced a highly significant increase in the respiratory quotient ([RQ] P < .0001) and the energy derived from carbohydrates (P < .0001) and a significant decrease in the energy derived from lipids (P < .0001). Glucose infusion did not cause changes in any of the parameters. These data indicate that carbohydrate metabolism is stimulated by FDP.
Collapse
Affiliation(s)
- A K Markov
- Department of Medicine, University of Mississippi School of Medicine, Jackson 39216, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Nitric oxide signalling during the past two decades has been one of the most rapidly growing areas in biology. This simple free radical gas can regulate an ever-growing list of biological processes. Here the regulation of NO synthesis in the liver is reviewed. The biogenesis of nitric oxide (NO) is catalysed by nitric oxide synthases (NOS). These enzymes catalyse the oxidation of one of the guanidino nitrogens of l-arginine by molecular oxygen to form NO and citrulline. Three NOS have been identified: two constitutive (cNOS: type 1 or neuronal and type 3 or endothelial) and one inducible (iNOS: type 2). As to the liver, cNOS activity is normally detectable in Kupffer cells, whereas no cNOS is ever encoded in hepatocytes. However, hepatocytes, Kupffer and stellate cells (the three main types of liver cells) are prompted to express an intense iNOS activity once exposed to effective stimuli such as bacterial lipopolysaccharide and cytokines. This review is focused mainly on two aspects: regulation of NOS activity and expression by endogenous and exogenous compounds. Because NO production has beneficial and detrimental effects, understanding the molecular mechanisms that govern NOS is critical to developing strategies to manipulate NO production in liver diseases.
Collapse
Affiliation(s)
- P Muriel
- Departamento de Farmacología y Toxicología, Centro de Investigación y de Estudios Avanzados del I.P.N., México D.F., México.
| |
Collapse
|
27
|
Chien S, Zhang F, Niu W, Ehringer W, Chiang B, Shi X, Gray LA. Fructose-1,6-diphosphate and a glucose-free solution enhances functional recovery in hypothermic heart preservation. J Heart Lung Transplant 2000; 19:277-85. [PMID: 10713253 DOI: 10.1016/s1053-2498(99)00142-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Fructose-1,6-diphosphate (FDP) has been shown to protect tissue during hypoxia under various ischemic conditions, including isolated heart perfusion. We tested the hypothesis that adding FDP to St. Thomas solution can extend hypothermic heart preservation time. METHODS Sixteen adult Sprague-Dawley rats were used. Under general anesthesia, the hearts were removed and preserved at 4 degrees C in St. Thomas solution (30 ml/kg) for 12 hours. FDP (5 mM) was added to the St. Thomas solution in the study group (n = 8), whereas no FDP was used in the control group (n = 10). The hearts were reperfused after 12 hours of preservation using a working heart model. RESULTS In the study group, cardiac output ranged from 13.00 +/- 2.34 to 17.66 +/- 1.71 ml/min, maximum aortic flow was 3.40 +/- 1.99 to 9.26 +/- 1.72 ml/min, left ventricular stroke volume ranged from 0.074 +/- 0.014 to 0.092 +/- 0.009 ml, left ventricular stroke work ranged from 6.22 +/- 0.39 to 7.95 +/- 0.44 ml/mmHg, and maximum left ventricular generated power was 14.38 +/- 2.94 to 20.16 +/- 2.49 Joules/min. All of these parameters were higher than those in the control group (p < 0.001). Coronary vascular resistance and myocardial tissue wet/dry weight ratio were lower in the study group than in the control group (p < 0.05). CONCLUSIONS Heart function was better preserved when FDP was added to St. Thomas solution during hypothermic rat heart preservation. The mechanism is not totally clear, but enhancement of high-energy phosphate production during ischemia is possible. Key words: heart, procurement, hypothermia, fructose-1,6-diphosphate.
Collapse
Affiliation(s)
- S Chien
- Jewish Hospital Cardiothoracic Surgical Research Institute, Department of Surgery, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Niu W, Zhang F, Ehringer W, Tseng M, Gray L, Chien S. Enhancement of hypothermic heart preservation with fructose 1, 6-diphosphate. J Surg Res 1999; 85:120-9. [PMID: 10383848 DOI: 10.1006/jsre.1999.5658] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND We hypothesized that the addition of fructose 1, 6-diphosphate (FDP) to a hypothermic heart preservation solution could improve metabolic recovery because it has several beneficial effects. MATERIALS AND METHODS Twenty adult Sprague-Dawley rats were used to study hypothermic heart preservation. The hearts were removed under general anesthesia and preserved at 4 degrees C in Euro-Collins solution (30 ml/kg) for 8 h. In the study group (N = 10), FDP (5 mM) was added to the Euro-Collins solution. In the control group (N = 10), no FDP was added. Heart function was studied after preservation using a working heart model. The ability of various concentrations of fructose 1,6-phosphate to passively diffuse through an egg phosphatidylcholine multilamellar vesicle (MLV) membrane bilayer was examined. RESULTS Cardiac output ranged from 17.0 +/- 1.9 to 24.9 +/- 1.6 ml/min in the study group vs 2.0 +/- 1.0-12.3 +/- 1.7 ml/min for controls, average aortic flow was 10. 8 +/- 1.4 ml/min in the study group vs -1.3 +/- 1.6 ml/min for controls, and maximum LV generated power was 22.8 +/- 1.7 J/min vs 10.1 +/- 1.6 J/min for controls. Coronary flow, left ventricular stroke volume and stroke work, and myocardial oxygen consumption were much higher in the study group than in the control group. Coronary vascular resistance was lower in the study group than in the control group. Electron microscopic study indicated that many myocytes displayed patches of swollen mitochondria in the control group, but was rarely observed in the study group. The addition of 50 mM FDP caused substantial changes in MLV permeability. No dose of sucrose buffers outside the vesicles resulted in a significant changes of MLV permeability. CONCLUSIONS Our results indicate that the addition of FDP to Euro-Collins solution significantly improves hypothermic rat heart preservation, and FDP appeared to cross the membrane bilayer.
Collapse
Affiliation(s)
- W Niu
- Department of Surgery, University of Louisville, Louisville, Kentucky, 40292, USA
| | | | | | | | | | | |
Collapse
|
29
|
Finder DR, Hardin CD. Transport and metabolism of exogenous fumarate and 3-phosphoglycerate in vascular smooth muscle. Mol Cell Biochem 1999; 195:113-21. [PMID: 10395075 DOI: 10.1023/a:1006976432578] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The keto (linear) form of exogenous fructose 1,6-bisphosphate, a highly charged glycolytic intermediate, may utilize a dicarboxylate transporter to cross the cell membrane, support glycolysis, and produce ATP anaerobically. We tested the hypothesis that fumarate, a dicarboxylate, and 3-phosphoglycerate (3-PG), an intermediate structurally similar to a dicarboxylate, can support contraction in vascular smooth muscle during hypoxia. To assess ATP production during hypoxia we measured isometric force maintenance in hog carotid arteries during hypoxia in the presence or absence of 20 mM fumarate or 3-PG. 3-PG improved maintenance of force (p < 0.05) during the 30-80 min period of hypoxia. Fumarate decreased peak isometric force development by 9.5% (p = 0.008) but modestly improved maintenance of force (p < 0.05) throughout the first 80 min of hypoxia. 13C-NMR on tissue extracts and superfusates revealed 1,2,3,4-(13)C-fumarate (5 mM) metabolism to 1,2,3,4-(13)C-malate under oxygenated and hypoxic conditions suggesting uptake and metabolism of fumarate. In conclusion, exogenous fumarate and 3-PG readily enter vascular smooth muscle cells, presumably by a dicarboxylate transporter, and support energetically important pathways.
Collapse
Affiliation(s)
- D R Finder
- Department of Physiology, University of Missouri, Columbia 65212, USA
| | | |
Collapse
|
30
|
Oyanagui Y. Fructose-1,6-diphosphate enhanced oxyradicals and nitric oxide-dependent suppressions by dexamethasone of ischemic and histamine paw edema of mice. Life Sci 1998; 62:PL241-9. [PMID: 9566781 DOI: 10.1016/s0024-3205(98)00073-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dexamethasone (Dex, 0.1 mg/kg, s.c.) suppressions of ischemic paw edema in mice at 1, 3, 6, 8, 18 hr were; 2, 22, 12, 11, 7%. Dex suppression in fructose-1,6-diphosphate (FDP, 100 mg/kg, i.p.)-treated mice were; 5, 49, 51, 42, 33%. Suppressions by this dose of FDP alone were less than 10% during 0-18 hr. ED30 at 6 hr of Dex +/- FDP was: 80 versus 500 mg/kg in ischemic-, and 5 versus 30 mg/kg in histamine edema. Endogenous oxyradicals or NO and protein synthesis were essential for suppressions. FDP may not change glucocorticoid receptor (GR) conformation, but increase ATP-dependent GR recycling efflux from nucleus. FDP is possible to supply this ATP. Clinical trial of FDP with low dose of Dex seems advantageous.
Collapse
Affiliation(s)
- Y Oyanagui
- 2nd Pharmacology, Drug Development Laboratories of Fujisawa Pharmaceutical Co., Osaka, Japan
| |
Collapse
|
31
|
Edde L, Zhou X, Eaton JW, Sherman MP. Induction of nitric oxide synthase in macrophages: inhibition by fructose-1,6-diphosphate. Biochem Biophys Res Commun 1998; 243:683-7. [PMID: 9500992 DOI: 10.1006/bbrc.1998.8163] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intravenous fructose-1,6-diphosphate (FDP) is reported to reverse shock and improves survival in animals given systemic lipopolysaccharide (LPS), although the mechanism is incompletely understood. Since endotoxin-related shock is associated with increased nitric oxide (NO) production, LPS-stimulated macrophages were treated with FDP, and the NO metabolite, nitrite, was measured 24 h later. Treatment of LPS-stimulated macrophages with 1, 5, or 10 mM FDP caused a dose-dependent reduction in mRNA expression for inducible NO synthase by Northern analysis and decreased the micromolar concentrations of nitrite produced by 17, 42, and 68%, respectively. Neither fructose nor sodium phosphate had these effects in LPS-exposed macrophages. Electrophoretic mobility shift assays revealed that FDP did not inhibit LPS-mediated activation of nuclear factor kappa B. Viability analysis showed that the FDP effect was not caused by cytotoxicity. Overall, these results suggest that fructose-1,6-diphosphate, a glycolytic intermediate with potential clinical use, may mitigate the adverse effects of LPS by regulating the generation of NO.
Collapse
Affiliation(s)
- L Edde
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
32
|
Markov AK, Brumley MA, Figueroa A, Skelton TN, Lehan PH. Hemodynamic effects of fructose 1,6-diphosphate in patients with normal and impaired left ventricular function. Am Heart J 1997; 133:541-9. [PMID: 9141376 DOI: 10.1016/s0002-8703(97)70149-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We compared the short-term hemodynamic effects of intravenous fructose 1,6-diphosphate (FDP) administration in patients with coronary artery disease. Hemodynamic measurements were performed before and after administration of FDP in two groups of patients: those with impaired left ventricular (LV) function, elevated LV end-diastolic pressures (LVEDP > or =12 mm Hg, n = 30), and those with normal LV function (LVEDP <12 mm Hg, n = 17). In those with impaired LV function, FDP induced a decrease in LVEDP from 22 +/- 1.31 to 16.73 +/- 1.46 mm Hg (p< 0.0001). The cardiac index increased (2.50 +/- 0.11 to 2.81 +/- 0.13 L/m2 [p < 0.0001]), as did the LV stroke work index (31.7 +/- 2.04 to 40.3 +/- 2.67 gm x m x m2 [p < 0.0001]). FDP induced no significant change in heart rate and mean aortic pressure. Pulmonary pressure and resistance declined (p<0.002 and p< 0.0001, respectively). Systemic vascular resistance decreased because of increased cardiac output and unchanged arterial pressure (p < 0.001). In those patients with normal baseline LVEDP (5.06 +/- 0.27 mm Hg), FDP decreased heart rate (p< 0.0001) and systemic and pulmonary resistance (p < 0.03 and p < 0.004, respectively), whereas LVEDP and mean aortic and pulmonary pressures remained unchanged. FDP moderately increased cardiac output (p < 0.05), stroke volume index, and LV stroke work index (p< 0.002 and p< 0.003, respectively). The observed improvement in LV function in those patients with elevated LV filling pressures is thought to be a result of an increased energy production by the Embden-Meyerhoff pathway and to act as a positive inotrope.
Collapse
Affiliation(s)
- A K Markov
- Department of Medicine, The University of Mississippi Medical Center, Jackson 39216, USA
| | | | | | | | | |
Collapse
|
33
|
Juergens TM, Hardin CD. Fructose-1,6-bisphosphate as a metabolic substrate in hog ileum smooth muscle during hypoxia. Mol Cell Biochem 1996; 154:83-93. [PMID: 8717421 DOI: 10.1007/bf00248465] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Exogenously applied fructose-1,6-bisphosphate has been reported to be effective in preventing some damage to the small intestine during ischemia. To determine whether exogenously applied fructose-1,6-bisphosphate protects ileum smooth muscle from damage from hypoxia and from reoxygenation, we examined the effect of fructose-1,6-bisphosphate on the ability of hog ileum smooth muscle to maintain isometric force during hypoxia and to generate isometric force after reoxygenation in the presence of 5 mM glucose. After 180 min of hypoxia, tissues incubated with 20 mM fructose-1,6-bisphosphate maintained significantly greater levels of isometric force than tissues incubated in the absence of exogenous substrate (23% of pre-hypoxia force compared to 16%). During the first contraction following reoxygenation there was a significantly greater force generation in tissues incubated with 20 mM fructose-1,6-bisphosphate during the hypoxia period compared to tissues with no exogenous substrate included during the hypoxia period (29% of pre-hypoxia force compared to 19%). However, glucose always was a better metabolic substrate compared to fructose-1,6-bisphosphate under all experimental conditions. The presence of fructose-1,6-bisphosphate during hypoxia likely improved tissue function by fructose-1,6-bisphosphate entering the cells and acting as a glycolytic intermediate, since during a 120 min period of hypoxia, unmounted ileum smooth muscle metabolized 1,6-13C-fructose-1,6-bisphosphate to 3-13C-lactate. This conversion of 1,6-13C-fructose-1,6-bisphosphate to 3-13C-lactate was inhibited by the addition of 1 mM iodoacetic acid, a glycolytic inhibitor. We conclude that exogenously provided fructose-1,6-bisphosphate does provide modest protection of ileum smooth muscle from hypoxic damage by functioning as a glycolytic intermediate and improving the cellular energy state.
Collapse
Affiliation(s)
- T M Juergens
- Department of Physiology, University of Missouri, Columbia 65212, USA
| | | |
Collapse
|
34
|
Bhaskar L, Mathan MM, Balasubramanian KA. Oxygen free radical-induced damage during colonic ischemia/reperfusion in rats. Mol Cell Biochem 1995; 151:9-14. [PMID: 8584019 DOI: 10.1007/bf01076889] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Reperfusion injury following ischemia is thought to be the consequence of reactive oxygen species. Role of these free radicals on the damaging effects of ischemia in colon has been investigated. A rat experimental model was used in which colon was subjected to ischemia and reperfusion and mucosal damage was assessed by biochemical and histological studies. Activity of myeloperoxidase, a neutrophil marker, was increased after ischemia (I) and ischemia/Reperfusion (I/R). Lipid peroxidation products such as malonaldehyde and conjugated diene did not show any change in the experimental colonic mucosa as compared to control. Mucosal level of low molecular weight thiols were found to be altered after I/R. A decrease in alpha-tocopherol level was noticed after ischemia and the decrease was prominent after reperfusion. Histology indicated morphological changes in colon due to ischemia and reperfusion and the damage was more severe after reperfusion. These results suggest that colonic mucosal damage occurs during I/R and free radicals generated by the infiltrated neutrophils may play a role in this damaging process.
Collapse
Affiliation(s)
- L Bhaskar
- Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore, Tamilnadu, India
| | | | | |
Collapse
|
35
|
Sano W, Watanabe F, Tamai H, Furuya E, Mino M. Beneficial effect of fructose-1,6-bisphosphate on mitochondrial function during ischemia-reperfusion of rat liver. Gastroenterology 1995; 108:1785-92. [PMID: 7768384 DOI: 10.1016/0016-5085(95)90141-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND/AIMS Several groups have reported that administration of fructose-1,6-bisphosphate (FBP) reduces ischemic injury. The aim of this study was to determine the protective effect of FBP on the impairment of mitochondrial oxidative phosphorylation by ischemia-reperfusion injury in the rat liver. METHODS The respiratory control ratio (RCR) and the adenine nucleotide content of mitochondria isolated from ischemic and reperfused livers with or without FBP treatment were measured. RESULTS In FBP-treated livers, the cellular adenosine triphosphate level was restored to more than 50% of normal after 120 minutes of reperfusion following 120 minutes of ischemia, whereas that of control livers only reached 15% of normal. The RCR and the adenine nucleotide content of mitochondria isolated from FBP-treated livers were significantly higher than those of mitochondria from control livers after ischemia and reperfusion. FBP strongly suppressed the formation of lipid peroxides during reperfusion. In vitamin E-deficient rats, the RCR decreased markedly during reperfusion, but FBP protected the mitochondria against reperfusion injury. CONCLUSIONS FBP has a protective effect against ischemia-reperfusion injury on the liver and especially preserves the oxidative phosphorylation capacity of hepatic mitochondria.
Collapse
Affiliation(s)
- W Sano
- Department of Pediatrics, Osaka Medical College, Japan
| | | | | | | | | |
Collapse
|
36
|
Langer JC, Sohal SS, Blennerhassett P. Mucosal permeability after subclinical intestinal ischemia-reperfusion injury: an exploration of possible mechanisms. J Pediatr Surg 1995; 30:568-72. [PMID: 7595836 DOI: 10.1016/0022-3468(95)90133-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Changes in mucosal permeability may be important in the etiology of necrotizing enterocolitis. The authors have previously shown that subclinical ischemia-reperfusion injury results in increased permeability in the rat intestine, and have partially characterized this phenomenon. In the present study the authors attempt to determine the mechanism by which these changes occur. Six-week-old rats underwent 10-minute superior mesenteric artery occlusion (SMAO) or sham, and mucosal permeability to 51CrEDTA was measured after 30 minutes. Rats were pretreated with saline, inhibitors of oxygen free radicals (superoxide dismutase+catalase, vitamin E, allopurinol, alpha-phenyl-N-tert butyl-nitrone), inhibitors of eicosanoids (indomethacin, quinacrine, diethylcarbamazine, 13-azaprostanoic acid), the putative cytoprotective agent prostaglandin E2, or the inhibitor of neutrophil free radical production fructose 1-6 diphosphate. None of the agents significantly attenuated the increase in mucosal permeability caused by SMAO, although indomethacin and prostaglandin E2 significantly exacerbated the permeability changes. To further explore the role of neutrophils, tissue myeloperoxidase was measured 30 minutes after SMAO. There was no significant difference in myeloperoxidase levels between sham and SMAO animals. These data suggest that the early increase in mucosal permeability after subclinical ischemia-reperfusion injury is not mediated by oxygen free radicals, eicosanoids, or neutrophils. The deleterious effect of indomethacin and prostaglandin E2 suggests a possible protective role for the cyclooxygenase system, but further studies are necessary to elucidate this possibility.
Collapse
Affiliation(s)
- J C Langer
- Intestinal Disease Research Unit, McMaster University, Hamilton, Ontario
| | | | | |
Collapse
|
37
|
Trimarchi GR, De Luca R, Arcadi FA, Imperatore C, Ruggeri P, Costa G. Effects of fructose-1,6-bisphosphate on brain polyamine biosynthesis in a model of transient cerebral ischemia. Life Sci 1994; 54:1195-204. [PMID: 8152342 DOI: 10.1016/0024-3205(94)00841-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We evaluated the effects on cerebral ischemia of a treatment with fructose-1,6-bisphosphate, a compound known to possess protective effects on acute ischemic injury in a variety of different tissues. We investigated the ability of the compound, administered either 15 minutes before or 15 minutes after the ischemic insult, in reducing the ischemia-induced changes in polyamine brain levels. The experiments were performed in adult, chloral hydrate-anesthetized Mongolian gerbils that underwent a 15 minutes ligation of the common carotid arteries followed by recirculation. Animals were sacrificed 1, 8 and 24 hours and immediately after the release of the occlusion. Polyamine brain levels were not modified during ischemia. Putrescine began to increase after eight hours from the release of the occlusion and we found it significantly increased after 24 hours in the hippocampus and striatum. We did not detect any significant changes in spermidine brain levels either during ischemia or during recirculation. Conversely, spermine appeared to decrease in the hippocampus while it did not show changes in striatum and medulla-pons. The activity of ornithine decarboxylase, a key enzyme in the biosynthesis of polyamines, resulted enhanced at the end of the ischemic period in all the brain regions tested and showed a peak at eight hours of recirculation in striatum and hippocampus whereas returned to control values in the medulla-pons. Fructose-1,6-bisphosphate significantly reduced the ischemia induced changes in polyamine brain content when administered before the ischemic insult while did not show protective properties when administered post-ischemically.
Collapse
Affiliation(s)
- G R Trimarchi
- Institute of Pharmacology, School of Medicine, University of Messina, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Brass CA, Crawford JM, Narciso JP, Gollan JL. Evaluation of University of Wisconsin cold-storage solution in warm hypoxic perfusion of rat liver: the addition of fructose reduces injury. Gastroenterology 1993; 105:1455-63. [PMID: 8224648 DOI: 10.1016/0016-5085(93)90151-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND University of Wisconsin cold-storage solution (UW solution) has markedly improved organ preservation for liver transplantation. However, the efficacy of this solution in preserving hepatocyte viability during warm ischemia is undefined; hence, the effects of UW solution on warm hypoxic injury in the isolated perfused rat liver were examined. METHODS Livers were perfused using a modified protocol that included a period of hypoxic perfusion with isosmotic Krebs' solution at the end of each experiment. Hepatic injury was evaluated by aspartate aminotransferase (AST) release into the perfusate and the trypan blue perfusion technique. RESULTS Although UW solution appeared to decrease hepatic injury during hypoxic perfusion, as reflected by low AST release, perfusion with UW solution led to hepatocyte shrinkage and cessation of bile flow even under oxygenated conditions. UW solution did not protect against warm hypoxic injury, as assessed by AST release into the perfusate (182 +/- 15 U/mL, mean +/- SD) or trypan blue staining of the dead hepatocyte nuclei (56% +/- 5%). However, the addition of fructose to UW solution resulted in a significant decrease in AST release (66 +/- 15 U/mL) and parenchymal cell death (39% +/- 7%). CONCLUSIONS These data suggest that the addition of fructose or other gluconeogenic substrates may complement the overall hepatoprotective effects of UW solution, particularly during periods of warm hypoxia.
Collapse
Affiliation(s)
- C A Brass
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
39
|
Kontani H, Ginkawa M, Sakai T. A simple method for measurement of ureteric peristaltic function in vivo and the effects of drugs acting on ion channels applied from the ureter lumen in anesthetized rats. JAPANESE JOURNAL OF PHARMACOLOGY 1993; 62:331-8. [PMID: 7693993 DOI: 10.1254/jjp.62.331] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In supine anesthetized rats, two cannulae were inserted into a unilateral ureter near the kidney and urinary bladder, respectively. Fluid from a reservoir placed approximately 27 cm above the rat was infused into the ureter lumen through the cannula near the kidney, and the resulting peristaltic pressure signals were measured from the cannula near the bladder. When drugs acting on ion channels were applied from the ureter lumen and their effects on the peristaltic pressure signals were studied, the K+ channel opener BRL 38227 (1 x 10(-4) M and 1 x 10(-3) M) was found to decrease the frequency dose-dependently. However, the K+ channel blockers glibenclamide and 4-aminopyridine at 1 x 10(-3) M did not affect peristaltic movement. Nifedipine (1 x 10(-5) M and 1 x 10(-4) M) decreased the frequency of peristalsis, but the effect was weaker than that of BRL 38227. Lidocaine at very high concentration (1.5 x 10(-2) and 1.5 x 10(-1) M) decreased the amplitude and increased the frequency of the peristaltic signals. These results indicate that the K+ channel opener has the most inhibitory effect on ureteral peristaltic function.
Collapse
Affiliation(s)
- H Kontani
- Department of Pharmacology, Hokuriku University, School of Pharmacy, Kanazawa, Japan
| | | | | |
Collapse
|
40
|
Planas ME, Sánchez S, González P, Rodrigues de Oliveira J, Bartrons R. Protective effect of fructose 1,6-bisphosphate against carrageenan-induced inflammation. Eur J Pharmacol 1993; 237:251-5. [PMID: 8365453 DOI: 10.1016/0014-2999(93)90276-n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Administration of carrageenan (0.5 mg) to the plantar tissue of rats resulted in reversible inflammatory injury. This damage was monitored as changes in foot volume, using a plethysmometer. Administration of fructose 1,6-bisphosphate at different doses, orally or intraperitoneally, prevented the inflammatory action induced by the simultaneous injection of carrageenan in the rat paw. The effect was dose and time dependent. In contrast, fructose or fructose 6-phosphate afforded no significant protection. In order to extend the average half-life of the drug, we prepared liposomes of fructose 1,6-bisphosphate which, administered orally or intraperitoneally, showed a greater and more prolonged antiinflammatory action. The significance of these findings with respect to the mechanism of the antiinflammatory action of fructose 1,6-bisphosphate is discussed.
Collapse
Affiliation(s)
- M E Planas
- Unitat de Farmacologia, Facultat Odontologia, Universitat de Barcelona, Hospitalet, Spain
| | | | | | | | | |
Collapse
|
41
|
David H, Siems WG, Ellermann J. Ultrastructure and biochemistry of ischemic damages of small intestinal epithelial cells. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 1992; 44:325-35. [PMID: 1450651 DOI: 10.1016/s0940-2993(11)80220-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ischemia (one hour) and following reperfusion (up to one hour) of the small intestine induce biochemical changes which are indices for the formation and action of oxygen free radicals and which occur predominantly during the reperfusion period. But the villi and the epithelial cells show different patterns of damage, occurring both at the end of the ischemic period and during the reperfusion period. Although the quantitative morphological changes are increased during the reperfusion in comparison with the ischemic phase the quality of the pattern of structural damage is the same in both periods of the experiment. This pattern of the damage includes: 1. the neighbourhood of groups of villi with total ischemic-lytic dissolution of the villi, of villi with damage of the epithelial cells at the tip and at the lateral area and of normal villi; 2. the different degree of structural damage of neighbouring epithelial cells within one villus whose cells are either of regular structural or damaged at subcellular organelles including the plasma membrane or of those being necrotically destroyed and on the way of release into the luminal space; 3. a differentiation of the structural changes of the microvilli and other organelles within single and neighbouring epithelial cells. The biochemical findings on purine nucleotide metabolism and on the formation of oxygen free radicals as "mean values" of a homogenate from a large group of cells cannot reflect the morphological-ultrastructural changes of single villi or even single epithelial cells. The possible reasons for the mosaicism of the morphological changes during ischemia and reperfusion are discussed.
Collapse
Affiliation(s)
- H David
- Department of Ultrastructural Pathology and Electron Microscopy, Faculty of Medicine (Charité), Humboldt University Berlin, Germany
| | | | | |
Collapse
|
42
|
Farias LA, Smith EE, Markov AK. Prevention of ischemic-hypoxic brain injury and death in rabbits with fructose-1,6-diphosphate. Stroke 1990; 21:606-13. [PMID: 2326842 DOI: 10.1161/01.str.21.4.606] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fructose-1,6-diphosphate has been shown to improve neurologic recovery following resuscitation from cardiac arrest and to restore brain electrical activity during hypoglycemic coma in rabbits. In view of these findings, we determined whether fructose-1,6-diphosphate protects the brain during ischemia-hypoxia. We subjected 16 rabbits to hypotension, hypoxemia, and bilateral common carotid artery occlusion. Five minutes after the onset of isoelectric electroencephalograms, seven randomly selected rabbits received 10% fructose-1,6-diphosphate (350 mg/kg bolus followed by 10 mg/kg/min infusion for 90 minutes) and the remaining nine rabbits (controls) received an equal volume of 1.5% NaCl (3.5 ml/kg bolus followed by 0.1 ml/kg/min infusion for 90 minutes). After isoelectricity lasting 7.86 +/- 0.8 minutes (mean +/- SEM) in the treated group and 6.44 +/- 0.38 minutes in the control group, the rabbits were reinfused with autologous shed blood and reoxygenated and the carotid artery occluders were removed. Treated rabbits recovered electrical activity more rapidly than the controls (p less than 0.005), and all seven treated rabbits survived. Only two controls (22%) survived (p less than 0.001), and they were severely disabled. Histology showed extensive cortical necrosis and focal necrosis in the hippocampi and cerebellum of brains from the two surviving controls. Brains from two treated rabbits exhibited minimal neuronal loss limited to the neocortex, and the brains from the remaining five treated rabbits were normal. This study suggests that fructose-1,6-diphosphate protects the brain from ischemic-hypoxic insults.
Collapse
Affiliation(s)
- L A Farias
- Department of Anesthesia, Central University of Venezuela, Caracas
| | | | | |
Collapse
|