1
|
Hobbs SS, Goettel JA, Liang D, Yan F, Edelblum KL, Frey MR, Mullane MT, Polk DB. TNF transactivation of EGFR stimulates cytoprotective COX-2 expression in gastrointestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011; 301:G220-9. [PMID: 21566012 PMCID: PMC3154604 DOI: 10.1152/ajpgi.00383.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
TNF and epidermal growth factor (EGF) are well-known stimuli of cyclooxygenase (COX)-2 expression, and TNF stimulates transactivation of EGF receptor (EGFR) signaling to promote survival in colon epithelial cells. We hypothesized that COX-2 induction and cell survival signaling downstream of TNF are mediated by EGFR transactivation. TNF treatment was more cytotoxic to COX-2(-/-) mouse colon epithelial (MCE) cells than wild-type (WT) young adult mouse colon (YAMC) epithelial cells or COX-1(-/-) cells. TNF also induced COX-2 protein and mRNA expression in YAMC cells, but blockade of EGFR kinase activity or expression inhibited COX-2 upregulation. TNF-induced COX-2 expression was reduced and absent in EGFR(-/-) and TNF receptor-1 (TNFR1) knockout MCE cells, respectively, but was restored upon expression of the WT receptors. Inhibition of mediators of EGFR transactivation, Src family kinases and p38 MAPK, blocked TNF-induced COX-2 protein and mRNA expression. Finally, TNF injection increased COX-2 expression in colon epithelium of WT, but not kinase-defective EGFR(wa2) and EGFR(wa5), mice. These data indicate that TNFR1-dependent transactivation of EGFR through a p38- and/or an Src-dependent mechanism stimulates COX-2 expression to promote cell survival. This highlights an EGFR-dependent cell signaling pathway and response that may be significant in colitis-associated carcinoma.
Collapse
Affiliation(s)
- Stuart S. Hobbs
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics,
| | - Jeremy A. Goettel
- 2Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Dongchun Liang
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics,
| | - Fang Yan
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics,
| | - Karen L. Edelblum
- 2Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Mark R. Frey
- 3Departments of Pediatrics and Biochemistry and Molecular Biology, The Saban Research Institute of Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Matthew T. Mullane
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics,
| | - D. Brent Polk
- 3Departments of Pediatrics and Biochemistry and Molecular Biology, The Saban Research Institute of Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
2
|
Yan F, Cao H, Cover TL, Washington MK, Shi Y, Liu L, Chaturvedi R, Peek RM, Wilson KT, Polk DB. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. J Clin Invest 2011; 121:2242-53. [PMID: 21606592 DOI: 10.1172/jci44031] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 03/09/2011] [Indexed: 12/13/2022] Open
Abstract
Probiotic bacteria can potentially have beneficial effects on the clinical course of several intestinal disorders, but our understanding of probiotic action is limited. We have identified a probiotic bacteria-derived soluble protein, p40, from Lactobacillus rhamnosus GG (LGG), which prevents cytokine-induced apoptosis in intestinal epithelial cells. In the current study, we analyzed the mechanisms by which p40 regulates cellular responses in intestinal epithelial cells and p40's effects on experimental colitis using mouse models. We show that the recombinant p40 protein activated EGFR, leading to Akt activation. Activation of EGFR by p40 was required for inhibition of cytokine-induced apoptosis in intestinal epithelial cells in vitro and ex vivo. Furthermore, we developed a pectin/zein hydrogel bead system to specifically deliver p40 to the mouse colon, which activated EGFR in colon epithelial cells. Administration of p40-containing beads reduced intestinal epithelial apoptosis and disruption of barrier function in the colon epithelium in an EGFR-dependent manner, thereby preventing and treating DSS-induced intestinal injury and acute colitis. Furthermore, p40 activation of EGFR was required for ameliorating colon epithelial cell apoptosis and chronic inflammation in oxazolone-induced colitis. These data define what we believe to be a previously unrecognized mechanism of probiotic-derived soluble proteins in protecting the intestine from injury and inflammation.
Collapse
Affiliation(s)
- Fang Yan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee 37232-0696, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Bäuerl C, Pérez-Martínez G, Yan F, Polk DB, Monedero V. Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23. J Mol Microbiol Biotechnol 2010; 19:231-41. [PMID: 21178363 DOI: 10.1159/000322233] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria.
Collapse
Affiliation(s)
- Christine Bäuerl
- Laboratorio de Bacterias Lácticas y Probióticos, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
4
|
Yan F, Cao H, Chaturvedi R, Krishna U, Hobbs SS, Dempsey PJ, Peek RM, Cover TL, Washington MK, Wilson KT, Polk DB. Epidermal growth factor receptor activation protects gastric epithelial cells from Helicobacter pylori-induced apoptosis. Gastroenterology 2009; 136:1297-1307, e1-3. [PMID: 19250983 PMCID: PMC2878739 DOI: 10.1053/j.gastro.2008.12.059] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 12/15/2008] [Accepted: 12/29/2008] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori infection disrupts the balance between gastric epithelial cell proliferation and apoptosis, which is likely to lower the threshold for the development of gastric adenocarcinoma. H pylori infection is associated with epidermal growth factor (EGF) receptor (EGFR) activation through metalloproteinase-dependent release of EGFR ligands in gastric epithelial cells. Because EGFR signaling regulates cell survival, we investigated whether activation of EGFR following H pylori infection promotes gastric epithelial survival. METHODS Mouse conditionally immortalized stomach epithelial cells (ImSt) and a human gastric epithelial cell line, AGS cells, as well as wild-type and kinase-defective EGFR (EGFRwa2) mice, were infected with the H pylori cag+ strain 7.13. Apoptosis, caspase activity, EGFR activation (phosphorylation), and EGFR downstream targets were analyzed. RESULTS Inhibiting EGFR kinase activity or decreasing EGFR expression significantly increased H pylori-induced apoptosis in ImSt. Blocking H pylori-induced EGFR activation with a heparin-binding (HB)-EGF neutralizing antibody or abrogating a disintegrin and matrix metalloproteinase-17 (ADAM-17) expression increased apoptosis of H pylori-infected AGS and ImSt, respectively. Conversely, pretreatment of ImSt with HB-EGF completely blocked H pylori-induced apoptosis. H pylori infection stimulated gastric epithelial cell apoptosis in EGFRwa2 but not in wild-type mice. Furthermore, H pylori-induced EGFR phosphorylation stimulated phosphotidylinositol-3'-kinase-dependent activation of the antiapoptotic factor Akt, increased expression of the antiapoptotic factor Bcl-2, and decreased expression of the proapoptotic factor Bax. CONCLUSIONS EGFR activation by H pylori infection has an antiapoptotic effect in gastric epithelial cells that appears to involve Akt signaling and Bcl family members. These findings provide important insights into the mechanisms of H pylori-associated tumorigenesis.
Collapse
Affiliation(s)
- Fang Yan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, TN
| | - Hanwei Cao
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, TN
| | - Rupesh Chaturvedi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Uma Krishna
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Stuart S. Hobbs
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, TN
| | - Peter J. Dempsey
- Departments of Pediatrics and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Richard M. Peek
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Timothy L. Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - M. Kay Washington
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN
| | - Keith T. Wilson
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - D. Brent Polk
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, TN, Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN,To whom correspondence should be addressed: D. Brent Polk, M.D., Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, MRB IV, Room: 1025, Nashville, TN 37232-0696, Telephone: 615-322-7449, Fax: 615-343-5323,
| |
Collapse
|
5
|
Transactivation of EGF receptor and ErbB2 protects intestinal epithelial cells from TNF-induced apoptosis. Proc Natl Acad Sci U S A 2008; 105:11772-7. [PMID: 18701712 DOI: 10.1073/pnas.0801463105] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
TNF is a pleiotropic cytokine that activates both anti- and proapoptotic signaling pathways, with cell fate determined by the balance between these two pathways. Activation of ErbB family members, including EGF receptor (EGFR/ErbB1), promotes cell survival and regulates several signals that overlap with those stimulated by TNF. This study was undertaken to determine the effects of TNF on EGFR and ErbB2 activation and intestinal epithelial cell survival. Mice, young adult mouse colon epithelial cells, and EGFR knockout mouse colon epithelial cells were treated with TNF. Activation of EGFR, ErbB2, Akt, Src, and apoptosis were determined in vivo and in vitro. TNF stimulated EGFR phosphorylation in young adult mouse colon epithelial cells, and loss of EGFR expression or inhibition of kinase activity increased TNF-induced apoptosis, which was prevented in WT but not by kinase-inactive EGFR expression. Similarly, TNF injection stimulated apoptosis in EGFR-kinase-defective mice (EGFR(wa2)) compared with WT mice. TNF also activated ErbB2, and loss of ErbB2 expression increased TNF-induced apoptosis. Furthermore, Src-kinase activity and the expression of both EGFR and ErbB2 were required for TNF-induced cell survival. Akt was shown to be a downstream target of TNF-activated EGFR and ErbB2. These findings demonstrate that EGFR and ErbB2 are critical mediators of TNF-regulated antiapoptotic signals in intestinal epithelial cells. Given evidence for TNF signaling in the development of colitis-associated carcinoma, this observation has significant implications for understanding the role of EGFR in maintaining intestinal epithelial cell homeostasis during cytokine-mediated inflammatory responses.
Collapse
|
6
|
Wang Y, Tomar A, George SP, Khurana S. Obligatory role for phospholipase C-gamma(1) in villin-induced epithelial cell migration. Am J Physiol Cell Physiol 2007; 292:C1775-86. [PMID: 17229814 DOI: 10.1152/ajpcell.00420.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While there is circumstantial evidence to suggest a requirement for phospholipase C-gamma(1) (PLC-gamma(1)) in actin reorganization and cell migration, few studies have examined the direct mechanisms that link regulators of the actin cytoskeleton with this crucial signaling molecule. This study was aimed to examine the role that villin, an epithelial cell-specific actin-binding protein, and its ligand PLC-gamma(1) play in migration in intestinal and renal epithelial cell lines that endogenously or ectopically express human villin. Basal as well as epidermal growth factor (EGF)-stimulated cell migration was accompanied by tyrosine phosphorylation of villin and its association with PLC-gamma(1). Inhibition of villin phosphorylation prevented villin-PLC-gamma(1) complex formation as well as villin-induced cell migration. The absolute requirement for PLC-gamma(1) in villin-induced cell migration was demonstrated by measuring cell motility in PLC-gamma(1)(-/-) cells and by downregulation of endogenous PLC-gamma(1). EGF-stimulated direct interaction of villin with the Src homology domain 2 domain of PLC-gamma(1) at the plasma membrane was demonstrated in living cells by using fluorescence resonance energy transfer. These results demonstrate that villin provides an important link between the activation of phosphoinositide signal transduction pathway and epithelial cell migration.
Collapse
Affiliation(s)
- Yaohong Wang
- Department of Physiology, The University of Tennessee, Health Science Center, Nash 402, 894 Union Ave., Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
7
|
Yan F, John SK, Wilson G, Jones DS, Washington MK, Polk DB. Kinase suppressor of Ras-1 protects intestinal epithelium from cytokine-mediated apoptosis during inflammation. J Clin Invest 2004; 114:1272-80. [PMID: 15520859 PMCID: PMC524224 DOI: 10.1172/jci21022] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 08/10/2004] [Indexed: 01/22/2023] Open
Abstract
TNF plays a pathogenic role in inflammatory bowel diseases (IBDs), which are characterized by altered cytokine production and increased intestinal epithelial cell apoptosis. In vitro studies suggest that kinase suppressor of Ras-1 (KSR1) is an essential regulatory kinase for TNF-stimulated survival pathways in intestinal epithelial cell lines. Here we use a KSR1-deficient mouse model to study the role of KSR1 in regulating intestinal cell fate during cytokine-mediated inflammation. We show that KSR1 and its target signaling pathways are activated in inflamed colon mucosa. Loss of KSR1 increases susceptibility to chronic colitis and TNF-induced apoptosis in the intestinal epithelial cell. Furthermore, disruption of KSR1 expression enhances TNF-induced apoptosis in mouse colon epithelial cells and is associated with a failure to activate antiapoptotic signals including Raf-1/MEK/ERK, NF-kappaB, and Akt/protein kinase B. These effects are reversed by WT, but not kinase-inactive, KSR1. We conclude that KSR1 has an essential protective role in the intestinal epithelial cell during inflammation through activation of cell survival pathways.
Collapse
Affiliation(s)
- Fang Yan
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2576, USA
| | | | | | | | | | | |
Collapse
|
8
|
Yan F, John SK, Wilson G, Jones DS, Washington MK, Polk DB. Kinase suppressor of Ras-1 protects intestinal epithelium from cytokine-mediated apoptosis during inflammation. J Clin Invest 2004. [DOI: 10.1172/jci200421022] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Venkatasubramanian J, Selvaraj N, Carlos M, Skaluba S, Rasenick MM, Rao MC. Differences in Ca(2+) signaling underlie age-specific effects of secretagogues on colonic Cl(-) transport. Am J Physiol Cell Physiol 2001; 280:C646-58. [PMID: 11171585 DOI: 10.1152/ajpcell.2001.280.3.c646] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Taurodeoxycholic acid (TDC) stimulates Cl(-) transport in adult (AD), but not weanling (WN) and newborn (NB), rabbit colonic epithelial cells (colonocytes). The present study demonstrates that stimuli like neurotensin (NT) are also age specific and identifies the age-dependent signaling step. Bile acid actions are segment and bile acid specific. Thus although TDC and taurochenodeoxycholate stimulate Cl(-) transport in AD distal but not proximal colon, taurocholate has no effect in either segment. TDC increases intracellular Ca(2+) concentration ([Ca(2+)](i)) in AD, but not in WN and NB, colonocytes. In AD cells, TDC (5 min) action on Cl(-) transport needs intra- but not extracellular Ca(2+). NT, histamine, and bethanechol increase Cl(-) transport and [Ca(2+)](i) in AD, but not WN, distal colonocytes. However, A-23187 increased [Ca(2+)](i) and Cl(-) transport in all age groups, suggesting that Ca(2+)-sensitive Cl(-) transport is present from birth. Study of the proximal steps in Ca(2+) signaling revealed that NT, but not TDC, activates a GTP-binding protein, Galpha(q), in AD and WN cells. In addition, although WN and AD colonocytes had similar levels of phosphatidylinositol 4,5-bisphosphate, NT and TDC increased 1,4,5-inositol trisphosphate content only in AD cells. Nonresponsiveness of WN cells to Ca(2+)-dependent stimuli, therefore, is due to the absence of measurable phospholipase C activity. Thus delays in Ca(2+) signaling afford a crucial protective mechanism to meet the changing demands of the developing colon.
Collapse
Affiliation(s)
- J Venkatasubramanian
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612-7342, USA
| | | | | | | | | | | |
Collapse
|
10
|
Polk DB, Tong W. Epidermal and hepatocyte growth factors stimulate chemotaxis in an intestinal epithelial cell line. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C1149-59. [PMID: 10600766 DOI: 10.1152/ajpcell.1999.277.6.c1149] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The migration of intestinal cells is important in the development and maintenance of normal epithelium, in a process that may be regulated by growth factors and cytokines. Although a number of growth factor receptors are expressed by intestinal cells, little progress has been made toward assignment of functional roles for these ligand-receptor systems. This study compares several growth factors and cytokines for their chemoattraction of the mouse small intestinal epithelial cell line. Epidermal and hepatocyte growth factors stimulated a rapid 30-fold chemotaxis of cells with delayed threefold migration toward transforming growth factor-beta1. Despite stimulating proliferation, keratinocyte, fibroblast, or insulin-like growth factors did not stimulate directed migration. Chemotaxis required tyrosine kinase and phosphatidylinositol phospholipase C activities but not protein kinase C or mitogen-activated protein kinase activity. These findings suggest that the repertoire of growth factors capable of regulating directed intestinal epithelial cell migration is limited and that a divergence exists in the signal transduction pathways for directed vs. nondirected migration.
Collapse
Affiliation(s)
- D B Polk
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, Vanderbilt University, Nashville, Tennessee 37232-2576, USA.
| | | |
Collapse
|
11
|
Helmrath MA, Shin CE, Erwin CR, Warner BW. Intestinal adaptation is enhanced by epidermal growth factor independent of increased ileal epidermal growth factor receptor expression. J Pediatr Surg 1998; 33:980-4; discussion 984-5. [PMID: 9694081 DOI: 10.1016/s0022-3468(98)90518-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND/PURPOSE Intestinal adaptation after massive small bowel resection (SBR) is augmented by epidermal growth factor (EGF) via an unknown mechanism. We recently have observed that EGF increases the expression of EGF receptor mRNA and protein content in the remnant ileum after SBR. The purpose of this study was to determine whether the magnitude of EGF-induced receptor expression correlates with intestinal adaptation. METHODS A 50% proximal SBR or sham operation (bowel transection with reanastomosis) was performed on male ICR mice. Animals from each group were then selected randomly to receive either human recombinant EGF (150 microg/kg/d) or saline by twice daily intraperitoneal injections. The remnant ileum was harvested at 1 week, and parameters of adaptation measured as changes in protein content. Ileal EGF receptor mRNA was quantitated using a ribonuclease protection assay. Changes in the expression ileal EGF receptor protein were determined by Western blot after immunoprecipitation. Comparisons of mean values between groups was performed using analysis of variance (ANOVA) and a P value of less than .05 was considered significant. Values are presented as mean +/- SEM. RESULTS EGF was mitogenic to the ileum after sham operation as monitored by increases in ileal protein content (2.21 +/- 0.002 mg/cm Sham v 2.97 +/- 0.25 mg/cm Sham +/- EGF; P < .05). After SBR, adaptation resulted in increased ileal protein content (4.45 +/- 0.27 mg/cm), which was substantially boosted by EGF (5.98 +/- 0.39 mg/cm; P < .05). No differences were detected in ileal EGF receptor mRNA or protein expression between Sham or SBR groups that did not receive EGF. However, EGF significantly enhanced the expression of ileal EGF receptor mRNA to an equal extent after both sham and SBR (approximately threefold). The magnitude of this increase in EGF receptor protein (four- to sixfold) was similar in both EGF groups as shown by Western blotting. CONCLUSIONS Changes in ileal EGF receptor expression are not mandatory for adaptation to occur. EGF upregulates the expression of mRNA and protein for its own intestinal receptor in vivo. Because EGF-induced receptor expression was comparable after both SBR and Sham operation, the beneficial effect of EGF during adaptation is likely caused by other factors in addition to increased receptor expression.
Collapse
Affiliation(s)
- M A Helmrath
- Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
12
|
Polk DB. Epidermal growth factor receptor-stimulated intestinal epithelial cell migration requires phospholipase C activity. Gastroenterology 1998; 114:493-502. [PMID: 9496939 DOI: 10.1016/s0016-5085(98)70532-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Ulceration of intestinal mucosa is rapidly followed by enterocyte migration via restitution. The aim of this study was to investigate signaling mechanisms of epidermal growth factor (EGF) receptor-stimulated monolayer restitution in a mouse intestinal epithelial cell line. METHODS EGF-stimulated cell migration was determined using a wound model in the presence of agonists and/or antagonists of tyrosine kinase, phospholipase C, phosphatidylinositol 3-kinase, or protein kinase C. The tyrosine phosphorylation state of the EGF receptor, phosphatidylinositol phospholipase C gamma1 (PLCgamma1), focal adhesion kinase, and cellular lysates was determined by immunodetection. RESULTS EGF stimulated cell migration twofold at 4, 8, and 24 hours. Inhibition of EGF receptor tyrosine kinase activity, phospholipase C, or phosphatidylinositol 3-kinase attenuated EGF-induced intestinal cell migration. Pretreatment of cells with phorbol 12-myristate 13-acetate, known to down-regulate protein kinase C expression, blocked EGF-induced cell migration. Increased tyrosine phosphorylation of the EGF receptor and PLCgamma1 was detected within 5 minutes after wounding. CONCLUSIONS EGF-stimulated intestinal cell migration requires intact EGF receptor tyrosine kinase, phospholipase, and protein kinase C activities. PLCgamma1 may be a key regulatory molecule in the initial EGF receptor signal transduction pathway of EGF-stimulated cell migration.
Collapse
Affiliation(s)
- D B Polk
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2576, USA.
| |
Collapse
|
13
|
Summers ST, Bass BL. Protein kinase C inhibits epidermal growth factor receptor phosphorylation in enterocytes. J Surg Res 1997; 69:208-11. [PMID: 9202672 DOI: 10.1006/jsre.1997.5054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epidermal growth factor (EGF) is an important proliferative signal in the gastrointestinal tract. The EGF receptor (EGFr), which transduces the mitogenic stimulus to the cell, may be regulated by a number of factors including extracellular matrix, cell-cell contact, and other peptides. As protein kinase C (PK-C) has been shown to phosphorylate and down-regulate the EGFr in certain tumor cell lines, we propose that PK-C, an important regulatory enzyme, modulates the phosphorylation of the EGFr in the IEC 6 rat enterocyte cell line. IEC 6 cells were cultured in dishes with Dulbecco's modified Eagle's medium, (DMEM)/5% fetal bovine serum (FBS), which was changed to DMEM/1% FBS 24 hr prior to all experiments. Cells (three dishes per group) were treated with the PK-C activating phorbol ester phorbol-12-myristate-13-acetate (PMA) (100 nM) or vehicle for 1 hr and challenged with EGF (50 ng/ml) or vehicle for 15 min. Cell lysates were then prepared. EGFr tyrosine phosphorylation was determined by immunoprecipitating the EGFr and immunoblotting with an antibody against phosphotyrosine. EGFr apparent molecular weight was assessed in the same lysates by Western blot with an anti-EGFr antibody. Blots were analyzed by computer densitometry. Data are expressed as mean +/- SEM; n = 3 with P value determined by t test. Exposure of cells to PMA resulted in a decrease in the EGF-stimulated EGFr phosphotyrosine content from 96 +/- 5 U in control to 66 +/- 6 U in PMA (P < 0.01). The amount of receptor did not change, 43 +/- 3 U in control vs 44 +/- 3 U in PMA (P = 0.44). Further, exposure to PMA in the absence of EGF caused a gel shift of the EGFr band consistent with a nontyrosine phosphorylation of the protein. We demonstrate that activation of PK-C results in a modification of the EGFr coincident with inhibition of EGF-stimulated receptor tyrosine kinase activity. These data support a role for PK-C in the regulation of EGFr function and hence modulation of mitogenic signals in enterocytes.
Collapse
Affiliation(s)
- S T Summers
- Department of Surgery, Veteran's Administration Medical Center, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
14
|
Abstract
BACKGROUND & AIMS Epidermal growth factor (EGF) has been shown to induce intestinal proliferation and maturation; however, little information is available regarding substrates of the intestinal EGF receptor tyrosine kinase. The purpose of this study was to determine if src homologous collagen-like protein (Shc) was an in vivo substrate of the intestinal EGF receptor. METHODS Ten-day-old rats were treated with EGF or were breast-fed. In some experiments, IEC-6 cells were treated with EGF. Intestinal tissue and cell fractions were studied by immunodetection to compare the tyrosine phosphorylation state and the subcellular localization of intestinal proteins. RESULTS The total tyrosine phosphorylation state of intestinal proteins was increased threefold by EGF. Tyrosine phosphorylation of the EGF receptor and Shc were rapidly increased by EGF. The association of Grb2 with Shc increased fourfold and fivefold. Plasma membrane translocation of Shc and associated phosphotyrosyl proteins was increased within 30 seconds of EGF treatment. CONCLUSIONS Shc is a substrate of the intestinal EGF receptor in vivo. EGF-induced association of Shc with the adapter protein Grb2 may have implications for activation of the p21ras signaling pathway in the intestine. The EGF-induced membrane association of Shc with two other phosphotyrosyl proteins suggests involvement of Shc in additional aspects of EGF-receptor signaling in the intestine.
Collapse
Affiliation(s)
- D B Polk
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|