Habibi HR, Pati D. Extrapituitary gonadotropin-releasing hormone (GnRH) binding sites in goldfish.
FISH PHYSIOLOGY AND BIOCHEMISTRY 1993;
11:43-49. [PMID:
24202459 DOI:
10.1007/bf00004549]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In teleosts, as in other vertebrates, the secretion of pituitary gonadotropin (GTH) is mediated by the hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH). Recent findings in teleosts indicate that GnRH receptors are not restricted to the pituitary gonadotropes and are also associated with somatotropes as well as being present in a number of other tissues. In the present study, we provide novel information on GnRH binding in a number of extrapituitary tissues in goldfish. However, we do not intend to provide full characterization of GnRH binding sites in various extrapituitary tissues in goldfish as this would clearly be outside the scope of this paper. In this study we examined GnRH binding in a number of extrapituitary tissues in goldfish and observed specific binding in ovary, testis, brain, liver and kidney. No specific GnRH binding was observed in muscle, skin, gut, gill and heart. In general, the present findings together with the results of other studies carried out in our laboratory demonstrate that mature goldfish ovary and testis contain two classes of GnRH binding sites, high affinity/low capacity and low affinity/high capacity sites with binding characteristics similar to those of the pituitary GnRH receptors. The brain of goldfish was also found to contain two classes of GnRH binding sites, a super-high affinity/low capacity and a low affinity/high capacity sites. Furthermore, study of goldfish liver and kidney demonstrated the presence of a single class of GnRH binding sites with characteristics different from those of pituitary, ovary, testis and brain. Overall, it is evident that goldfish contains a family of GnRH binding sites which can be classified into four groups based on binding affinities: 1) A class of high affinity binding sites present in the pituitary, ovary and testis, 2) a class of super high affinity sites so far only detected in the brain, 3) a class of intermediate-affinity GnRH binding sites in the liver and kidney, and 4) a class of low affinity binding sites present in all the tissues containing specific GnRH binding sites except for liver and kidney.
Collapse