1
|
Baro Graf C, Ritagliati C, Stival C, Luque GM, Gentile I, Buffone MG, Krapf D. Everything you ever wanted to know about PKA regulation and its involvement in mammalian sperm capacitation. Mol Cell Endocrinol 2020; 518:110992. [PMID: 32853743 DOI: 10.1016/j.mce.2020.110992] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022]
Abstract
The 3', 5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) is a tetrameric holoenzyme comprising a set of two regulatory subunits (PKA-R) and two catalytic (PKA-C) subunits. The PKA-R subunits act as sensors of cAMP and allow PKA-C activity. One of the first signaling events observed during mammalian sperm capacitation is PKA activation. Thus, understanding how PKA activity is restricted in space and time is crucial to decipher the critical steps of sperm capacitation. It is widely accepted that PKA specificity depends on several levels of regulation. Anchoring proteins play a pivotal role in achieving proper localization signaling, subcellular targeting and cAMP microdomains. These multi-factorial regulation steps are necessary for a precise spatio-temporal activation of PKA. Here we discuss recent understanding of regulatory mechanisms of PKA in mammalian sperm, such as post-translational modifications, in the context of its role as the master orchestrator of molecular events conducive to capacitation.
Collapse
Affiliation(s)
- Carolina Baro Graf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina; Laboratorio de Medicina Reproductiva (LMR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carla Ritagliati
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | - Guillermina M Luque
- Laboratory of Cellular and Molecular Reproductive Biology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Iñaki Gentile
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | - Mariano G Buffone
- Laboratory of Cellular and Molecular Reproductive Biology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina; Laboratorio de Medicina Reproductiva (LMR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
2
|
Søberg K, Skålhegg BS. The Molecular Basis for Specificity at the Level of the Protein Kinase a Catalytic Subunit. Front Endocrinol (Lausanne) 2018; 9:538. [PMID: 30258407 PMCID: PMC6143667 DOI: 10.3389/fendo.2018.00538] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
Assembly of multi enzyme complexes at subcellular localizations by anchoring- and scaffolding proteins represents a pivotal mechanism for achieving spatiotemporal regulation of cellular signaling after hormone receptor targeting [for review, see (1)]. In the 3' 5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) signaling pathway it is generally accepted that specificity is secured at several levels. This includes at the first level stimulation of receptors coupled to heterotrimeric G proteins which through stimulation of adenylyl cyclase (AC) forms the second messenger cAMP. Cyclic AMP has several receptors including PKA. PKA is a tetrameric holoenzyme consisting of a regulatory (R) subunit dimer and two catalytic (C) subunits. The R subunit is the receptor for cAMP and compartmentalizes cAMP signals through binding to cell and tissue-specifically expressed A kinase anchoring proteins (AKAPs). The current dogma tells that in the presence of cAMP, PKA dissociates into an R subunit dimer and two C subunits which are free to phosphorylate relevant substrates in the cytosol and nucleus. The release of the C subunit has raised the question how specificity of the cAMP and PKA signaling pathway is maintained when the C subunit no longer is attached to the R subunit-AKAP complex. An increasing body of evidence points toward a regulatory role of the cAMP and PKA signaling pathway by targeting the C subunits to various C subunit binding proteins in the cytosol and nucleus. Moreover, recent identification of isoform specific amino acid sequences, motifs and three dimensional structures have together provided new insight into how PKA at the level of the C subunit may act in a highly isoform-specific fashion. Here we discuss recent understanding of specificity of the cAMP and PKA signaling pathway based on C subunit subcellular targeting as well as evolution of the C subunit structure that may contribute to the dynamic regulation of C subunit activity.
Collapse
Affiliation(s)
- Kristoffer Søberg
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Section for Molecular Nutrition, University of Oslo, Oslo, Norway
- *Correspondence: Bjørn Steen Skålhegg
| |
Collapse
|
3
|
Song WJ, Mondal P, Li Y, Lee SE, Hussain MA. Pancreatic β-cell response to increased metabolic demand and to pharmacologic secretagogues requires EPAC2A. Diabetes 2013; 62:2796-807. [PMID: 23578994 PMCID: PMC3717830 DOI: 10.2337/db12-1394] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Incretin hormone action on β-cells stimulates in parallel two different intracellular cyclic AMP-dependent signaling branches mediated by protein kinase A and exchange protein activated by cAMP islet/brain isoform 2A (EPAC2A). Both pathways contribute toward potentiation of glucose-stimulated insulin secretion (GSIS). However, the overall functional role of EPAC2A in β-cells as it relates to in vivo glucose homeostasis remains incompletely understood. Therefore, we have examined in vivo GSIS in global EPAC2A knockout mice. Additionally, we have conducted in vitro studies of GSIS and calcium dynamics in isolated EPAC2A-deficient islets. EPAC2A deficiency does not impact GSIS in mice under basal conditions. However, when mice are exposed to diet-induced insulin resistance, pharmacologic secretagogue stimulation of β-cells with an incretin hormone glucagon-like peptide-1 analog or with a fatty acid receptor 1/G protein-coupled receptor 40 selective activator, EPAC2A is required for the increased β-cell response to secretory demand. Under these circumstances, EPAC2A is required for potentiating the early dynamic increase in islet calcium levels after glucose stimulation, which is reflected in potentiated first-phase insulin secretion. These studies broaden our understanding of EPAC2A function and highlight its significance during increased secretory demand or drive on β-cells. Our findings advance the rationale for developing EPAC2A-selective pharmacologic activators for β-cell-targeted pharmacotherapy in type 2 diabetes.
Collapse
Affiliation(s)
- Woo-Jin Song
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland
| | - Prosenjit Mondal
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland
| | - Yuanyuan Li
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland
| | - Suh Eun Lee
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland
| | - Mehboob A. Hussain
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland
- Corresponding author: Mehboob A. Hussain,
| |
Collapse
|
4
|
Søberg K, Jahnsen T, Rognes T, Skålhegg BS, Laerdahl JK. Evolutionary paths of the cAMP-dependent protein kinase (PKA) catalytic subunits. PLoS One 2013; 8:e60935. [PMID: 23593352 PMCID: PMC3625193 DOI: 10.1371/journal.pone.0060935] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/05/2013] [Indexed: 11/19/2022] Open
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase or protein kinase A (PKA) has served as a prototype for the large family of protein kinases that are crucially important for signal transduction in eukaryotic cells. The PKA catalytic subunits Cα and Cβ, encoded by the two genes PRKACA and PRKACB, respectively, are among the best understood and characterized human kinases. Here we have studied the evolution of this gene family in chordates, arthropods, mollusks and other animals employing probabilistic methods and show that Cα and Cβ arose by duplication of an ancestral PKA catalytic subunit in a common ancestor of vertebrates. The two genes have subsequently been duplicated in teleost fishes. The evolution of the PRKACG retroposon in simians was also investigated. Although the degree of sequence conservation in the PKA Cα/Cβ kinase family is exceptionally high, a small set of signature residues defining Cα and Cβ subfamilies were identified. These conserved residues might be important for functions that are unique to the Cα or Cβ clades. This study also provides a good example of a seemingly simple phylogenetic problem which, due to a very high degree of sequence conservation and corresponding weak phylogenetic signals, combined with problematic nonphylogenetic signals, is nontrivial for state-of-the-art probabilistic phylogenetic methods.
Collapse
Affiliation(s)
- Kristoffer Søberg
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
5
|
Rogacheva ON, Popov AV, Savvateeva-Popova EV, Stefanov VE, Shchegolev BF. Thermodynamic analysis of protein kinase A Ialpha activation. BIOCHEMISTRY (MOSCOW) 2010; 75:233-41. [PMID: 20367611 DOI: 10.1134/s0006297910020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thermodynamic analysis of protein kinase A (PKA) Ialpha activation was performed using Quantum 3.3.0 docking software and a Gaussian 03W quantum mechanical computational package. Expected stacking interactions between adenine of 3':5'-AMP and aromatic moieties of amino acids were taken into account by means of MP2/6-31G(d) IPCM (isodensity polarizable continuum model) computations (epsilon = 4.0). It is demonstrated that thermodynamically favorable agonist-induced PKA Ialpha activation is mediated by two processes. First, 3':5'-AMP binding is accompanied by structural changes leading to a thermodynamically favorable regulatory subunit conformation, which is hardly realized in the absence of the ligand (DeltaG degrees (R) = -23.9 +/- 8.2 kJ/mol). Second, 3':5'-AMP affinity to the regulatory subunit conformation observed after agonist-induced PKA Ialpha activation is higher than that to inactive holoenzyme complex (DeltaG degrees (3':5'-AMP) = -28.1 +/- 9.7 kJ/mol). ATP is capable of docking into the 3':5'-AMP-binding site B of the regulatory subunit complexed with the catalytic one, resulting in inhibition of kinase activation. True constants of 3':5'-AMP binding to PKA Ialpha holoenzyme were found to be 60 and 57 microM for the regulatory subunit domains A and B, respectively. These constants, unlike the binding equilibrium constant determined using established experimental techniques and ranging from 15 nM to 2.9 microM, are proved to be direct measures of 3':5'-AMP-PKA Ialpha binding affinity. Their values are in a reasonable agreement with the changes in 3':5'-AMP concentration in the cell (2-55 microM) and account for PKA Ialpha activation in response to adequate stimuli.
Collapse
Affiliation(s)
- O N Rogacheva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia.
| | | | | | | | | |
Collapse
|
6
|
Rein J, Voss M, Blenau W, Walz B, Baumann O. Hormone-induced assembly and activation of V-ATPase in blowfly salivary glands is mediated by protein kinase A. Am J Physiol Cell Physiol 2007; 294:C56-65. [PMID: 17977948 DOI: 10.1152/ajpcell.00041.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vacuolar H(+)-ATPase (V-ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary gland cells energizes the secretion of a KCl-rich saliva in response to the neurohormone serotonin (5-HT). We have shown previously that exposure to 5-HT induces a cAMP-mediated reversible assembly of V(0) and V(1) subcomplexes to V-ATPase holoenzymes and increases V-ATPase-driven proton transport. Here, we analyze whether the effect of cAMP on V-ATPase is mediated by protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac), the cAMP target proteins that are present within the salivary glands. Immunofluorescence microscopy shows that PKA activators, but not Epac activators, induce the translocation of V(1) components from the cytoplasm to the apical membrane, indicative of an assembly of V-ATPase holoenzymes. Measurements of transepithelial voltage changes and microfluorometric pH measurements at the luminal surface of cells in isolated glands demonstrate further that PKA-activating cAMP analogs increase cation transport to the gland lumen and induce a V-ATPase-dependent luminal acidification, whereas activators of Epac do not. Inhibitors of PKA block the 5-HT-induced V(1) translocation to the apical membrane and the increase in proton transport. We conclude that cAMP exerts its effects on V-ATPase via PKA.
Collapse
Affiliation(s)
- Julia Rein
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam, Germany
| | | | | | | | | |
Collapse
|
7
|
Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007; 113:546-93. [PMID: 17306374 PMCID: PMC1934514 DOI: 10.1016/j.pharmthera.2006.11.007] [Citation(s) in RCA: 495] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 11/27/2006] [Indexed: 12/13/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a hormone that is encoded in the proglucagon gene. It is mainly produced in enteroendocrine L cells of the gut and is secreted into the blood stream when food containing fat, protein hydrolysate, and/or glucose enters the duodenum. Its particular effects on insulin and glucagon secretion have generated a flurry of research activity over the past 20 years culminating in a naturally occurring GLP-1 receptor (GLP-1R) agonist, exendin 4 (Ex-4), now being used to treat type 2 diabetes mellitus (T2DM). GLP-1 engages a specific guanine nucleotide-binding protein (G-protein) coupled receptor (GPCR) that is present in tissues other than the pancreas (brain, kidney, lung, heart, and major blood vessels). The most widely studied cell activated by GLP-1 is the insulin-secreting beta cell where its defining action is augmentation of glucose-induced insulin secretion. Upon GLP-1R activation, adenylyl cyclase (AC) is activated and cAMP is generated, leading, in turn, to cAMP-dependent activation of second messenger pathways, such as the protein kinase A (PKA) and Epac pathways. As well as short-term effects of enhancing glucose-induced insulin secretion, continuous GLP-1R activation also increases insulin synthesis, beta cell proliferation, and neogenesis. Although these latter effects cannot be currently monitored in humans, there are substantial improvements in glucose tolerance and increases in both first phase and plateau phase insulin secretory responses in T2DM patients treated with Ex-4. This review will focus on the effects resulting from GLP-1R activation in the pancreas.
Collapse
Affiliation(s)
- Máire E Doyle
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
8
|
Dao KK, Teigen K, Kopperud R, Hodneland E, Schwede F, Christensen AE, Martinez A, Døskeland SO. Epac1 and cAMP-dependent protein kinase holoenzyme have similar cAMP affinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition. J Biol Chem 2006; 281:21500-21511. [PMID: 16728394 DOI: 10.1074/jbc.m603116200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cAMP-dependent protein kinase (PKA I and II) and the cAMP-stimulated GDP exchange factors (Epac1 and -2) are major cAMP effectors. The cAMP affinity of the PKA holoenzyme has not been determined previously. We found that cAMP bound to PKA I with a K(d) value (2.9 microM) similar to that of Epac1. In contrast, the free regulatory subunit of PKA type I (RI) had K(d) values in the low nanomolar range. The cAMP sites of RI therefore appear engineered to respond to physiological cAMP concentrations only when in the holoenzyme form, whereas Epac can respond in its free form. Epac is phylogenetically younger than PKA, and its functional cAMP site has presumably evolved from site B of PKA. A striking feature is the replacement of a conserved Glu in PKA by Gln (Epac1) or Lys (Epac2). We found that such a switch (E326Q) in site B of human RIalpha led to a 280-fold decreased cAMP affinity. A similar single switch early in Epac evolution could therefore have decreased the high cAMP affinity of the free regulatory subunit sufficiently to allow Epac to respond to physiologically relevant cAMP levels. Molecular dynamics simulations and cAMP analog mapping indicated that the E326Q switch led to flipping of Tyr-373, which normally stacks with the adenine ring of cAMP. Combined molecular dynamics simulation, GRID analysis, and cAMP analog mapping of wild-type and mutated BI and Epac1 revealed additional differences, independent of the Glu/Gln switch, between the binding sites, regarding space (roominess), hydrophobicity/polarity, and side chain flexibility. This helped explain the specificity of current cAMP analogs and, more importantly, lays a foundation for the generation of even more discriminative analogs.
Collapse
Affiliation(s)
- Khanh Kim Dao
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Knut Teigen
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Reidun Kopperud
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Erlend Hodneland
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Frank Schwede
- BioLog Life Science Institute, Flughafendamm, D-28071 Bremen, Germany
| | - Anne E Christensen
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway; Haukeland University Hospital, 5009 Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | | |
Collapse
|
9
|
Smolen P, Baxter DA, Byrne JH. A model of the roles of essential kinases in the induction and expression of late long-term potentiation. Biophys J 2006; 90:2760-75. [PMID: 16415049 PMCID: PMC1414565 DOI: 10.1529/biophysj.105.072470] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The induction of late long-term potentiation (L-LTP) involves complex interactions among second-messenger cascades. To gain insights into these interactions, a mathematical model was developed for L-LTP induction in the CA1 region of the hippocampus. The differential equation-based model represents actions of protein kinase A (PKA), MAP kinase (MAPK), and CaM kinase II (CAMKII) in the vicinity of the synapse, and activation of transcription by CaM kinase IV (CAMKIV) and MAPK. L-LTP is represented by increases in a synaptic weight. Simulations suggest that steep, supralinear stimulus-response relationships between stimuli (e.g., elevations in [Ca(2+)]) and kinase activation are essential for translating brief stimuli into long-lasting gene activation and synaptic weight increases. Convergence of multiple kinase activities to induce L-LTP helps to generate a threshold whereby the amount of L-LTP varies steeply with the number of brief (tetanic) electrical stimuli. The model simulates tetanic, -burst, pairing-induced, and chemical L-LTP, as well as L-LTP due to synaptic tagging. The model also simulates inhibition of L-LTP by inhibition of MAPK, CAMKII, PKA, or CAMKIV. The model predicts results of experiments to delineate mechanisms underlying L-LTP induction and expression. For example, the cAMP antagonist RpcAMPs, which inhibits L-LTP induction, is predicted to inhibit ERK activation. The model also appears useful to clarify similarities and differences between hippocampal L-LTP and long-term synaptic strengthening in other systems.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, USA
| | | | | |
Collapse
|
10
|
Viste K, Kopperud RK, Christensen AE, Døskeland SO. Substrate enhances the sensitivity of type I protein kinase a to cAMP. J Biol Chem 2005; 280:13279-84. [PMID: 15691833 DOI: 10.1074/jbc.m413065200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional significance of the presence of two major (types I and II) isoforms of the cAMP-dependent protein kinase (PKA) is still enigmatic. The present study showed that peptide substrate enhanced the activation of PKA type I at low, physiologically relevant concentrations of cAMP through competitive displacement of the regulatory RI subunit. The effect was similar whether the substrate was a short peptide or the physiological 60-kDa protein tyrosine hydroxylase. In contrast, substrate failed to affect the cAMP-sensitivity of PKA type II. Size exclusion chromatography confirmed that substrate acted to physically enhance the dissociation of the RIalpha and Calpha subunits of PKA type I, but not the RIIalpha and Calpha subunits of PKA type II. Substrate availability can therefore fine-tune the activation of PKA type I by cAMP, but not PKA type II. The cAMP-dissociated RII and C subunits of PKA type II reassociated much faster than the PKA type I subunits in the presence of substrate peptide. This suggests that only PKA type II is able to rapidly reverse its activation after a burst of cAMP when exposed to high substrate concentration. We propose this as a possible reason why PKA type II is preferentially found in complexes with substrates undergoing rapid phosphorylation cycles.
Collapse
Affiliation(s)
- Kristin Viste
- Department of Biomedicine, Section for Anatomy and Cell Biology, University of Bergen, Jonas Lies Vei 91, N-5009 Bergen and Haukeland University Hospital, N-5021 Bergen, Norway
| | | | | | | |
Collapse
|
11
|
Zhou W, Vergara L, König R. T cell receptor induced intracellular redistribution of type I protein kinase A. Immunology 2005; 113:453-9. [PMID: 15554923 PMCID: PMC1782591 DOI: 10.1111/j.1365-2567.2004.01992.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The productive activation of CD4(+) T lymphocytes, leading to proliferation and cytokine secretion, requires precise temporal regulation of intracellular cyclic AMP concentrations. The major effector molecule activated by cyclic AMP in mammalian cells is the cyclic AMP-dependent protein kinase A (PKA). The type I PKA isozyme mediates the inhibitory effects of cyclic AMP on T-cell activation. Using laser scanning confocal microscopy, we demonstrated that the regulation of PKA type I activity involves spatial redistribution of PKA type I molecules following T-cell receptor (TCR) stimulation. In resting T cells, PKA type I was located in membrane proximal regions and distributed equally across the cell. Shortly after antigen engagement, T cells and antigen-presenting cells formed an area of intense contact, known as the immunological synapse. TCR concentrated at the synapse, whereas PKA type I molecules redistributed to the opposite cell pole within 10 min after T-cell stimulation. Type I PKA redistribution was solely dependent on TCR signalling, because we observed the same temporal and spatial distribution after antibody-mediated cross-linking of the TCR-associated CD3 complex. Segregation of TCR and PKA type I molecules was maintained for at least 20 min. Thirty minutes after stimulation, PKA type I partially colocalized with the TCR. After 60 min, PKA type I distribution again approached the resting state. Considering that initial TCR signals lead to increases in intracellular cyclic AMP, PKA type I molecules may be targeted towards localized cyclic AMP accumulations or transported away from these areas, depending on the requirements of the cellular response.
Collapse
Affiliation(s)
- Wenhong Zhou
- Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | | | |
Collapse
|
12
|
Abstract
OBJECTIVE Postmortem brain studies have been undertaken to understand changes in the molecular architecture of the central nervous system (CNS) of subjects with bipolar disorder. These studies, along with a limited number of functional neuroimaging studies, have been reviewed to provide information on the neurobiology underlying the disorder. METHOD Findings from the study of postmortem brain tissue and neuroimaging were reviewed if their focus was on the molecular architecture of the human CNS to identify future lines of research required to understand the underlying pathology of bipolar disorder. RESULTS There is considerable evidence to implicate the serotonergic system of the CNS and abnormalities in signal transduction pathways in the pathology of bipolar disorder. In addition, preliminary findings suggest that changes in the benzodiazepine binding site on the gamma aminobutyric acidA receptor may be affected in bipolar disorder. CONCLUSIONS Further systematic studies on the serotonergic systems of the CNS, as well as the interaction between neurotransmitter receptors, G-proteins and signal transduction pathways are required to better understand the pathology of bipolar disorder. In addition, findings on the serotonin transporter indicate that changes in presynaptic function may be a critical component of the pathology of bipolar disorder.
Collapse
Affiliation(s)
- Brian Dean
- The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute of Victoria, Locked Bag 11, Parkville, Victoria 3052, Australia.
| |
Collapse
|
13
|
Kloor D, Danielyan L, Osswald H. Characterization of the cAMP binding site of purified S-adenosyl-homocysteine hydrolase from bovine kidney. Biochem Pharmacol 2002; 64:1201-6. [PMID: 12234600 DOI: 10.1016/s0006-2952(02)01254-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The enzyme S-adenosyl-homocysteine hydrolase (AdoHcyase) which catalyzes the reversible hydrolysis of AdoHcy to adenosine and homocysteine is an adenosine binding protein. In the present study we examined the characteristics of [(3)H]cAMP binding to purified AdoHcyase from bovine kidney in comparison with the high affinity adenosine binding site of AdoHcyase. AdoHcyase exhibits one [(3)H]cAMP binding site with an affinity of K(d)=23.1+/-1.1nM and a B(max) of 116.6+/-3.8pmol/mg protein. Binding of [(3)H]cAMP obeyed a monophasic reaction with a k(+1) value of 0.035min/M. The dissociation of AdoHcyase-[(3)H]cAMP complex exhibited a time- and temperature-dependent character. After a 240min incubation at 0 degrees only 5-10%, however, at 20 degrees 90% were displaceable. Adenosine and cAMP displace each other with similar affinities of EC(50) 57nM vs. EC(50) 65nM. 2'-Deoxyadenosine, N(6)-methyladenosine, and NECA displace 25nM [(3)H]cAMP and 10nM [(3)H]adenosine with EC(50) values of 94, 90 and 80nM, respectively. All other nucleosides studied, adenine, inosine, adenosine-2',3'-dialdehyde, 2-chloroadenosine, aristeromycin, and adenine nucleotides were only week competitors for [(3)H]cAMP and [(3)H]adenosine. These compounds displace [(3)H]cAMP and [(3)H]adenosine with equal potencies. Our data indicate that the binding site for nanomolar concentrations of cAMP and adenosine at the AdoHcyase appears to be identical. The physiological implications of a cAMP binding site at the AdoHcyase remain to be established.
Collapse
Affiliation(s)
- Doris Kloor
- Department of Pharmacology, Faculty of Medicine, University of Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| | | | | |
Collapse
|
14
|
Xie H, Bittar EE. Zinc is an inhibitor of the stimulatory response of the sodium efflux to the microinjection of cyclic AMP and forskolin in single barnacle muscle fibers. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1195:51-4. [PMID: 7918565 DOI: 10.1016/0005-2736(94)90008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The main aim of the experiments with which this paper deals was to test the hypothesis that Zn is an inhibitor of the stimulatory response of the ouabain-insensitive component of the Na efflux to the injection of cAMP, DcAMP (dibutyryl-cAMP) and FD (forskolin derivative) in barnacle muscle fibers. The results obtained were as follows: (1) External application of Zn caused a fall in the Na efflux in fibers poisoned with ouabain beforehand; (2) external application of Zn prior to the injection of cAMP, DcAMP and FD led to a marked reduction in the response of the Na efflux in fibers pre-treated with ouabain; (3) the response obtained by the injection of DcAMP and FD into ouabain-poisoned fibers pre-exposed to Zn was small but sustained; and (4) external application of Zn following peak stimulation by injecting DcAMP or FD led to reversal of this response. (Parallel experiments involving the injection of cAMP were not done, since the response following the onset of peak stimulation decays quite rapidly.) Taken together, these results support the hypothesis that Zn behaves as an inhibitor of the stimulatory response obtained by the injection of cAMP, DcAMP and FD.
Collapse
Affiliation(s)
- H Xie
- Department of Physiology, University of Wisconsin, Madison 53706
| | | |
Collapse
|
15
|
Døskeland SO, Maronde E, Gjertsen BT. The genetic subtypes of cAMP-dependent protein kinase--functionally different or redundant? BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1178:249-58. [PMID: 8395890 DOI: 10.1016/0167-4889(93)90201-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S O Døskeland
- Department of Anatomy and Cell Biology, University of Bergen, Norway
| | | | | |
Collapse
|
16
|
Skålhegg B, Landmark B, Døskeland S, Hansson V, Lea T, Jahnsen T. Cyclic AMP-dependent protein kinase type I mediates the inhibitory effects of 3‘,5‘-cyclic adenosine monophosphate on cell replication in human T lymphocytes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49593-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Mutating protein kinase cAMP-binding sites into cGMP-binding sites. Mechanism of cGMP selectivity. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54231-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Mann SC, Andrews PA, Howell SB. Modulation of cis-diamminedichloroplatinum(II) accumulation and sensitivity by forskolin and 3-isobutyl-1-methylxanthine in sensitive and resistant human ovarian carcinoma cells. Int J Cancer 1991; 48:866-72. [PMID: 1713575 DOI: 10.1002/ijc.2910480613] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have determined the effect of forskolin, an adenyl cyclase agonist, and 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor, on the accumulation and cytotoxicity of cisplatin (DDP) in 2008 human ovarian carcinoma cells. In DDP-sensitive 2008 cells, forskolin and IBMX caused 2.1-fold and 2.3-fold increases, respectively, in the short-term accumulation of DDP relative to untreated cells. The inactive analogue, 1,9-dideoxyforskolin, decreased DDP accumulation. Forskolin and IBMX also increased accumulation in A2780 cells. Neither forskolin nor IBMX had any effect on DDP accumulation in DDP-resistant 2008 cells. The effects were detectable as early as 1 min and persisted at 60 min. The concentrations for half-maximal stimulation of DDP accumulation were approximately 0.2 microM for forskolin and 0.2 mM for IBMX. Forskolin caused marked increases in cAMP levels in both sensitive and resistant 2008 cells within 1 min, although there were differences in the subsequent time-courses of the response. Both 2008 cell types had identical cAMP-dependent protein kinase (PKA) activity. These results suggest that there is a target downstream of PKA that is an important participant in DDP accumulation, and that this target is defective or missing in DDP-resistant cells. Following a 1-hr exposure to drugs, forskolin and IBMX at concentrations that were by themselves completely non-toxic increased the slopes of the clonogenic survival vs. DDP concentration curves in 2008 cells 1.9-fold and 3.3-fold, respectively. In DDP-resistant 2008 cells, however, forskolin and IBMX increased the slopes only 1.2 and 2.6-fold, respectively. These effects of forskolin and IBMX on DDP cytotoxicity did not directly correlate with the effects on the 1-hr DDP accumulation which suggested that, in addition to modulating DDP accumulation, these agents increase the cytotoxicity of the intracellular platinum. The results indicate that modulation of cAMP levels can have important effects on DDP accumulation and cytotoxicity in 2008 cells and that these effects are significantly diminished in DDP-resistant cells.
Collapse
Affiliation(s)
- S C Mann
- Department of Medicine, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
19
|
Lanotte M, Riviere JB, Hermouet S, Houge G, Vintermyr OK, Gjertsen BT, Døskeland SO. Programmed cell death (apoptosis) is induced rapidly and with positive cooperativity by activation of cyclic adenosine monophosphate-kinase I in a myeloid leukemia cell line. J Cell Physiol 1991; 146:73-80. [PMID: 1846637 DOI: 10.1002/jcp.1041460110] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Programmed death (apoptosis) of the rat myelocytic leukemic cell line IPC-81 was triggered by cyclic adenosine monophosphate (cAMP) analogs or by agents (cholera toxin, prostaglandins) increasing the endogenous cAMP level. The induction of cell death by cholera toxin was preceded by increased activation of cAMP-kinase. Cell lysis started already 5 hr after cAMP challenge and was preceded by internucleosomal DNA fragmentation and morphological changes characteristic of apoptosis. The cell suicide could be prevented by inhibitors of macromolecular synthesis. cAMP analogs induced cell death in a positively cooperative manner (apparent Hill coefficient of 2.9), indicating that triggering of the apoptotic process was under stringent control. There was a strong synergism between cAMP analogs complementing each other in the activation of cAMP-dependent protein kinase I (cAKI). No such synergism was noted for analogs complementing each other in the activation of cAKII. It is concluded that apoptosis can be induced solely by activation of cAKI. The IPC-81 cells expressed about four times more cAKI than cAKII. The expression of cAK subunits, on the protein and mRNA levels, was only minimally affected by cholera toxin treatment.
Collapse
Affiliation(s)
- M Lanotte
- INSERM U301, Centre Hayem, Hôpital St-Louis, Paris, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The actions of several hormones and neurotransmitters evoke signal transduction pathways which rapidly elevate the cytosolic concentrations of the intracellular messengers, cAMP and cGMP. The cyclic-nucleotide dependent protein kinases, cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG), are the major intracellular receptors of cAMP and cGMP. These enzymes become active upon binding respective cyclic nucleotides and modulate a diverse array of biochemical events through the phosphorylation of specific substrate proteins. The focus of this review is to describe the progress made in understanding the structure and function of both PKA and PKG.
Collapse
Affiliation(s)
- J D Scott
- Vollum Institute for Advanced Biomedical Research L-474, Portland, OR 97201-3098
| |
Collapse
|
21
|
The rate of recombination of the subunits (RI and C) of cAMP-dependent protein kinase depends on whether one or two cAMP molecules are bound per RI monomer. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45402-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Chin JH, Hoffman BB. Age-related deficit in beta receptor stimulation of cAMP binding in blood vessels. Mech Ageing Dev 1990; 53:111-25. [PMID: 2160570 DOI: 10.1016/0047-6374(90)90064-m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Both vascular relaxation and cAMP accumulation mediated by beta adrenergic agonists declines with increasing age. We have developed a method to measure the biologically relevant cAMP bound to the regulatory subunits of cAMP-dependent protein kinase in rat aorta. In homogenates of rat aorta, binding of [3H]cAMP was saturable with a Kd of 8.0 +/- 1.5 nM; the dissociation of [3H]cAMP from the binding sites was comprised of fast and slow components at 4 degrees C. Endogenous cAMP binding in aortas stimulated with isoproterenol (10(-5) M) or forskolin (10(-5) M) was quantitated by radioimmunoassay. Compared to basal values, isoproterenol increased cAMP binding by 37% (P less than 0.05) in aortas from young animals (5-6 weeks) but had essentially no effect on binding in older animals (9-11 months). In contrast, forskolin, which causes full relaxation in aortas from older rats, equally elevated bound cAMP values in aortas in the two age groups. In addition, the ratio of total cAMP binding sites to cAMP-dependent protein kinase catalytic activity was 45% higher in aortas from the older rats, suggesting that there were proportionately more regulatory subunits in those vessels. The deficit in isoproterenol-stimulated cAMP binding in vascular smooth muscle in older animals may in part explain the loss in relaxation mediated by beta adrenergic agonists.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- In Vitro Techniques
- Isoproterenol/pharmacology
- Kinetics
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Protein Kinases/metabolism
- Rats
- Rats, Inbred Strains
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
Collapse
Affiliation(s)
- J H Chin
- Department of Medicine, Stanford University School of Medicine, California
| | | |
Collapse
|
23
|
Vintermyr OK, Mellgren G, Bøe R, Døskeland SO. Cyclic adenosine monophosphate acts synergistically with dexamethasone to inhibit the entrance of cultured adult rat hepatocytes into S-phase: with a note on the use of nucleolar and extranucleolar [3H]-thymidine labelling patterns to determine rapid changes in the rate of onset of DNA replication. J Cell Physiol 1989; 141:371-82. [PMID: 2553754 DOI: 10.1002/jcp.1041410219] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analogs of cyclic adenosine monophosphate (cAMP) (N6benzoyl cAMP and N6monobutyryl cAMP) as well as agents that increased the intracellular level of cAMP (glucagon and isobutylmethylxanthine) inhibited the EGF-stimulated DNA replication of adult rat hepatocytes in primary culture independently of cell density. This inhibition was strongly potentiated by the glucocorticoid dexamethasone. The effect of cAMP (and dexamethasone) was not due to toxicity, because the inhibition was reversible and the cell ultrastructure preserved. cAMP acted by decreasing the rate of transition from G1- to S-phase, the duration of G2- and S-phase of the hepatocyte cell cycle being unaffected. DNA replication started in the extranucleolar compartment of the nucleus and ended in the nucleolar compartment as described earlier for cells grown in the absence of cAMP (O.K. Vintermyr and S.O. Døskeland, J. Cell. Physiol., 1987, 132:12-21). The action of cAMP was very rapid: significant inhibition of the transition was noted 2 hr after the addition of glucagon/IBMX and half-maximal inhibition after 4 hours. The determination of extranucleolarly labelled nuclei in cells pulse-labelled with [3H]thymidine allowed precise analysis of rapid changes in the probability of transition from G1- to S-phase. The extranucleolar labelling index could also be determined in cells continuously exposed to [3H]thymidine.
Collapse
|
24
|
Ogreid D, Ekanger R, Suva RH, Miller JP, Døskeland SO. Comparison of the two classes of binding sites (A and B) of type I and type II cyclic-AMP-dependent protein kinases by using cyclic nucleotide analogs. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 181:19-31. [PMID: 2540965 DOI: 10.1111/j.1432-1033.1989.tb14689.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
cAMP analogs, all 96 of which were modified in the adenine moiety, were examined quantitatively for their ability to inhibit the binding of [3H]cAMP to each of the two classes (A and B) of cAMP-binding sites of type I (rabbit skeletal muscle) and type II (bovine heart) cAMP-dependent protein kinase. The study showed that analogs can be constructed that have a higher affinity than cAMP for a binding site. N6-phenyl-cAMP had 18-fold increased affinity for site A of RI (AI) and 40-fold increased affinity for site AII. 2-chloro-8-methylamino-cAMP had a 7-fold increased affinity for BI, and 8-(4-chlorophenylthio)-cAMP had 17-fold increased affinity for BII. Analogs could discriminate between the two classes of binding sites by more than two orders of magnitude in binding affinity: 2-chloro-8-methylamino-cAMP had 170-fold higher affinity for BI than for AI, and 2-n-butyl-8-thiobenzyl-cAMP had 700-fold higher affinity for BII than for AII. Analogs could also discriminate between the homologous binding sites of the isozymes: 2-n-butyl-8-bromo-cAMP had 260-fold higher affinity for AI than for AII (22-fold higher for BII than BI), and 8-piperidino-cAMP had 50-fold higher affinity for BII than for BI (and 50-fold higher for AI than for AII). The data suggest the following conclusions. (a) Stacking interactions are important for the binding of cAMP to all the binding sites. (b) Subtle differences exist between the sites as to the optimal electron distribution in the adenine ring since modifications that withdraw electrons at C2 and donate at C8 favour binding to BI, and disfavour binding to AI and AII. (c) There are no hydrogen bonds between the adenine ring of cAMP and any of the binding sites. (d) All sites bind cAMP in the syn conformation. (e) The subsites adjacent to the N6 and C8 positions may have nonpolar neighbouring regions since hydrophobic substituents at N6 could increase the affinity for AI and AII and similar substituents at C8 could increase the affinity for BII. Finally, (f) the sites differed in their ability to accomodate bulky substituents at C2 and C8. For all compounds tested, their potency as activators of protein kinases I and II was found to correlate, in a predictable fashion, to their mean affinity for the two classes of binding sites, rather than to the affinity for only one of the sites.
Collapse
Affiliation(s)
- D Ogreid
- Cell Biology Research Group, Institute of Anatomy, University of Bergen, Norway
| | | | | | | | | |
Collapse
|
25
|
Ekanger R, Vintermyr OK, Houge G, Sand TE, Scott JD, Krebs EG, Eikhom TS, Christoffersen T, Øgreid D, Døskeland SO. The expression of cAMP-dependent protein kinase subunits is differentially regulated during liver regeneration. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83752-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Døskeland SO, Ogreid D. Ammonium sulfate precipitation assay for the study of cyclic nucleotide binding to proteins. Methods Enzymol 1988; 159:147-50. [PMID: 2842581 DOI: 10.1016/0076-6879(88)59015-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Ekanger R, Døskeland SO. Use of antibody-sepharose columns to study hormonal activation of cAMP-dependent protein kinase isozymes. Methods Enzymol 1988; 159:97-104. [PMID: 2842645 DOI: 10.1016/0076-6879(88)59011-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Changes in cGMP concentration correlate with some, but not all, aspects of the light-regulated conductance of frog rod photoreceptors. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)69257-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Kiss Z, Luo Y, Vereb G. Catalytic unit-independent phosphorylation and dephosphorylation of type II regulatory subunit of cyclic AMP-dependent protein kinase in rat liver plasma membranes. Biochem J 1986; 234:163-8. [PMID: 3010951 PMCID: PMC1146540 DOI: 10.1042/bj2340163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rat liver plasma membranes contain a 55 kDa protein which proved to be identical with type II regulatory subunit (RII) of the cyclic AMP-dependent protein kinase (kinase A) by several criteria (gel electrophoretic behaviour, peptide map, position of the autophosphorylated site). Analysis of phosphopeptide maps revealed that the membrane-bound RII was phosphorylated by a kinase which is unrelated to the catalytic unit (C) of kinase A. Dephosphorylation of the membrane-bound RII by an endogenous phosphatase was stimulated by both cyclic AMP and fluoride. Addition of C did not stimulate dephosphorylation even in the presence of ADP; moreover, protein inhibitor of C did not modify the effects of cyclic AMP or fluoride. The effects of both cyclic AMP and fluoride were, however, inhibited by C. Results indicate that rat liver plasma membranes contain a phosphorylation-dephosphorylation system for which RII is a relatively specific substrate.
Collapse
|
30
|
Studies of cGMP analog specificity and function of the two intrasubunit binding sites of cGMP-dependent protein kinase. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)36077-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Beebe SJ, Corbin JD. 3 Cyclic Nucleotide-Dependent Protein Kinases. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/s1874-6047(08)60428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
32
|
Parameters of hormonal regulation of fluid-electrolyte exchange and cAMP reception in the rat renal papilla during adaptation to cold. Bull Exp Biol Med 1985. [DOI: 10.1007/bf00837841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Ogreid D, Ekanger R, Suva RH, Miller JP, Sturm P, Corbin JD, Døskeland SO. Activation of protein kinase isozymes by cyclic nucleotide analogs used singly or in combination. Principles for optimizing the isozyme specificity of analog combinations. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 150:219-27. [PMID: 2990925 DOI: 10.1111/j.1432-1033.1985.tb09010.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
104 cAMP analogs, most of them modified in the adenine moiety, were tested as activators of cAMP-dependent protein kinase I (from rabbit or rat skeletal muscle) and kinase II (from bovine heart or rat skeletal muscle). When tested singly, only 2-phenyl-1,N6-etheno-cAMP showed a considerably (sevenfold) higher potency as an activator of kinase II than of kinase I. Analogs containing an 8-amino modification preferentially activated kinase I, some being more than 10-fold more potent as activators of kinase I than kinase II. When two analogs were combined, the concentration of one (complementary) analog required to half-maximally activate each isozyme was determined in the presence of a fixed concentration of another (priming) analog. Analogs tested in combination had been analyzed for their affinity for the intrasubunit binding sites (A, B) of isozyme I and II. The degree to which complementary analogs preferentially activated one isozyme was plotted against the mean site selectivity, i.e. (affinity A/B isozyme I X affinity A/B isozyme II) 1/2. This plot produced a straight line, the slope of which reflected the ability of the priming analog to discriminate homologous sites on the isozymes. This means that the isozyme discriminating power of an analog pair can be quantitatively predicted from the affinity of the analogs for site A and B of the two enzymes. It also means that a systematic analysis of those features of analogs imparting a high mean site selectivity or the ability to discriminate between homologous isozyme sites will facilitate the synthesis of new even more isozyme-selective analogs.
Collapse
|
34
|
Gel filtration study of cytoplasmic cAMP receptors in the kidneys of rats of different ages. Bull Exp Biol Med 1985. [DOI: 10.1007/bf00839255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Ekanger R, Sand TE, Ogreid D, Christoffersen T, Døskeland SO. The separate estimation of cAMP intracellularly bound to the regulatory subunits of protein kinase I and II in glucagon-stimulated rat hepatocytes. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(19)83634-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Rannels SR, Cobb CE, Landiss LR, Corbin JD. The regulatory subunit monomer of cAMP-dependent protein kinase retains the salient kinetic properties of the native dimeric subunit. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(19)83639-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Rice WR, Hull WM, Dion CA, Hollinger BA, Whitsett JA. Activation of cAMP dependent protein kinase during surfactant release from type II pneumocytes. Exp Lung Res 1985; 9:135-49. [PMID: 2998742 DOI: 10.3109/01902148509061533] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Release of surfactant from pulmonary type II epithelial cells was stimulated by the beta-adrenergic agonist terbutaline and the diterpene forskolin. Cytosolic cyclic adenosine monophosphate (cAMP) concentrations increased significantly following exposure to terbutaline or forskolin and reached maximal levels within 5 min after treatment. Terbutaline and forskolin had a synergistic effect on cytosolic cAMP levels when added simultaneously. cAMP-dependent protein kinase activity was identified in cytosolic preparations of type II pneumocytes by phosphorylation of the peptide substrate Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) and binding of 3H-cAMP to the regulatory components of cAMP-dependent protein kinase. Type I and type II regulatory subunits of the cANP-dependent kinase were present in approximately equal concentrations in type II cell cytosol. Activation ratio of cAMP-dependent protein kinase in cultured type II cells increased significantly in the presence of terbutaline, forskolin, or terbutaline plus forskolin. Activation ratios increased from 0.45 +/- 0.03 for control cells to 0.96 +/- 0.06 for cells exposed to terbutaline (10 microM) plus forskolin (5 microM) for 20 min. Release of 3H-phosphatidylcholine was also stimulated by terbutaline and forskolin. Effects of terbutaline and forskolin on surfactant release were approximately additive. Our results demonstrated increased cytosolic cAMP levels, increased cAMP-dependent protein kinase activation ratios, and subsequent augmented surfactant release from isolated type II pneumocytes in response to terbutaline and forskolin. These data support a role for activation of cAMP-dependent protein kinase as a mediator of surfactant release and document the utility of forskolin for study of cAMP-mediated effects in isolated type II cells.
Collapse
|
38
|
Harper JF, Haddox MK, Johanson RA, Hanley RM, Steiner AL. Compartmentation of second messenger action: immunocytochemical and biochemical evidence. VITAMINS AND HORMONES 1985; 42:197-252. [PMID: 3006347 DOI: 10.1016/s0083-6729(08)60063-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Wong KH, Kisilevsky R. Cyclic AMP binding activity in liver supernatants during acute ethionine intoxication. Exp Mol Pathol 1984; 40:349-61. [PMID: 6327363 DOI: 10.1016/0014-4800(84)90052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There is a significant increase in hepatic cAMP binding activity 4 hr following ethionine intoxication. This activity is localized to the 100, 000 g supernatant. The binding of cAMP by the 100, 000 g supernatant of controls can be increased to experimental levels simply by dialysis. The increased binding activity seen during ethionine intoxication can be reversed by the administration of adenine. Neither S-adenosyl ethionine, S-adenosyl methionine, S-adenosyl homocysteine, nor AMP compete effectively with cAMP for the binding protein. Increasing ADP concentrations stimulates cAMP binding whereas increasing ATP concentration inhibits cAMP binding. At concentrations seen during ethionine intoxication the effects of ADP and ATP were equal but opposite in direction.
Collapse
|
40
|
Døskeland SO, Ogreid D. Characterization of the interchain and intrachain interactions between the binding sites of the free regulatory moiety of protein kinase I. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43351-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Küng WM, Handloser K, Eppenberger U. Cyclic AMP-dependent protein kinases and cAMP-binding proteins in human mammary tumor MCF-7 cells. ARCHIVES OF GYNECOLOGY 1984; 234:173-9. [PMID: 6732288 DOI: 10.1007/bf00570753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two isoenzymes of cAMP-dependent protein kinases were found in MCF-7 cytosol. The regulatory (cAMP-binding) subunit of protein kinase I (predominant form) has an apparent molecular weight (MW) of 49,000 and the two forms of regulatory subunits of protein kinase II have MWs of 52,000 and 54,000. Substantial amounts of the 49,000 protein cochromatographed on DEAE cellulose with protein kinase II. The quantities of protein kinase holoenzyme activity are strongly influenced by extraction procedures: the use of EDTA and of the protease inhibitor benzamidine can lead to extensive dissociation. On the other hand, high yields of cAMP-dependent protein kinase holoenzyme activity were consistently obtained with 150 mM KCl.
Collapse
|
42
|
Swillens S. On the interactions of adenosine 3',5'-monophosphate with the components of protein kinase I. A theoretical equilibrium analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 137:581-7. [PMID: 6319127 DOI: 10.1111/j.1432-1033.1983.tb07865.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cyclic-AMP-dependent protein kinase is activated through the dissociation of active catalytic subunits from a regulatory dimer. The regulatory subunit consists of four cyclic-AMP-binding sites and two binding sites for catalytic subunits. Under well defined experimental conditions, protein kinase activation obeys apparent positive cooperativity and is linearly coupled to cyclic AMP binding. The simulation of theoretical models is used for testing working hypotheses. Here we demonstrate that the proposed stoichiometry of protein kinase activation may account for the experimentally observed properties of the system. The restrictive conditions under which theory and experimental observations are compatible are: (1) functional dependence between the two monomers of the regulatory dimer, (2) the only complexes which can accumulate at equilibrium in the considered conditions are R2C2, (cyclic AMP)2R2C and (cyclic AMP)4R2 (where R and C are the regulatory and catalytic subunits of protein kinase). An experimental procedure is proposed in order to check the validity of the theoretical predictions. The determination of the sequence of events leading to activation or inactivation of protein kinase is discussed.
Collapse
|
43
|
Ogreid D, Døskeland SO. Cyclic nucleotides modulate the release of [3H] adenosine cyclic 3',5'-phosphate bound to the regulatory moiety of protein kinase I by the catalytic subunit of the kinase. Biochemistry 1983; 22:1686-96. [PMID: 6303391 DOI: 10.1021/bi00276a026] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The rate of release of bound c[3H]AMP from the two types (A and B) of cAMP binding sites on the regulatory subunit dimer (R2I) of rabbit muscle protein kinase I was studied in the presence of the catalytic (C) subunit of protein kinase. Rebinding of released c[3H]AMP was avoided by using highly diluted reactants or adding unlabeled cAMP or its analogues. No significant C-induced dissociation of R2I-(c[3H]AMP)4 occurred in the absence of Mg2+-ATP. Of the two options that one or two molecules of C are required to induce the release of c[3H]AMP bound to R2I, only the first one was compatible with the first-order dependence on [C] of the rate of release of c[3H]AMP observed over a wide range of C concentrations. In the absence of added unlabeled cyclic nucleotide, the rate of the C-induced release of c[3H]AMP was the same from site A and site B. The apparent second-order rate constant for the association of C to R2I(c[3H]AMP)4 was 6 X 10(6) M-1 s-1 (37 degrees C, 0.15 M KCl). Raising the concentration of unlabeled cAMP in the medium up to 1 microM decreased by up to 50% the rate of the C-induced release of bound c[3H]AMP from both sites. This is explained by assuming that the association of one molecule of C to R2I(c-[3H]AMP)4 leads to the release of c[3H]AMP first from one R subunit and subsequently, by a process that can be blocked by about 1 microM cAMP, from the other R subunit. A further rise of the cAMP concentration decreased the rate of release from site B only, so that the C-induced release of c[3H]AMP occurred almost exclusively from site A at very high concentrations of cAMP. This suggests that c[3H]AMP is released first from site A and that this vacant site by interacting with cAMP inhibits the release of c[3H]AMP from site B of the same R subunit. The role of site A in controlling the C-induced release was further supported by the finding that several cAMP analogues inhibited the release with potencies correlating with their affinities for site A. The C-induced release of c[3H]AMP from aged R2I was about 10 times slower than that from fresh R2I. No significant C-induced release of c[3H]AMP was observed from the monomeric fragment obtained by limited trypsin treatment of R2(1).
Collapse
|
44
|
Kvinnsland S, Ekanger R, Døskeland SO, Thorsen T. Relationship of cyclic AMP binding capacity and estrogen receptor to hormone sensitivity in human breast cancer. Breast Cancer Res Treat 1983; 3:67-72. [PMID: 6307436 DOI: 10.1007/bf01806235] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Estrogen receptor (ER) and total binding capacity for cyclic AMP (cAR) were measured in cytosols from human mammary tumors. Patients with advanced, evaluable breast cancer were biopsied before the start of endocrine treatment, and ER and cAR measurements were performed. All patients included in this study were ER positive. Sixteen of 30 patients (53%) had an objective response to endocrine treatment. When ER and cAR were expressed as a ratio and this ratio was related to treatment response, it was found that all objective responders had ratio values above 2.5 X 10(-3). Nine of 14 nonresponders had ER/cAR ratios below this value. In our limited series of patients a threshold limit of 2.5 X 10(-3) would have correctly predicted the response to endocrine treatment in 25 of 30 patients (83%). In patients with ER values below 100 fmol/mg protein and PgR negative or unknown, cAR might strengthen the predictive value of steroid receptor measurements.
Collapse
|
45
|
Ogreid D, Døskeland SO, Miller JP. Evidence that cyclic nucleotides activating rabbit muscle protein kinase I interact with both types of cAMP binding sites associated with the enzyme. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33156-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Ueland PM, Helland S. Binding of adenosine to intracellular S-adenosylhomocysteine hydrolase in isolated rat hepatocytes. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33111-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
47
|
Ogreid D, Døskeland SO. Activation of protein kinase isoenzymes under near physiological conditions. Evidence that both types (A and B) of cAMP binding sites are involved in the activation of protein kinase by cAMP and 8-N3-cAMP. FEBS Lett 1982; 150:161-6. [PMID: 6297968 DOI: 10.1016/0014-5793(82)81326-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
cAMP-dependent protein kinase I and II (cAKI and cAKII) were incubated under near physiological conditions in the presence of various concentrations of 8-N3-c[3H]AMP or c[3H]AMP. Both types (A and B) of cyclic nucleotide binding sites of cAKI or cAKII were occupied to a similar extent and the degree of their occupation correlated with the degree of kinase activation. cAKI and cAKII bound cAMP in an apparent positively cooperative manner in the presence of Mg2+, ATP. 8-N3-c[3H]AMP dissociated several orders of magnitude faster from site A than site B of the regulatory moiety of cAKII, and was photo-incorporated only when bound to site B.
Collapse
|
48
|
Døskeland SO, Ueland PM. Comparison of some physicochemical and kinetic properties of S-adenosylhomocysteine hydrolase from bovine liver, bovine adrenal cortex and mouse liver. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 708:185-93. [PMID: 6293581 DOI: 10.1016/0167-4838(82)90219-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
S-Adenosyl-L-homocysteine hydrolase (EC 3.3.1.1) was purified to apparent homogeneity from bovine liver, bovine adrenal cortex and mouse liver. All enzymes were tetramers, composed of two types of subunit present in the proportion 1:1, as judged by SDS-polyacrylamide gel electrophoresis. The partition coefficient was exactly the same for these enzymes on high-performance gel permeation chromatography, and they co-sedimented in density gradients, suggesting the same molecular size and form of S-adenosylhomocysteine hydrolase from these sources. The bovine enzymes differed from the mouse liver enzyme with respect to isoelectric point (pI = 5.35, versus pI = 5.7), affinity for DEAE-cellulose, and migration of subunits on SDS-polyacrylamide gel electrophoresis with SDS from some commercial sources. The enzymes were not substrates for cAMP-dependent protein kinase. The apparent Km values for adenosine (0.2 microM) and S-adenosylhomocysteine (0.75 microM) were the same for all three enzymes. The ratio between Vmax for the synthesis and hydrolysis of S-adenosylhomocysteine was about 4 for the mouse liver enzyme, and about 6 for the bovine enzymes. It is concluded that only subtle kinetic and physicochemical differences exist between S-adenosylhomocysteine hydrolase from these bovine and mouse tissues. This suggests that differences in experimental procedures rather than species- and organ-differences of S-adenosylhomocysteine hydrolase are responsible for the variability in kinetic and physicochemical parameters reported for the mammalian hydrolase.
Collapse
|
49
|
Corbin JD, Rannels SR, Flockhart DA, Robinson-Steiner AM, Tigani MC, Døskeland SO, Suva RH, Suva R, Miller JP. Effect of cyclic nucleotide analogs on intrachain site I of protein kinase isozymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 125:259-66. [PMID: 6288370 DOI: 10.1111/j.1432-1033.1982.tb06677.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effects of numerous cAMP analogs present in the [3H]cAMP binding reaction on subsequent dissociation of [3H]cAMP from the regulatory subunit of cAMP-dependent protein kinase I and II were analyzed. Certain analogs with modification at either C-8 or C-2 showed relative selectivity for one (site 1) of two intrachain cAMP binding sites of both isozymes. Modification at C-6 caused selectivity for the second site (site 2). The combination of a site-1-directed and site-2-directed analog inhibited [3H]cAMP binding much more than did either analog alone. In general, there was a correlation between the site 1 selectivity and the ability of the analog to stimulate the binding of [3H]cIMP, which selects site 2. The site-1-directed analogs stimulated the initial rate of [3H]cIMP binding. The stimulatory effect was enhanced in the presence of a polycationic protein such as histone and was inhibited by high ionic strength. The type I and II isozymes exhibited large differences in analog specificity for this effect. For type I, of the analogs tested the most efficacious for stimulating [3H]cIMP binding were those containing a nitrogen atom attached to C-8, 8-aminobutylamino-cAMP being the most effective. Type II responded best to analogs containing a sulfur atom attached to C-8, 8-SH-cAMP being the most effective of those tested. The stimulatory effect was accentuated in the presence of MgATP when using type I, but this nucleotide had no effect when using type II. It is proposed that in intact tissues cAMP binding to site 1 of either isozyme stimulates the binding to site 2.
Collapse
|
50
|
Weber W, Schwoch G, Hilz H. Isolation of a 50,000 dalton cAMP binding protein and its characterization as a regulatory subunit of protein kinase II. Biochem Biophys Res Commun 1982; 104:1134-41. [PMID: 7073729 DOI: 10.1016/0006-291x(82)91368-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|