1
|
Voisin M, Shrestha E, Rollet C, Nikain CA, Josefs T, Mahé M, Barrett TJ, Chang HR, Ruoff R, Schneider JA, Garabedian ML, Zoumadakis C, Yun C, Badwan B, Brown EJ, Mar AC, Schneider RJ, Goldberg IJ, Pineda-Torra I, Fisher EA, Garabedian MJ. Inhibiting LXRα phosphorylation in hematopoietic cells reduces inflammation and attenuates atherosclerosis and obesity in mice. Commun Biol 2021; 4:420. [PMID: 33772096 PMCID: PMC7997930 DOI: 10.1038/s42003-021-01925-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis and obesity share pathological features including inflammation mediated by innate and adaptive immune cells. LXRα plays a central role in the transcription of inflammatory and metabolic genes. LXRα is modulated by phosphorylation at serine 196 (LXRα pS196), however, the consequences of LXRα pS196 in hematopoietic cell precursors in atherosclerosis and obesity have not been investigated. To assess the importance of LXRα phosphorylation, bone marrow from LXRα WT and S196A mice was transplanted into Ldlr-/- mice, which were fed a western diet prior to evaluation of atherosclerosis and obesity. Plaques from S196A mice showed reduced inflammatory monocyte recruitment, lipid accumulation, and macrophage proliferation. Expression profiling of CD68+ and T cells from S196A mouse plaques revealed downregulation of pro-inflammatory genes and in the case of CD68+ upregulation of mitochondrial genes characteristic of anti-inflammatory macrophages. Furthermore, S196A mice had lower body weight and less visceral adipose tissue; this was associated with transcriptional reprograming of the adipose tissue macrophages and T cells, and resolution of inflammation resulting in less fat accumulation within adipocytes. Thus, reducing LXRα pS196 in hematopoietic cells attenuates atherosclerosis and obesity by reprogramming the transcriptional activity of LXRα in macrophages and T cells to promote an anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Maud Voisin
- Department of Microbiology, NYU School of Medicine, New York, NY, USA
| | - Elina Shrestha
- Department of Microbiology, NYU School of Medicine, New York, NY, USA
| | - Claire Rollet
- Department of Microbiology, NYU School of Medicine, New York, NY, USA
| | - Cyrus A Nikain
- Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Tatjana Josefs
- Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Mélanie Mahé
- Department of Microbiology, NYU School of Medicine, New York, NY, USA
| | - Tessa J Barrett
- Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Hye Rim Chang
- Division of Endocrinology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Rachel Ruoff
- Department of Microbiology, NYU School of Medicine, New York, NY, USA
| | | | - Michela L Garabedian
- Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | | | - Chi Yun
- Ordaos, Inc, New York, NY, USA
| | | | - Emily J Brown
- Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Adam C Mar
- Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Medical Center, New York, NY, USA
| | | | - Ira J Goldberg
- Division of Endocrinology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Inés Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, University College of London, London, UK
| | - Edward A Fisher
- Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, Department of Medicine, NYU School of Medicine, New York, NY, USA.
| | | |
Collapse
|
2
|
Andrade FB, Gualberto A, Rezende C, Percegoni N, Gameiro J, Hottz ED. The Weight of Obesity in Immunity from Influenza to COVID-19. Front Cell Infect Microbiol 2021; 11:638852. [PMID: 33816341 PMCID: PMC8011498 DOI: 10.3389/fcimb.2021.638852] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged in December 2019 and rapidly outspread worldwide endangering human health. The coronavirus disease 2019 (COVID-19) manifests itself through a wide spectrum of symptoms that can evolve to severe presentations as pneumonia and several non-respiratory complications. Increased susceptibility to COVID-19 hospitalization and mortality have been linked to associated comorbidities as diabetes, hypertension, cardiovascular diseases and, recently, to obesity. Similarly, individuals living with obesity are at greater risk to develop clinical complications and to have poor prognosis in severe influenza pneumonia. Immune and metabolic dysfunctions associated with the increased susceptibility to influenza infection are linked to obesity-associated low-grade inflammation, compromised immune and endocrine systems, and to high cardiovascular risk. These preexisting conditions may favor virological persistence, amplify immunopathological responses and worsen hemodynamic instability in severe COVID-19 as well. In this review we highlight the main factors and the current state of the art on obesity as risk factor for influenza and COVID-19 hospitalization, severe respiratory manifestations, extrapulmonary complications and even death. Finally, immunoregulatory mechanisms of severe influenza pneumonia in individuals with obesity are addressed as likely factors involved in COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Fernanda B. Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Ana Gualberto
- Laboratory of Immunology, Obesity and Infectious Diseases, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Camila Rezende
- Department of Nutrition, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Nathércia Percegoni
- Department of Nutrition, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Jacy Gameiro
- Laboratory of Immunology, Obesity and Infectious Diseases, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
3
|
Ramachandran S, Penumetcha M, Merchant NK, Santanam N, Rong R, Parthasarathy S. Exercise reduces preexisting atherosclerotic lesions in LDL receptor knock out mice. Atherosclerosis 2005; 178:33-8. [PMID: 15585198 DOI: 10.1016/j.atherosclerosis.2004.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2004] [Revised: 07/13/2004] [Accepted: 08/03/2004] [Indexed: 12/21/2022]
Abstract
Exercise is recommended both as a prophylactic and also as a therapeutic approach for patients with established coronary artery disease. In this study, we investigated the effect of a normal chow diet, with or without exercise in LDL r-/- mice with preexisting atherosclerotic lesions. A total of 28 LDL r-/- mice (LDL receptor knock out mice, 4-6 weeks old) were fed a high fat, high cholesterol diet (inductive phase). At the end of the 3 months, eight mice were sacrificed, and plasma autoantibodies to oxidatively modified proteins, cholesterol levels, and surface area of the lesions in the aorta were determined. The remaining mice were divided into two groups, and placed on a normal chow diet alone, or normal chow and exercise for three more months (regressive phase). Plasma autoantibodies to oxidatively modified proteins and cholesterol were measured along with the lesion size. Compared to the group of animals at the end of the inductive phase, both the groups of animals in the regressive phase had very low levels of plasma cholesterol and autoantibodies, and almost a 50% reduction in the aortic lesion area. The group that was exercised had the lowest levels of autoantibodies and aortic lesions as compared to the group without the exercise. However, the plasma cholesterol levels were comparable in both groups. This study demonstrates that reduction of preexisting atherosclerotic lesions is accelerated dramatically by exercise in LDL r-/- mice.
Collapse
Affiliation(s)
- Sumathi Ramachandran
- Department of Gynecology and Obstetrics, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
4
|
Chiang K, Parthasarathy S, Santanam N. Estrogen, neutrophils and oxidation. Life Sci 2004; 75:2425-38. [PMID: 15350818 DOI: 10.1016/j.lfs.2004.04.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
The potential role of estrogens in the prevention of cardiovascular disease (CVD) is still under debate. Previous studies from our laboratory have shown that estradiol may act as a pro oxidant at physiological concentrations, enhancing peroxidase-mediated oxidation of low density lipoprotein (LDL). In the present study, we show that physiological concentrations of estradiol enhance fMLP-mediated neutrophil degranulation and oxidative stress markers. For example, 10 nM estradiol increased myeloperoxidase (MPO), elastase, and superoxide release by 19.9 +/- 9.6% (p = 0.006), 16.3 +/- 5.2% (p = 0.09), and 36.1 +/- 19.5% (p = 0.05), respectively. The enhancement of neutrophil degranulation by estradiol resulted in an increase in the formation of LDL oxidation markers such as conjugated dienes and thiobarbituric acid-reactive substances (20.7 +/- 7.2%, p = 0.04). Thus, estradiol can act as a pro oxidant, promoting neutrophil degranulation as well as reacting with MPO to enhance the oxidation of LDL. This mechanism supports our hypothesis that oxidative stress may be beneficial towards the prevention of CVD both by promoting plasma oxidation of LDL, with its subsequent clearance by the liver, as well as by inducing a threshold antioxidant defense in the arteries. Our study also suggests that estradiol by promoting oxidation in the plasma is beneficial in preventing CVD.
Collapse
Affiliation(s)
- Kenneth Chiang
- Department of Pathology, LSU Health Science Center, 533 Bolivar St, # 747 CSRB, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
5
|
Borggreve SE, De Vries R, Dullaart RPF. Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin:cholesterol acyltransferase and lipid transfer proteins. Eur J Clin Invest 2003; 33:1051-69. [PMID: 14636288 DOI: 10.1111/j.1365-2362.2003.01263.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Insulin resistance and type 2 diabetes mellitus are generally accompanied by low HDL cholesterol and high plasma triglycerides, which are major cardiovascular risk factors. This review describes abnormalities in HDL metabolism and reverse cholesterol transport, i.e. the transport of cholesterol from peripheral cells back to the liver for metabolism and biliary excretion, in insulin resistance and type 2 diabetes mellitus. Several enzymes including lipoprotein lipase (LPL), hepatic lipase (HL) and lecithin: cholesterol acyltransferase (LCAT), as well as cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP), participate in HDL metabolism and remodelling. Lipoprotein lipase hydrolyses lipoprotein triglycerides, thus providing lipids for HDL formation. Hepatic lipase reduces HDL particle size by hydrolysing its triglycerides and phospholipids. A decreased postheparin plasma LPL/HL ratio is a determinant of low HDL2 cholesterol in insulin resistance. The esterification of free cholesterol by LCAT increases HDL particle size. Plasma cholesterol esterification is unaltered or increased in type 2 diabetes mellitus, probably depending on the extent of triglyceride elevation. Subsequent CETP action results in transfer of cholesteryl esters from HDL towards triglyceride-rich lipoproteins, and is involved in decreasing HDL size. An increased plasma cholesteryl ester transfer is frequently observed in insulin-resistant conditions, and is considered to be a determinant of low HDL cholesterol. Phospholipid transfer protein generates small pre beta-HDL particles that are initial acceptors of cell-derived cholesterol. Its activity in plasma is elevated in insulin resistance and type 2 diabetes mellitus in association with high plasma triglycerides and obesity. In insulin resistance, the ability of plasma to promote cellular cholesterol efflux may be maintained consequent to increases in PLTP activity and pre beta-HDL. However, cellular cholesterol efflux to diabetic plasma is probably impaired. Besides, cellular abnormalities that are in part related to impaired actions of ATP binding cassette transporter 1 and scavenger receptor class B type I are likely to result in diminished cellular cholesterol efflux in the diabetic state. Whether hepatic metabolism of HDL-derived cholesterol and subsequent hepatobiliary transport is altered in insulin resistance and type 2 diabetes mellitus is unknown. Specific CETP inhibitors have been developed that exert major HDL cholesterol-raising effects in humans and retard atherosclerosis in animals. As an increased CETP-mediated cholesteryl ester transfer represents a plausible metabolic intermediate between high triglycerides and low HDL cholesterol, studies are warranted to evaluate the effects of these agents in insulin resistance- and diabetes-associated dyslipidaemia.
Collapse
Affiliation(s)
- S E Borggreve
- Department of Endocrinology, University Hospital Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
6
|
Kang Z, Scott TM, Wesolowski C, Feng L, Wang J, Wang L, Liu H. Ex vivo evaluation of a novel polyiodinated compound for early detection of atherosclerosis. Radiat Res 2003; 160:460-6. [PMID: 12971807 DOI: 10.1667/rr3062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Atherosclerosis is a primary cause of heart disease and stroke; it is the underlying cause of about 50% of all deaths in Western countries. It is known that early detection of atherosclerotic lesions would significantly reduce the risk of mortality. The objective of this study was to develop a radioimaging method for early detection of atherosclerotic plaques. A novel polyiodinated cholesterol analog, cholesteryl 1,3-diiopanoate glyceryl ether (C2I, patent pending), was synthesized and radiolabeled with 125I. 125I-C2I was incorporated into acetylated low-density lipoprotein (AcLDL), which is considered to be an atherosclerotic plaque-seeking carrier. 125I-C2I was also prepared as a chylomicron-like emulsion. Transgenic mice deficient in apoE and low-density lipoprotein receptors (LDLR), known as apoE/LDLR double knockout, were used as an animal model of early atherosclerosis. 125I-C2I/AcLDL or 125I-C2I emulsion was injected into the apoE/LDLR knockout mice via the tail vein, and the mice were killed humanely 24 h after injection. Various tissues including aorta were removed and radioactivity was determined. The aorta samples were also imaged to determine the accumulation of radioactivity from C2I. The images were compared to the atherosclerotic lesions revealed by histological studies. It was found that both 125I-C2I/AcLDL and 125I-C2I emulsion resulted in accumulation of radioactivity at the site of early atherosclerotic lesions, and they therefore may be useful for early detection of atherosclerosis.
Collapse
Affiliation(s)
- Zhili Kang
- School of Pharmacy, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Meilhac O, Ramachandran S, Chiang K, Santanam N, Parthasarathy S. Role of arterial wall antioxidant defense in beneficial effects of exercise on atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2001; 21:1681-8. [PMID: 11597945 DOI: 10.1161/hq1001.097106] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mechanism(s) by which exercise reduces atherogenic risk remains unknown. This study tested the hypothesis that sustained exercise-induced oxidative stress may increase antioxidant defense in the arterial wall. Acute exercise induced an increase in antibodies to oxidatively modified proteins and catalase in the aortic walls of normal mice compared with sedentary control mice. In male atherogenic diet-fed low density lipoprotein (LDL) receptor-deficient mice, exercise lowered plasma cholesterol (15%) and decreased atherosclerotic lesions by 40% compared with values in sedentary control mice, with a concomitant increase in arterial catalase and endothelial NO synthase. Because these mice lack the LDL receptor, the results indicate that the LDL receptor might not be responsible for the exercise-induced lowering of plasma cholesterol. Vitamin E supplementation to exercising LDL receptor-deficient mice did not reduce atherosclerotic lesion formation significantly as opposed to lesion formation in untreated exercised mice. Moreover, vitamin E counteracted the beneficial effects of exercise by preventing the induction of aortic catalase activity and endothelial NO synthase expression. These results might indicate that although vitamin E might have prevented the exercise-induced oxidative stress, its availability in the artery was insufficient to prevent the atherosclerotic process. These results indicate that exercise-induced plasma oxidative stress could be responsible for the prevention of atherosclerosis by stimulating arterial antioxidant response. Furthermore, vitamin E supplementation could be deleterious in exercisers by inhibiting antioxidant enzyme buildup in the arterial wall.
Collapse
Affiliation(s)
- O Meilhac
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
8
|
Van Eck M, Herijgers N, Van Dijk KW, Havekes LM, Hofker MH, Groot PH, Van Berkel TJ. Effect of macrophage-derived mouse ApoE, human ApoE3-Leiden, and human ApoE2 (Arg158-->Cys) on cholesterol levels and atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2000; 20:119-27. [PMID: 10634808 DOI: 10.1161/01.atv.20.1.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of monocyte/macrophage-derived wild-type mouse apolipoprotein E (apoE), human apoE3-Leiden, and human apoE2 on serum cholesterol levels and the development of atherosclerosis in apoE-deficient (apoe-/-) mice was investigated by using bone marrow transplantation (BMT). At 4 weeks after BMT, murine apoe+/+ bone marrow reduced serum cholesterol levels by 87% in apoe-/- mice, whereas macrophage-derived human apoE3-Leiden and human apoE2 induced a maximal, transient reduction of 35% and 48%, respectively. At 4 months after BMT, atherosclerosis was 23-fold (P<0.001) reduced in apoe+/+-->apoe-/- mice, whereas no significant reduction in apoE3-Leiden.apoe-/--->apoe-/- and apoE2.apoe-/--->apoe-/- mice could be demonstrated. A highly significant decrease in serum cholesterol levels (78% reduction) and atherosclerosis (21-fold, P<0. 001) was found in apoE3-Leiden.apoe-/- animals expressing high levels of apoE in multiple tissues, whereas apoE2 was ineffective even at high concentrations. Furthermore, in contrast to apoE-deficient macrophages, cholesterol efflux from apoE2 or apoE3-Leiden macrophages was not impaired. In conclusion, apoE3-Leiden as well as apoE2 are less effective in reducing cholesterol levels and atherosclerosis in apoe-/- animals, compared with apoe+/+, with apoE2<apoE3-Leiden<apoe+/+, irrespective of the observed adequate efflux of cholesterol from macrophages expressing apoE2 and apoE3-Leiden, indicating that normalization of cholesterol efflux by macrophages is not accompanied by measurable effects on lesion growth.
Collapse
Affiliation(s)
- M Van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research , Sylvius Laboratories, Leiden University, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|