1
|
Sadhu MJ, Moresco JJ, Zimmer AD, Yates JR, Rine J. Multiple inputs control sulfur-containing amino acid synthesis in Saccharomyces cerevisiae. Mol Biol Cell 2014; 25:1653-65. [PMID: 24648496 PMCID: PMC4019496 DOI: 10.1091/mbc.e13-12-0755] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genes in Saccharomyces cerevisiae involved in sulfur-containing amino acid synthesis are transcriptionally induced by either cysteine or S-adenosyl-methionine deficiency, as well as defects in phosphatidylcholine synthesis. Met30p, a regulator of these genes, changes physically in inducing conditions, which may mediate its regulatory activity. In Saccharomyces cerevisiae, transcription of the MET regulon, which encodes the proteins involved in the synthesis of the sulfur-containing amino acids methionine and cysteine, is repressed by the presence of either methionine or cysteine in the environment. This repression is accomplished by ubiquitination of the transcription factor Met4, which is carried out by the SCF(Met30) E3 ubiquitin ligase. Mutants defective in MET regulon repression reveal that loss of Cho2, which is required for the methylation of phosphatidylethanolamine to produce phosphatidylcholine, leads to induction of the MET regulon. This induction is due to reduced cysteine synthesis caused by the Cho2 defects, uncovering an important link between phospholipid synthesis and cysteine synthesis. Antimorphic mutants in S-adenosyl-methionine (SAM) synthetase genes also induce the MET regulon. This effect is due, at least in part, to SAM deficiency controlling the MET regulon independently of SAM's contribution to cysteine synthesis. Finally, the Met30 protein is found in two distinct forms whose relative abundance is controlled by the availability of sulfur-containing amino acids. This modification could be involved in the nutritional control of SCF(Met30) activity toward Met4.
Collapse
Affiliation(s)
- Meru J Sadhu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720
| | - James J Moresco
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037
| | - Anjali D Zimmer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - John R Yates
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
2
|
Identification of a conserved branched RNA structure that functions as a factor-independent terminator. Proc Natl Acad Sci U S A 2014; 111:3573-8. [PMID: 24550474 DOI: 10.1073/pnas.1315374111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anti-Q is a small RNA encoded on pCF10, an antibiotic resistance plasmid of Enterococcus faecalis, which negatively regulates conjugation of the plasmid. In this study we sought to understand how Anti-Q is generated relative to larger transcripts of the same operon. We found that Anti-Q folds into a branched structure that functions as a factor-independent terminator. In vitro and in vivo, termination is dependent on the integrity of this structure as well as the presence of a 3' polyuridine tract, but is not dependent on other downstream sequences. In vitro, terminated transcripts are released from RNA polymerase after synthesis. In vivo, a mutant with reduced termination efficiency demonstrated loss of tight control of conjugation function. A search of bacterial genomes revealed the presence of sequences that encode Anti-Q-like RNA structures. In vitro and in vivo experiments demonstrated that one of these functions as a terminator. This work reveals a previously unappreciated flexibility in the structure of factor-independent terminators and identifies a mechanism for generation of functional small RNAs; it should also inform annotation of bacterial sequence features, such as terminators, functional sRNAs, and operons.
Collapse
|
3
|
Abstract
L-Threonine is an essential amino acid which has recently been brought into agricultural industry for balancing the livestock feed. L-Threonine is produced by microbial synthesis using glucose or sucrose as substrates. For the process to be cost-effective, the microbial strain must be capable of threonine overproduction. This paper reviews the biochemical pathways of L-threonine synthesis in bacteria and the regulation of these pathways, the principles and the techniques of constructing high-producing strains, and the most efficient strains thus developed.
Collapse
Affiliation(s)
- Vladimir G Debabov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1st Dorozhnyi proezd, Moscow 113545, Russia.
| |
Collapse
|
4
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
5
|
Jeng ST, Lay SH, Lai HM. Transcription termination by bacteriophage T3 and SP6 RNA polymerases at Rho-independent terminators. Can J Microbiol 1997; 43:1147-56. [PMID: 9476351 DOI: 10.1139/m97-163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transcription termination of T3 and SP6 DNA-dependent RNA polymerases have been studied on the DNA templates containing the threonine (thr) attenuator and its variants. The thr attenuator is from the regulatory region of the thr operon of Escherichia coli. The DNA template, encoding the thr attenuator, contains specific features of the rho-independent terminators. It comprises a dG + dC rich dyad symmetry, encoding a stem-and-loop RNA, which is followed by a poly(U) region at the 3'-end. Thirteen attenuator variants have been analyzed for their ability to terminate transcription and the results indicated that the structure as well as the sequence in the G + C rich region of RNA hairpin affect termination of both RNA polymerases. Also, a single base change in the A residues of the hairpin failed to influence termination, whereas changes in the poly(U) region significantly reduced the termination of both T3 and SP6 RNA polymerases. The requirement of a poly(U) region for termination by T3 and SP6 RNA polymerases was studied with nested deletion mutants in this region. The minimum number of U residues required for termination of SP6 and T3 RNA polymerases was five and three, respectively. However, both RNA polymerases needed at least eight U residues to reach a termination efficiency close to that achieved by wild-type thr attenuator encoding nine U residues. In addition, the orientation of the loop sequences of the RNA hairpin did not affect the transcription termination of either of the bacteriophage RNA polymerases.
Collapse
Affiliation(s)
- S T Jeng
- Department of Botany, National Taiwan University, Taipei, Republic of China.
| | | | | |
Collapse
|
6
|
Yang MT, Scott HB, Gardner JF. Transcription termination at the thr attenuator. Evidence that the adenine residues upstream of the stem and loop structure are not required for termination. J Biol Chem 1995; 270:23330-6. [PMID: 7559489 DOI: 10.1074/jbc.270.40.23330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Escherichia coli thr operon attenuator has a structure similar to other Rho-independent terminators. The DNA sequence immediately 5' to the termination site is dG+dC-rich and contains a region of dyad symmetry that, when transcribed into RNA, encodes a hairpin structure in the transcript. It also contains a stretch of 9 consecutive dA-dT residues immediately distal to the region of dyad symmetry which encode uridine residues at the 3' end of the terminated transcript. In addition, the thr attenuator has a stretch of 6 dA-dT residues immediately upstream of the region of dyad symmetry which encode 6 adenines. These adenines could potentially pair with the distal uridines to form a hairpin structure extended by as much as 6 A-U base pairs. In this report we have examined the role of the upstream adenines in transcription termination. We used templates that specify mismatches or create new base pairs in the potential A-U secondary structure of the transcript as well as templates that delete segments of the A residues upstream of the hairpin. We conclude that A-U pairing is not required for efficient transcription termination at the thr attenuator. This conclusion is likely to apply to other Rho-independent terminators that contain hairpin-proximal dA-dT residues.
Collapse
Affiliation(s)
- M T Yang
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
7
|
Jeng S, Gardner J, Gumport R. Transcription termination in vitro by bacteriophage T7 RNA polymerase. The role of sequence elements within and surrounding a rho-independent transcription terminator. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41775-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Reynolds R, Bermúdez-Cruz RM, Chamberlin MJ. Parameters affecting transcription termination by Escherichia coli RNA polymerase. J Mol Biol 1992; 224:31-51. [PMID: 1372365 DOI: 10.1016/0022-2836(92)90574-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli RNA polymerase can terminate transcription efficiently at rho-independent terminators in a purified transcription system in the absence of accessory factors. This process of "intrinsic termination" involves direct recognition of the terminator by the core RNA polymerase, and provides an important model system for the study of the molecular interactions involved in the switch between elongation and termination. We have analyzed the intrinsic termination efficiency (%T) of 13 rho-independent terminators, under a variety of in vitro reaction conditions. Although all of these sites share the general sequence features of typical rho-independent terminators, we find a wide range of %T (2% to 90%) for the different sites under our standard transcription conditions. While %T for a particular site is characteristic of that site, the efficiency can be altered considerably by the nature and concentration of salts in the reaction, by alteration of the concentrations of the nucleoside triphosphate substrates, or by transcription from supercoiled rather than linear templates. Surprisingly, different conditions can alter %T to a different extent for different terminators. For neutral salts such as potassium chloride or potassium glutamate, changes in the range from 0.1 to 1 M affect %T for different terminators in a distinct manner, depending on the terminator and the anion involved. At some sites, %T is greatly increased by Cl- concentrations up to 1 M, while at other sites %T is reduced or unaffected by these conditions. At some sites K+ concentrations up to 1 M give a modest increase in %T, while at other sites %T is slightly reduced under the same conditions. Thus the actual values of %T, as well as the order of terminator sites ranked according to %T, can be altered greatly according to the choice of reaction conditions. Reduction of the Mg2+ concentration below 1 mM has a dramatic and quite different effect, enhancing termination to approximately 100% for all terminators tested. Transcription of supercoiled DNA templates gives somewhat reduced %T as compared with linear DNA templates. However, the effect is no greater than twofold. Our results are not consistent with those expected for models in which %T is determined by the differential stability of DNA, RNA and hybrid duplex structures at the melted region in the transcription complex. Thus, the Cl anion does not affect the stability of nucleic acid duplexes even at 1 M concentrations, but can enhance termination tenfold. Also, the alterations of monovalent cation concentration that affect %T are not expected to have a differential effect on Tm for DNA, RNA and hybrid duplexes.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R Reynolds
- Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
9
|
Cheng SW, Lynch EC, Leason KR, Court DL, Shapiro BA, Friedman DI. Functional importance of sequence in the stem-loop of a transcription terminator. Science 1991; 254:1205-7. [PMID: 1835546 DOI: 10.1126/science.1835546] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsic transcription terminators of prokaryotes are distinguished by a common RNA motif: a stem-loop structure high in guanine and cytosine content, followed by multiple uridine residues. Models explaining intrinsic terminators postulate that the stem-loop sequence is necessary only to form structure. In the tR2 terminator of coliphage lambda, single-nucleotide changes reducing potential RNA stem stability eliminated tR2 activity, and a compensatory change that restored the stem structure restored terminator activity. However, multiple changes in the stem sequence that should have either maintained or increased stability reduced terminator activity. These results suggest that the ability of the stem-loop structure to signal transcription termination depends on sequence specificity and secondary structure.
Collapse
Affiliation(s)
- S W Cheng
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109
| | | | | | | | | | | |
Collapse
|
10
|
von Hippel PH, Yager TD. Transcript elongation and termination are competitive kinetic processes. Proc Natl Acad Sci U S A 1991; 88:2307-11. [PMID: 1706521 PMCID: PMC51220 DOI: 10.1073/pnas.88.6.2307] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this paper, we develop a kinetic approach to predict the efficiency of termination at intrinsic (factor independent) terminators of Escherichia coli and related organisms. In general, our predictions agree well with experimental results. Our analysis also suggests that termination efficiency can readily be modulated by protein factors and environmental variables that shift the kinetic competition toward either elongation or termination. A quantitative framework for the consideration of such regulatory effects is developed and the strengths and limitations of the approach are discussed.
Collapse
Affiliation(s)
- P H von Hippel
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229
| | | |
Collapse
|
11
|
Han KS, Archer JA, Sinskey AJ. The molecular structure of the Corynebacterium glutamicum threonine synthase gene. Mol Microbiol 1990; 4:1693-702. [PMID: 2127631 DOI: 10.1111/j.1365-2958.1990.tb00546.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The minimal region encoding the Corynebacterium glutamicum threonine synthase structural gene and its promoter was mapped by deletion analysis and complementation of the C. glutamicum thrC allele to a 1.6 kb region of the recombinant plasmid pFS80. The nucleotide sequence of this and flanking DNA was determined. The transcription and translation start points were identified by S1 mapping analysis and amino-terminal protein sequencing, respectively. The thrC gene encodes a 54481-Dalton polypeptide product. Translation of the thrC mRNA initiates only six nucleotides downstream from transcription. The length of the mRNA transcript is consistent with a single gene transcription unit. The C. glutamicum thrC gene is expressed independently of the other threonine-specific genes hom and thrB.
Collapse
Affiliation(s)
- K S Han
- Seoul Miwon Co. Ltd, Dobong-ku, Korea
| | | | | |
Collapse
|
12
|
Jeng ST, Gardner JF, Gumport RI. Transcription termination by bacteriophage T7 RNA polymerase at rho-independent terminators. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39668-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Lawther RP. Point mutations in the regulatory region of the ilvGMEDA operon of Escherichia coli K-12. J Bacteriol 1989; 171:1188-91. [PMID: 2644227 PMCID: PMC209719 DOI: 10.1128/jb.171.2.1188-1191.1989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ilvGMEDA operon of Escherichia coli K-12 is preceded by a regulatory region containing a promoter, a leader, and an attenuator. This region has been extensively characterized biochemically. In this note point mutations of the regulatory region are reported. The effect of these mutations on expression from the ilv regulatory region supports the previous biochemical analysis.
Collapse
Affiliation(s)
- R P Lawther
- Department of Biology, University of South Carolina, Columbia 29208
| |
Collapse
|
14
|
|
15
|
Follettie MT, Shin HK, Sinskey AJ. Organization and regulation of the Corynebacterium glutamicum hom-thrB and thrC loci. Mol Microbiol 1988; 2:53-62. [PMID: 2835590 DOI: 10.1111/j.1365-2958.1988.tb00006.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The genes encoding the three terminal enzymes in the threonine biosynthetic pathway, homoserine dehydrogenase (hom), homoserine kinase (thrB) and threonine synthase (thrC) have been isolated from Corynebacterium glutamicum. The C. glutamicum hom and thrB genes were subcloned on a 3.6 kb SalI-generated chromosomal fragment. The C. glutamicum thrC gene was shown not to be linked to the hom-thrB locus. L-methionine represses the cloned homoserine dehydrogenase and homoserine kinase similar to that of the chromosomally encoded hom and thrB gene products. Northern hybridization analysis demonstrates that this repression is mediated at the level of transcription and that hom-thrB represents an operon in C. glutamicum.
Collapse
Affiliation(s)
- M T Follettie
- Department of Applied Biological Sciences, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
16
|
Contributions of RNA secondary structure and length of the thymidine tract to transcription termination at the thr operon attenuator. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57417-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Briat JF, Bollag G, Kearney CA, Molineux I, Chamberlin MJ. Tau factor from Escherichia coli mediates accurate and efficient termination of transcription at the bacteriophage T3 early termination site in vitro. J Mol Biol 1987; 198:43-9. [PMID: 3323530 DOI: 10.1016/0022-2836(87)90456-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The termination signal that limits transcription through the early region of bacteriophage T3 (T3Te) has been cloned and sequenced. The nucleotide sequence of T3Te is identical with that of T7Te, with the exception of a single G to U substitution in the 3' tail of the terminated transcript, and addition of an AC to the loop in the terminator stem-loop, enlarging the loop to six residues. Previous studies of the properties of T3Te have shown that this site is rho independent and is highly efficient for termination in vivo, but is used poorly in vitro during transcription with purified Escherichia coli RNA polymerase. In contrast, the equivalent site in bacteriophage T7 (T7Te) is an efficient termination signal both in vivo and in vitro. However, T3Te becomes an efficient termination site in vitro in the presence of preparations of tau factor. This factor also alters the sites of RNA chain termination found in vitro at T3Te. Transcripts formed in the presence of tau are several nucleotides shorter than those produced with RNA polymerase alone, and have 3' termini that are almost identical with transcripts found in vivo. These latter results are similar to our earlier findings with T7Te, and suggest that other rho independent terminators may act with transcription termination factors in vivo.
Collapse
Affiliation(s)
- J F Briat
- Department of Biochemistry, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
18
|
Lynn SP, Burton WS, Donohue TJ, Gould RM, Gumport RI, Gardner JF. Specificity of the attenuation response of the threonine operon of Escherichia coli is determined by the threonine and isoleucine codons in the leader transcript. J Mol Biol 1987; 194:59-69. [PMID: 3112412 DOI: 10.1016/0022-2836(87)90715-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Expression of the threonine (thr) operon enzymes of Escherichia coli is regulated by an attenuation mechanism. The regulatory portion of the operon contains a region coding for a leader peptide that contains consecutive threonine and isoleucine codons. It is thought that translation of the leader peptide controls the frequency of transcription termination at the attenuator site. Using oligonucleotide-directed site-specific mutagenesis we have altered the putative control codons of the leader peptide coding region. In two of the mutants the threonine and isoleucine codons were changed to produce peptides containing histidine and tyrosine codons. Both mutants showed loss of regulation by threonine and isoleucine. A hisT mutation, which leads to an undermodification of tRNA(His), increased thr operon expression in the mutants threefold but did not affect expression of the wild-type thr operon. Two other mutants were constructed that contained two histidine codons early in the leader peptide. Expression in both of these mutants was unaltered by the presence of the hisT allele or by the addition of threonine and isoleucine to the growth medium. In addition, a wild-type strain containing a temperature-sensitive threonyl-tRNA synthetase mutation showed increased thr operon expression at the non-permissive temperature, whereas none of the mutants showed any change. Taken together these data indicate that the specificity of the attenuation response is effected by specific control codons within the thr leader peptide coding region. We have also directly demonstrated thr leader peptide synthesis in vitro using a plasmid encoding the wild-type thr leader region to direct the synthesis of a peptide of the appropriate molecular weight when labeled with [3H]threonine but not with [3H]histidine or [3H]tyrosine. Conversely, when extracts were incubated with templates containing the mutated DNAs, peptides were labeled that showed patterns consistent with the expected amino acid compositions. These data indicate that the thr leader RNA is translated into the predicted leader peptide.
Collapse
|