1
|
Julia Dierksheide K, Battaglia RA, Li GW. How do bacteria tune transcription termination efficiency? Curr Opin Microbiol 2024; 82:102557. [PMID: 39423561 PMCID: PMC11609022 DOI: 10.1016/j.mib.2024.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Bacterial operons often contain intergenic transcription terminators that terminate some, but not all, RNA polymerase molecules. In these operons, the level of terminator readthrough determines downstream gene expression and helps establish protein ratios among co-regulated genes. Despite its critical role in maintaining stoichiometric gene expression, terminator strength remains difficult to predict from DNA sequence. The necessary features of a major class of bacterial terminators - intrinsic terminators - have been known for half a century, but a strong sequence-function model has yet to be developed. Here, we summarize high-throughput approaches for probing the sequence determinants of intrinsic termination efficiency and discuss the impact of trans-acting factors on this sequence-function relationship. Building on the main lessons from these studies, we map out the experimental challenges that must be circumvented to establish a quantitative model for termination efficiency.
Collapse
Affiliation(s)
| | - Robert A Battaglia
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Cackett G, Sýkora M, Portugal R, Dulson C, Dixon L, Werner F. Transcription termination and readthrough in African swine fever virus. Front Immunol 2024; 15:1350267. [PMID: 38545109 PMCID: PMC10965686 DOI: 10.3389/fimmu.2024.1350267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that encodes its own host-like RNA polymerase (RNAP) and factors required to produce mature mRNA. The formation of accurate mRNA 3' ends by ASFV RNAP depends on transcription termination, likely enabled by a combination of sequence motifs and transcription factors, although these are poorly understood. The termination of any RNAP is rarely 100% efficient, and the transcriptional "readthrough" at terminators can generate long mRNAs which may interfere with the expression of downstream genes. ASFV transcriptome analyses reveal a landscape of heterogeneous mRNA 3' termini, likely a combination of bona fide termination sites and the result of mRNA degradation and processing. While short-read sequencing (SRS) like 3' RNA-seq indicates an accumulation of mRNA 3' ends at specific sites, it cannot inform about which promoters and transcription start sites (TSSs) directed their synthesis, i.e., information about the complete and unprocessed mRNAs at nucleotide resolution. Methods Here, we report a rigorous analysis of full-length ASFV transcripts using long-read sequencing (LRS). We systematically compared transcription termination sites predicted from SRS 3' RNA-seq with 3' ends mapped by LRS during early and late infection. Results Using in-vitro transcription assays, we show that recombinant ASFV RNAP terminates transcription at polyT stretches in the non-template strand, similar to the archaeal RNAP or eukaryotic RNAPIII, unaided by secondary RNA structures or predicted viral termination factors. Our results cement this T-rich motif (U-rich in the RNA) as a universal transcription termination signal in ASFV. Many genes share the usage of the same terminators, while genes can also use a range of terminators to generate transcript isoforms varying enormously in length. A key factor in the latter phenomenon is the highly abundant terminator readthrough we observed, which is more prevalent during late compared with early infection. Discussion This indicates that ASFV mRNAs under the control of late gene promoters utilize different termination mechanisms and factors to early promoters and/or that cellular factors influence the viral transcriptome landscape differently during the late stages of infection.
Collapse
Affiliation(s)
- Gwenny Cackett
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Michal Sýkora
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | | | - Christopher Dulson
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Linda Dixon
- Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Finn Werner
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Zhang Y, Han W, Wang L, Wang H, Jia Q, Chen T, Wang S, Li M. Correlative Escherichia coli Transcription Rate and Bubble Conformation Remodeled by NusA and NusG. J Phys Chem B 2023; 127:2909-2917. [PMID: 36977198 DOI: 10.1021/acs.jpcb.2c08771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Transcription is highly regulated by a variety of transcription factors, among which NusA and NusG act contradictorily in Escherichia coli (E. coli) that NusA stabilizes a paused RNA polymerase (RNAP) and NusG suppresses it. The mechanism of the NusA and NusG regulations on RNAP transcription has been addressed, but their effect on the conformational changes of the transcription bubble correlated with transcription kinetics remains elusive. By using single-molecule magnetic trap, we identify a reduction in the transcription rate of ∼40% events by NusA. Although the rest ∼60% of transcription events exhibit unaffected transcription rates, a NusA-enhanced standard deviation of the transcription rate is observed. NusA remodeling also increases the extent of DNA unwinding in the transcription bubble by 1-2 base pairs, which can be reduced by NusG. The NusG remodeling is more significant on the RNAP molecules with reduced transcription rates rather than those without. Our results provide a quantitative view on the mechanisms of transcriptional regulation by NusA and NusG factors.
Collapse
Affiliation(s)
- Yuqiong Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
- Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Weijing Han
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Lisha Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Hao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Jia
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
- Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Shuang Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Termination factor Rho mediates transcriptional reprogramming of Bacillus subtilis stationary phase. PLoS Genet 2023; 19:e1010618. [PMID: 36735730 PMCID: PMC9931155 DOI: 10.1371/journal.pgen.1010618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 01/14/2023] [Indexed: 02/04/2023] Open
Abstract
Transcription termination factor Rho is known for its ubiquitous role in suppression of pervasive, mostly antisense, transcription. In the model Gram-positive bacterium Bacillus subtilis, de-repression of pervasive transcription by inactivation of rho revealed the role of Rho in the regulation of post-exponential differentiation programs. To identify other aspects of the regulatory role of Rho during adaptation to starvation, we have constructed a B. subtilis strain (Rho+) that expresses rho at a relatively stable high level in order to compensate for its decrease in the wild-type cells entering stationary phase. The RNAseq analysis of Rho+, WT and Δrho strains (expression profiles can be visualized at http://genoscapist.migale.inrae.fr/seb_rho/) shows that Rho over-production enhances the termination efficiency of Rho-sensitive terminators, thus reducing transcriptional read-through and antisense transcription genome-wide. Moreover, the Rho+ strain exhibits global alterations of sense transcription with the most significant changes observed for the AbrB, CodY, and stringent response regulons, forming the pathways governing the transition to stationary phase. Subsequent physiological analyses demonstrated that maintaining rho expression at a stable elevated level modifies stationary phase-specific physiology of B. subtilis cells, weakens stringent response, and thereby negatively affects the cellular adaptation to nutrient limitations and other stresses, and blocks the development of genetic competence and sporulation. These results highlight the Rho-specific termination of transcription as a novel element controlling stationary phase. The release of this control by decreasing Rho levels during the transition to stationary phase appears crucial for the functionality of complex gene networks ensuring B. subtilis survival in stationary phase.
Collapse
|
5
|
Intrinsic and Rho-dependent termination cooperate for efficient transcription termination at 3’ untranslated regions. Biochem Biophys Res Commun 2022; 628:123-132. [DOI: 10.1016/j.bbrc.2022.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
|
6
|
Mandell ZF, Zemba D, Babitzke P. Factor-stimulated intrinsic termination: getting by with a little help from some friends. Transcription 2022; 13:96-108. [PMID: 36154805 PMCID: PMC9715273 DOI: 10.1080/21541264.2022.2127602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023] Open
Abstract
Transcription termination is known to occur via two mechanisms in bacteria, intrinsic termination (also frequently referred to as Rho-independent or factor-independent termination) and Rho-dependent termination. Based primarily on in vitro studies using Escherichia coli RNA polymerase, it was generally assumed that intrinsic termination and Rho-dependent termination are distinct mechanisms and that the signals required for intrinsic termination are present primarily within the nucleic acids. In this review, we detail recent findings from studies in Bacillus subtilis showing that intrinsic termination in this organism is highly stimulated by NusA, NusG, and even Rho. In NusA-stimulated intrinsic termination, NusA facilitates the formation of weak terminator hairpins and compensates for distal U-rich tract interruptions. In NusG-stimulated intrinsic termination, NusG stabilizes a sequence-dependent pause at the point of termination, which extends the time frame for RNA hairpins with weak terminal base pairs to form in either a NusA-stimulated or a NusA-independent fashion. In Rho-stimulated intrinsic termination, Rho prevents the formation of antiterminator-like RNA structures that could otherwise compete with the terminator hairpin. Combined, NusA, NusG, and Rho stimulate approximately 97% of all intrinsic terminators in B. subtilis. Thus, the general view that intrinsic termination is primarily a factor-independent process needs to be revised to account for recent findings. Moreover, the historical distinction between Rho-dependent and intrinsic termination is overly simplistic and needs to be modernized.
Collapse
Affiliation(s)
- Zachary F. Mandell
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Department of Molecular Biology and Genetics and Department of Biology, Johns Hopkins University, Baltimore, MD, United State
| | - Dani Zemba
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
7
|
Mandell ZF, Oshiro RT, Yakhnin AV, Vishwakarma R, Kashlev M, Kearns DB, Babitzke P. NusG is an intrinsic transcription termination factor that stimulates motility and coordinates gene expression with NusA. eLife 2021; 10:e61880. [PMID: 33835023 PMCID: PMC8060035 DOI: 10.7554/elife.61880] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
NusA and NusG are transcription factors that stimulate RNA polymerase pausing in Bacillus subtilis. While NusA was known to function as an intrinsic termination factor in B. subtilis, the role of NusG in this process was unknown. To examine the individual and combinatorial roles that NusA and NusG play in intrinsic termination, Term-seq was conducted in wild type, NusA depletion, ΔnusG, and NusA depletion ΔnusG strains. We determined that NusG functions as an intrinsic termination factor that works alone and cooperatively with NusA to facilitate termination at 88% of the 1400 identified intrinsic terminators. Our results indicate that NusG stimulates a sequence-specific pause that assists in the completion of suboptimal terminator hairpins with weak terminal A-U and G-U base pairs at the bottom of the stem. Loss of NusA and NusG leads to global misregulation of gene expression and loss of NusG results in flagella and swimming motility defects.
Collapse
Affiliation(s)
- Zachary F Mandell
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Reid T Oshiro
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Alexander V Yakhnin
- NCI RNA Biology Laboratory, Center for Cancer Research, NCIFrederickUnited States
| | - Rishi Vishwakarma
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Mikhail Kashlev
- NCI RNA Biology Laboratory, Center for Cancer Research, NCIFrederickUnited States
| | - Daniel B Kearns
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
8
|
Irastortza-Olaziregi M, Amster-Choder O. Coupled Transcription-Translation in Prokaryotes: An Old Couple With New Surprises. Front Microbiol 2021; 11:624830. [PMID: 33552035 PMCID: PMC7858274 DOI: 10.3389/fmicb.2020.624830] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 01/17/2023] Open
Abstract
Coupled transcription-translation (CTT) is a hallmark of prokaryotic gene expression. CTT occurs when ribosomes associate with and initiate translation of mRNAs whose transcription has not yet concluded, therefore forming "RNAP.mRNA.ribosome" complexes. CTT is a well-documented phenomenon that is involved in important gene regulation processes, such as attenuation and operon polarity. Despite the progress in our understanding of the cellular signals that coordinate CTT, certain aspects of its molecular architecture remain controversial. Additionally, new information on the spatial segregation between the transcriptional and the translational machineries in certain species, and on the capability of certain mRNAs to localize translation-independently, questions the unanimous occurrence of CTT. Furthermore, studies where transcription and translation were artificially uncoupled showed that transcription elongation can proceed in a translation-independent manner. Here, we review studies supporting the occurrence of CTT and findings questioning its extent, as well as discuss mechanisms that may explain both coupling and uncoupling, e.g., chromosome relocation and the involvement of cis- or trans-acting elements, such as small RNAs and RNA-binding proteins. These mechanisms impact RNA localization, stability, and translation. Understanding the two options by which genes can be expressed and their consequences should shed light on a new layer of control of bacterial transcripts fate.
Collapse
Affiliation(s)
- Mikel Irastortza-Olaziregi
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Ali SA, Singh P, Tomar SK, Mohanty AK, Behare P. Proteomics fingerprints of systemic mechanisms of adaptation to bile in Lactobacillus fermentum. J Proteomics 2019; 213:103600. [PMID: 31805390 DOI: 10.1016/j.jprot.2019.103600] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/17/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022]
Abstract
Lactobacillus fermentum is a natural resident of the human GIT and is used as a probiotic. A unique property of L. fermentum is its ability to tolerate, colonize, and survive in the harsh conditions of bile, which facilitates transient colonization of the host colon. In the current study, we investigated the key mechanisms of action involved in bacterial survival in the presence of bile, using high-resolution mass spectrometry. A total of 1071 proteins were identified, among which 378 were up-regulated and 368 down-regulated by ≥2-fold (t-test, p < .05). Differentially regulated proteins comprised both intracellular and surface-exposed (i.e., membrane) proteins (p < .01, t-test for total proteome analysis; p < .05, t-test for membrane proteome analysis). These alterations strengthen the cell envelope and also mediate bile efflux by adjusting carbohydrate metabolic pathways and prevention of protein misfolding. These processes are mainly involved in the active removal of bile salts or amelioration of its adverse effects on cells. Further investigation of mRNA transcript expression levels of selected proteins by quantitative reverse transcriptase-PCR verified the proteomic data. Together, our proteomics findings reveal the roles of post-stress recovery proteins and highlight the interacting pathways responsible for bacterial cell tolerance to bile stress. BIOLOGICAL SIGNIFICANCE: Our intestinal tract is a nutrient-rich milieu crowded with up to 100 trillion (1014) of microbes. The fact that we are born germ-free describes that these microbes must colonize our intestinal tract from outside. However, their survival is also complicated because of hazardous conditions in the gut due to the presence of bile acid and others, which exerts a deleterious effect on the beneficial microbial load. While there was limited information available describing the comprehensive mechanism of survival? Furthermore, the imbalance of these micro floras leads to numerous disease conditions. It explains the need for enhanced understanding of host-microbe interactions in the colon. The present study majorly focuses on identifying "how microbes respond to environmental stressors" in this context, particularly bile acid response. This work addresses a fascinating cellular mechanism involved in the complex changes of bile induction in the microbial system; in this case, L. fermentum NCDC 605 a well established probiotic organism. In this article, we decipher the characteristic adaptation mechanism adjusted by probiotics in the harsh condition of 1.2% bile. The generated new knowledge will also improve the potential therapeutic efficacy of probiotics strains in clinical trials for patients of inflammatory bowel diseases (IBD) and related disorders.
Collapse
Affiliation(s)
- Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Haryana, India.
| | - Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Haryana, India
| | - Sudhir K Tomar
- National Collection of Dairy Cultures (NCDC) lab, Dairy Microbiology Division, National Dairy Research Institute, Haryana, India
| | - Ashok K Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Haryana, India
| | - Pradip Behare
- National Collection of Dairy Cultures (NCDC) lab, Dairy Microbiology Division, National Dairy Research Institute, Haryana, India.
| |
Collapse
|
10
|
Strobel EJ, Cheng L, Berman KE, Carlson PD, Lucks JB. A ligand-gated strand displacement mechanism for ZTP riboswitch transcription control. Nat Chem Biol 2019; 15:1067-1076. [PMID: 31636437 PMCID: PMC6814202 DOI: 10.1038/s41589-019-0382-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/31/2019] [Accepted: 08/22/2019] [Indexed: 01/14/2023]
Abstract
Cotranscriptional folding is an obligate step of RNA biogenesis that can guide RNA structure formation and function through transient intermediate folds. This process is particularly important for transcriptional riboswitches in which the formation of ligand-dependent structures during transcription regulates downstream gene expression. However, the intermediate structures that comprise cotranscriptional RNA folding pathways, and the mechanisms that enable transit between them, remain largely unknown. Here, we determine the series of cotranscriptional folds and rearrangements that mediate antitermination by the Clostridium beijerinckii pfl ZTP riboswitch in response to the purine biosynthetic intermediate ZMP. We uncover sequence and structural determinants that modulate an internal RNA strand displacement process and identify biases within natural ZTP riboswitch sequences that promote on-pathway folding. Our findings establish a mechanism for pfl riboswitch antitermination and suggest general strategies by which nascent RNA molecules navigate cotranscriptional folding pathways.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| | - Luyi Cheng
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Katherine E Berman
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Paul D Carlson
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
11
|
Structural basis for transcription antitermination at bacterial intrinsic terminator. Nat Commun 2019; 10:3048. [PMID: 31296855 PMCID: PMC6624301 DOI: 10.1038/s41467-019-10955-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/29/2019] [Indexed: 01/25/2023] Open
Abstract
Bacteriophages typically hijack the host bacterial transcriptional machinery to regulate their own gene expression and that of the host bacteria. The structural basis for bacteriophage protein-mediated transcription regulation—in particular transcription antitermination—is largely unknown. Here we report the 3.4 Å and 4.0 Å cryo-EM structures of two bacterial transcription elongation complexes (P7-NusA-TEC and P7-TEC) comprising the bacteriophage protein P7, a master host-transcription regulator encoded by bacteriophage Xp10 of the rice pathogen Xanthomonas oryzae pv. Oryzae (Xoo) and discuss the mechanisms by which P7 modulates the host bacterial RNAP. The structures together with biochemical evidence demonstrate that P7 prevents transcription termination by plugging up the RNAP RNA-exit channel and impeding RNA-hairpin formation at the intrinsic terminator. Moreover, P7 inhibits transcription initiation by restraining RNAP-clamp motions. Our study reveals the structural basis for transcription antitermination by phage proteins and provides insights into bacterial transcription regulation. Bacteriophages reprogram the host transcriptional machinery. Here the authors provide insights into the mechanism of how bacteriophages regulate host transcription by determining the cryo-EM structures of two bacterial transcription elongation complexes bound with the bacteriophage master host-transcription regulator protein P7.
Collapse
|
12
|
Source of the Fitness Defect in Rifamycin-Resistant Mycobacterium tuberculosis RNA Polymerase and the Mechanism of Compensation by Mutations in the β' Subunit. Antimicrob Agents Chemother 2018; 62:AAC.00164-18. [PMID: 29661864 DOI: 10.1128/aac.00164-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is a critical threat to human health due to the increased prevalence of rifampin resistance (RMPr). Fitness defects have been observed in RMPr mutants with amino acid substitutions in the β subunit of RNA polymerase (RNAP). In clinical isolates, this fitness defect can be ameliorated by the presence of secondary mutations in the double-psi β-barrel (DPBB) domain of the β' subunit of RNAP. To identify factors contributing to the fitness defects observed in vivo, several in vitro RNA transcription assays were utilized to probe initiation, elongation, termination, and 3'-RNA hydrolysis with the wild-type and RMPrM. tuberculosis RNAPs. We found that the less prevalent RMPr mutants exhibit significantly poorer termination efficiencies relative to the wild type, an important factor for proper gene expression. We also found that several mechanistic aspects of transcription of the RMPr mutant RNAPs are impacted relative to the wild type. For the clinically most prevalent mutant, the βS450L mutant, these defects are mitigated by the presence of secondary/compensatory mutations in the DPBB domain of the β' subunit.
Collapse
|
13
|
Tan L, Moriel DG, Totsika M, Beatson SA, Schembri MA. Differential Regulation of the Surface-Exposed and Secreted SslE Lipoprotein in Extraintestinal Pathogenic Escherichia coli. PLoS One 2016; 11:e0162391. [PMID: 27598999 PMCID: PMC5012682 DOI: 10.1371/journal.pone.0162391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) are responsible for diverse infections including meningitis, sepsis and urinary tract infections. The alarming rise in anti-microbial resistance amongst ExPEC complicates treatment and has highlighted the need for alternative preventive measures. SslE is a lipoprotein secreted by a dedicated type II secretion system in E. coli that was first identified as a potential vaccine candidate using reverse genetics. Although the function and protective efficacy of SslE has been studied, the molecular mechanisms that regulate SslE expression remain to be fully elucidated. Here, we show that while the expression of SslE can be detected in E. coli culture supernatants, different strains express and secrete different amounts of SslE when grown under the same conditions. While the histone-like transcriptional regulator H-NS strongly represses sslE at ambient temperatures, the variation in SslE expression at human physiological temperature suggested a more complex mode of regulation. Using a genetic screen to identify novel regulators of sslE in the high SslE-expressing strain UTI89, we defined a new role for the nucleoid-associated regulator Fis and the ribosome-binding GTPase TypA as positive regulators of sslE transcription. We also showed that Fis-mediated enhancement of sslE transcription is dependent on a putative Fis-binding sequence located upstream of the -35 sequence in the core promoter element, and provide evidence to suggest that Fis may work in complex with H-NS to control SslE expression. Overall, this study has defined a new mechanism for sslE regulation and increases our understanding of this broadly conserved E. coli vaccine antigen.
Collapse
Affiliation(s)
- Lendl Tan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Danilo G. Moriel
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, QLD 4059, Brisbane, Australia
| | - Scott A. Beatson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Mark A. Schembri
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
- * E-mail:
| |
Collapse
|
14
|
Wells CD, Deighan P, Brigham M, Hochschild A. Nascent RNA length dictates opposing effects of NusA on antitermination. Nucleic Acids Res 2016; 44:5378-89. [PMID: 27025650 PMCID: PMC4914094 DOI: 10.1093/nar/gkw198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 12/31/2022] Open
Abstract
The NusA protein is a universally conserved bacterial transcription elongation factor that binds RNA polymerase (RNAP). When functioning independently, NusA enhances intrinsic termination. Paradoxically, NusA stimulates the function of the N and Q antiterminator proteins of bacteriophage λ. The mechanistic basis for NusA's functional plasticity is poorly understood. Here we uncover an effect of nascent RNA length on the ability of NusA to collaborate with Q. Ordinarily, Q engages RNAP during early elongation when it is paused at a specific site just downstream of the phage late-gene promoter. NusA facilitates this engagement process and both proteins remain associated with the transcription elongation complex (TEC) as it escapes the pause and transcribes the late genes. We show that the λ-related phage 82 Q protein (82Q) can also engage RNAP that is paused at a promoter-distal position and thus contains a nascent RNA longer than that associated with the natively positioned TEC. However, the effect of NusA in this context is antagonistic rather than stimulatory. Moreover, cleaving the long RNA associated with the promoter-distal TEC restores NusA's stimulatory effect. Our findings reveal a critical role for nascent RNA in modulating NusA's effect on 82Q-mediated antitermination, with implications for understanding NusA's functional plasticity.
Collapse
Affiliation(s)
| | - Padraig Deighan
- Department of Microbiology and Immunobiology, Boston, MA 02115, USA Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | | | - Ann Hochschild
- Department of Microbiology and Immunobiology, Boston, MA 02115, USA
| |
Collapse
|
15
|
Ray-Soni A, Bellecourt MJ, Landick R. Mechanisms of Bacterial Transcription Termination: All Good Things Must End. Annu Rev Biochem 2016; 85:319-47. [PMID: 27023849 DOI: 10.1146/annurev-biochem-060815-014844] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcript termination is essential for accurate gene expression and the removal of RNA polymerase (RNAP) at the ends of transcription units. In bacteria, two mechanisms are responsible for proper transcript termination: intrinsic termination and Rho-dependent termination. Intrinsic termination is mediated by signals directly encoded within the DNA template and nascent RNA, whereas Rho-dependent termination relies upon the adenosine triphosphate-dependent RNA translocase Rho, which binds nascent RNA and dissociates the elongation complex. Although significant progress has been made in understanding these pathways, fundamental details remain undetermined. Among those that remain unresolved are the existence of an inactivated intermediate in the intrinsic termination pathway, the role of Rho-RNAP interactions in Rho-dependent termination, and the mechanisms by which accessory factors and nucleoid-associated proteins affect termination. We describe current knowledge, discuss key outstanding questions, and highlight the importance of defining the structural rearrangements of RNAP that are involved in the two mechanisms of transcript termination.
Collapse
Affiliation(s)
- Ananya Ray-Soni
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706; ,
| | - Michael J Bellecourt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706; ,
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706; , .,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| |
Collapse
|
16
|
Qayyum MZ, Dey D, Sen R. Transcription Elongation Factor NusA Is a General Antagonist of Rho-dependent Termination in Escherichia coli. J Biol Chem 2016; 291:8090-108. [PMID: 26872975 DOI: 10.1074/jbc.m115.701268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 11/06/2022] Open
Abstract
NusA is an essential protein that binds to RNA polymerase and also to the nascent RNA and influences transcription by inducing pausing and facilitating the process of transcription termination/antitermination. Its participation in Rho-dependent transcription termination has been perceived, but the molecular nature of this involvement is not known. We hypothesized that, because both Rho and NusA are RNA-binding proteins and have the potential to target the same RNA, the latter is likely to influence the global pattern of the Rho-dependent termination. Analyses of the nascent RNA binding properties and consequent effects on the Rho-dependent termination functions of specific NusA-RNA binding domain mutants revealed an existence of Rho-NusA direct competition for the overlappingnut(NusA-binding site) andrut(Rho-binding site) sites on the RNA. This leads to delayed entry of Rho at therutsite that inhibits the latter's RNA release process. High density tiling microarray profiles of these NusA mutants revealed that a significant number of genes, together with transcripts from intergenic regions, are up-regulated. Interestingly, the majority of these genes were also up-regulated when the Rho function was compromised. These results provide strong evidence for the existence of NusA-binding sites in different operons that are also the targets of Rho-dependent terminations. Our data strongly argue in favor of a direct competition between NusA and Rho for the access of specific sites on the nascent transcripts in different parts of the genome. We propose that this competition enables NusA to function as a global antagonist of the Rho function, which is unlike its role as a facilitator of hairpin-dependent termination.
Collapse
Affiliation(s)
- M Zuhaib Qayyum
- From the Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Tuljaguda Complex, 4-1-714 Mozamjahi Road, Nampally, Hyderabad 500 001, India and Graduate Studies, Manipal University, Manipal, Karnataka 576104 India
| | - Debashish Dey
- From the Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Tuljaguda Complex, 4-1-714 Mozamjahi Road, Nampally, Hyderabad 500 001, India and
| | - Ranjan Sen
- From the Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Tuljaguda Complex, 4-1-714 Mozamjahi Road, Nampally, Hyderabad 500 001, India and
| |
Collapse
|
17
|
Mondal S, Yakhnin AV, Sebastian A, Albert I, Babitzke P. NusA-dependent transcription termination prevents misregulation of global gene expression. Nat Microbiol 2016; 1:15007. [PMID: 27571753 DOI: 10.1038/nmicrobiol.2015.7] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/09/2015] [Indexed: 01/28/2023]
Abstract
Intrinsic transcription terminators consist of an RNA hairpin followed by a U-rich tract, and these signals can trigger termination without the involvement of additional factors. Although NusA is known to stimulate intrinsic termination in vitro, the in vivo targets and global impact of NusA are not known because it is essential for viability. Using genome-wide 3' end-mapping on an engineered Bacillus subtilis NusA depletion strain, we show that weak suboptimal terminators are the principle NusA substrates. Moreover, a subclass of weak non-canonical terminators was identified that completely depend on NusA for effective termination. NusA-dependent terminators tend to have weak hairpins and/or distal U-tract interruptions, supporting a model in which NusA is directly involved in the termination mechanism. Depletion of NusA altered global gene expression directly and indirectly via readthrough of suboptimal terminators. Readthrough of NusA-dependent terminators caused misregulation of genes involved in essential cellular functions, especially DNA replication and metabolism. We further show that nusA is autoregulated by a transcription attenuation mechanism that does not rely on antiterminator structures. Instead, NusA-stimulated termination in its 5' UTR dictates the extent of transcription into the operon, thereby ensuring tight control of cellular NusA levels.
Collapse
Affiliation(s)
- Smarajit Mondal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Alexander V Yakhnin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Aswathy Sebastian
- Bioinformatics Consulting Center, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Bioinformatics Consulting Center, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
18
|
Abstract
The highly conserved Nus factors of bacteria were discovered as essential host proteins for the growth of temperate phage λ in Escherichia coli. Later, their essentiality and functions in transcription, translation, and, more recently, in DNA repair have been elucidated. Close involvement of these factors in various gene networks and circuits is also emerging from recent genomic studies. We have described a detailed overview of their biochemistry, structures, and various cellular functions, as well as their interactions with other macromolecules. Towards the end, we have envisaged different uncharted areas of studies with these factors, including their participation in pathogenicity.
Collapse
|
19
|
Abstract
The Nus factors-NusA, NusB, NusE, and NusG-area set of well-conserved proteins in bacteria and are involved in transcription elongation, termination, antitermination, and translation processes. Originally, Escherichia coli host mutations defective for supporting bacteriophage λ N-mediated antitermination were mapped to the nusA (nusA1), nusB (nusB5, nusB101), and nusE (nusE71) genes, and hence, these genes were named nus for Nutilization substances (Nus). Subsequently,the Nus factors were purified and their roles in different host functions were elucidated. Except for NusB, deletion of which is conditionally lethal, all the other Nus factors are essential for E. coli. Among the Nus factors, NusA has the most varied functions. It specifically binds to RNA polymerase (RNAP), nascent RNA, and antiterminator proteins like N and Q and hence takes part in modulating transcription elongation, termination, and antitermination. It is also involved in DNA repair pathways. NusG interacts with RNAP and the transcription termination factor Rho and therefore is involved in both factor-dependent termination and transcription elongation processes. NusB and NusE are mostly important in antitermination at the ribosomal operon-transcription. NusE is a component of ribosome and may take part in facilitating the coupling between transcription and translation. This chapter emphasizes the structure-function relationship of these factors and their involvement in different fundamental cellular processes from a mechanistic angle.
Collapse
|
20
|
Mishra S, Sen R. N protein from lambdoid phages transforms NusA into an antiterminator by modulating NusA-RNA polymerase flap domain interactions. Nucleic Acids Res 2015; 43:5744-58. [PMID: 25990722 PMCID: PMC4499122 DOI: 10.1093/nar/gkv479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/29/2015] [Indexed: 11/23/2022] Open
Abstract
Interaction of the lambdoid phage N protein with the bacterial transcription elongation factor NusA is the key component in the process of transcription antitermination. A convex surface of E. coli NusA-NTD, located opposite to its RNA polymerase-binding domain (the β-flap domain), directly interacts with N in the antitermination complex. We hypothesized that this N-NusA interaction induces allosteric effects on the NusA-RNAP interaction leading to transformation of NusA into a facilitator of the antitermination process. Here we showed that mutations in β-flap domain specifically defective for N antitermination exhibited altered NusA-nascent RNA interaction and have widened RNA exit channel indicating an intricate role of flap domain in the antitermination. The presence of N reoriented the RNAP binding surface of NusA-NTD, which changed its interaction pattern with the flap domain. These changes caused significant spatial rearrangement of the β-flap as well as the β′ dock domains to form a more constricted RNA exit channel in the N-modified elongation complex (EC), which might play key role in converting NusA into a facilitator of the N antitermination. We propose that in addition to affecting the RNA exit channel and the active center of the EC, β-flap domain rearrangement is also a mechanistic component in the N antitermination process.
Collapse
Affiliation(s)
- Saurabh Mishra
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Tuljaguda Complex, 4-1-714 Mozamjahi Road, Nampally, Hyderabad 500 001, India Graduate Studies, Manipal University, India
| | - Ranjan Sen
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Tuljaguda Complex, 4-1-714 Mozamjahi Road, Nampally, Hyderabad 500 001, India
| |
Collapse
|
21
|
Li K, Jiang T, Yu B, Wang L, Gao C, Ma C, Xu P, Ma Y. Escherichia coli transcription termination factor NusA: heat-induced oligomerization and chaperone activity. Sci Rep 2014; 3:2347. [PMID: 23907089 PMCID: PMC3731644 DOI: 10.1038/srep02347] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/17/2013] [Indexed: 01/02/2023] Open
Abstract
Escherichia coli NusA, an essential component of the RNA polymerase elongation complex, is involved in transcriptional elongation, termination, anti-termination, cold shock and stress-induced mutagenesis. In this study, we demonstrated that NusA can self-assemble into oligomers under heat shock conditions and that this property is largely determined by the C-terminal domain. In parallel with the self-assembly process, NusA also acquires chaperone activity. Furthermore, NusA overexpression results in the enhanced heat shock resistance of host cells, which may be due to the chaperone activity of NusA. Our results suggest that E. coli NusA can act as a protector to prevent protein aggregation under heat stress conditions in vitro and in the NusA-overexpressing strain. We propose a new hypothesis that NusA could serve as a molecular chaperone in addition to its functions as a transcription factor. However, it remains to be further investigated whether NusA has the same function under normal physiological conditions.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mishra S, Mohan S, Godavarthi S, Sen R. The interaction surface of a bacterial transcription elongation factor required for complex formation with an antiterminator during transcription antitermination. J Biol Chem 2013; 288:28089-103. [PMID: 23913688 DOI: 10.1074/jbc.m113.472209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial transcription elongation factor, NusA, functions as an antiterminator when it is bound to the lambdoid phage derived antiterminator protein, N. The mode of N-NusA interaction is unknown, knowledge of which is essential to understand the antitermination process. It was reported earlier that in the absence of the transcription elongation complex (EC), N interacts with the C-terminal AR1 domain of NusA. However, the functional significance of this interaction is obscure. Here we identified mutations in NusA N terminus (NTD) specifically defective for N-mediated antitermination. These are located at a convex surface of the NusA-NTD, situated opposite its concave RNA polymerase (RNAP) binding surface. These NusA mutants disrupt the N-nut site interactions on the nascent RNA emerging out of a stalled EC. In the N/NusA-modified EC, a Cys-53 (S53C) from the convex surface of the NusA-NTD forms a specific disulfide (S-S) bridge with a Cys-39 (S39C) of the NusA binding region of the N protein. We conclude that when bound to the EC, the N interaction surface of NusA shifts from the AR1 domain to its NTD domain. This occurred due to a massive away-movement of the adjacent AR2 domain of NusA upon binding to the EC. We propose that the close proximity of this altered N-interaction site of NusA to its RNAP binding surface, enables N to influence the NusA-RNAP interaction during transcription antitermination that in turn facilitates the conversion of NusA into an antiterminator.
Collapse
Affiliation(s)
- Saurabh Mishra
- From the Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Tuljaguda Complex, 4-1-714 Mozamjahi Road, Nampally, Hyderabad-500001, India
| | | | | | | |
Collapse
|
23
|
Uplekar S, Rougemont J, Cole ST, Sala C. High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis. Nucleic Acids Res 2012; 41:961-77. [PMID: 23222129 PMCID: PMC3553938 DOI: 10.1093/nar/gks1260] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To construct a regulatory map of the genome of the human pathogen, Mycobacterium tuberculosis, we applied two complementary high-resolution approaches: strand-specific RNA-seq, to survey the global transcriptome, and ChIP-seq, to monitor the genome-wide dynamics of RNA polymerase (RNAP) and the anti-terminator NusA. Although NusA does not bind directly to DNA, but rather to RNAP and/or to the nascent transcript, we demonstrate that NusA interacts with RNAP ubiquitously throughout the chromosome, and that its profile mirrors RNAP distribution in both the exponential and stationary phases of growth. Generally, promoter-proximal peaks for RNAP and NusA were observed, followed by a decrease in signal strength reflecting transcriptional polarity. Differential binding of RNAP and NusA in the two growth conditions correlated with transcriptional activity as reflected by RNA abundance. Indeed, a significant association between expression levels and the presence of NusA throughout the gene body was detected, confirming the peculiar transcription-promoting role of NusA. Integration of the data sets pinpointed transcriptional units, mapped promoters and uncovered new anti-sense and non-coding transcripts. Highly expressed transcriptional units were situated mainly on the leading strand, despite the relatively unbiased distribution of genes throughout the genome, thus helping the replicative and transcriptional complexes to align.
Collapse
Affiliation(s)
- Swapna Uplekar
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
24
|
Muteeb G, Dey D, Mishra S, Sen R. A multipronged strategy of an anti-terminator protein to overcome Rho-dependent transcription termination. Nucleic Acids Res 2012; 40:11213-28. [PMID: 23024214 PMCID: PMC3526286 DOI: 10.1093/nar/gks872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
One of the important role of Rho-dependent transcription termination in bacteria is to prevent gene expressions from the bacteriophage DNA. The transcription anti-termination systems of the lambdoid phages have been designed to overcome this Rho action. The anti-terminator protein N has three interacting regions, which interact with the mRNA, with the NusA and with the RNA polymerase. Here, we show that N uses all these interaction modules to overcome the Rho action. N and Rho co-occupy their overlapping binding sites on the nascent RNA (the nutR/tR1 site), and this configuration slows down the rate of ATP hydrolysis and the rate of RNA release by Rho from the elongation complex. N-RNA polymerase interaction is not too important for this Rho inactivation process near/at the nutR site. This interaction becomes essential when the elongation complex moves away from the nutR site. From the unusual NusA-dependence property of a Rho mutant E134K, a suppressor of N, we deduced that the N-NusA complex in the anti-termination machinery reduces the efficiency of Rho by removing NusA from the termination pathway. We propose that NusA-remodelling is also one of the mechanisms used by N to overcome the termination signals.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Tuljaguda Complex, 4-1-714 Mozamjahi Road, Nampally, Hyderabad 500 001, India
| | | | | | | |
Collapse
|
25
|
Cohen SE, Walker GC. New discoveries linking transcription to DNA repair and damage tolerance pathways. Transcription 2012; 2:37-40. [PMID: 21326909 DOI: 10.4161/trns.2.1.14228] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 01/27/2023] Open
Abstract
In Escherichia coli, the transcription elongation factor NusA is associated with all elongating RNA polymerases where it functions in transcription termination and antitermination. Here, we review our recent results implicating NusA in the recruitment of DNA repair and damage tolerance mechanisms to sites of stalled transcription complexes.
Collapse
Affiliation(s)
- Susan E Cohen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, USA
| | | |
Collapse
|
26
|
Yang X, Lewis PJ. The interaction between bacterial transcription factors and RNA polymerase during the transition from initiation to elongation. Transcription 2012; 1:66-9. [PMID: 21326893 DOI: 10.4161/trns.1.2.12791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 11/19/2022] Open
Abstract
There are three stages of transcription: initiation, elongation and termination, and traditionally there has been a clear distinction between the stages. The specificity factor sigma is completely released from bacterial RNA polymerase after initiation, and then recycled for another round of transcription. Elongation factors then associate with the polymerase followed by termination factors (where necessary). These factors dissociate prior to initiation of a new round of transcription. However, there is growing evidence suggesting that sigma factors can be retained in the elongation complex. The structure of bacterial RNAP in complex with an essential elongation factor NusA has recently been published, which suggested rather than competing for the major σ binding site, NusA binds to a discrete region on RNAP. A model was proposed to help explain the way in which both factors could be associated with RNAP during the transition from transcription initiation to elongation.
Collapse
Affiliation(s)
- Xiao Yang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | | |
Collapse
|
27
|
Zhou J, Ha KS, La Porta A, Landick R, Block SM. Applied force provides insight into transcriptional pausing and its modulation by transcription factor NusA. Mol Cell 2012; 44:635-46. [PMID: 22099310 DOI: 10.1016/j.molcel.2011.09.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/22/2011] [Accepted: 09/15/2011] [Indexed: 10/15/2022]
Abstract
Transcriptional pausing by RNA polymerase (RNAP) plays an essential role in gene regulation. Pausing is modified by various elongation factors, including prokaryotic NusA, but the mechanisms underlying pausing and NusA function remain unclear. Alternative models for pausing invoke blockade events that precede translocation (on-pathway), enzyme backtracking (off-pathway), or isomerization to a nonbacktracked, elemental pause state (off-pathway). We employed an optical trapping assay to probe the motions of individual RNAP molecules transcribing a DNA template carrying tandem repeats encoding the his pause, subjecting these enzymes to controlled forces. NusA significantly decreased the pause-free elongation rate of RNAP while increasing the probability of entry into short- and long-lifetime pauses, in a manner equivalent to exerting a ~19 pN force opposing transcription. The effects of force and NusA on pause probabilities and lifetimes support a reaction scheme where nonbacktracked, elemental pauses branch off the elongation pathway from the pretranslocated state of RNAP.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
28
|
Lubkowska L, Maharjan AS, Komissarova N. RNA folding in transcription elongation complex: implication for transcription termination. J Biol Chem 2011; 286:31576-85. [PMID: 21730066 DOI: 10.1074/jbc.m111.249359] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intrinsic transcription termination signal in DNA consists of a short inverted repeat followed by a T-rich stretch. Transcription of this sequence by RNA polymerase (RNAP) results in formation of a "termination hairpin" (TH) in the nascent RNA and in rapid dissociation of the transcription elongation complex (EC) at termination points located 7-8 nt downstream of the base of TH stem. RNAP envelops 15 nt of the RNA following RNA growing 3'-end, suggesting that folding of the TH is impeded by a tight protein environment when RNAP reaches the termination points. To monitor TH folding under this constraint, we halted Escherichia coli ECs at various distances downstream from a TH and treated them with single-strand specific RNase T1. The EC interfered with TH formation when halted at 6, 7, and 8, but not 9, nt downstream from the base of the potential stem. Thus, immediately before termination, the downstream arm of the TH is protected from complementary interactions with the upstream arm. This protection makes TH folding extremely sensitive to the sequence context, because the upstream arm easily engages in competing interactions with the rest of the nascent RNA. We demonstrate that by de-synchronizing TH formation and transcription of the termination points, this subtle competition significantly affects the efficiency of transcription termination. This finding can explain previous puzzling observations that sequences far upstream of the TH or point mutations in the terminator that preserve TH stability affect termination. These results can help understand other time sensitive co-transcriptional processes in pro- and eukaryotes.
Collapse
Affiliation(s)
- Lucyna Lubkowska
- NCI Center for Cancer Research, Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
29
|
Unravelling the means to an end: RNA polymerase II transcription termination. Nat Rev Mol Cell Biol 2011; 12:283-94. [PMID: 21487437 DOI: 10.1038/nrm3098] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pervasiveness of RNA synthesis in eukaryotes is largely the result of RNA polymerase II (Pol II)-mediated transcription, and termination of its activity is necessary to partition the genome and maintain the proper expression of neighbouring genes. Despite its ever-increasing biological significance, transcription termination remains one of the least understood processes in gene expression. However, recent mechanistic studies have revealed a striking convergence among several overlapping models of termination, including the poly(A)- and Sen1-dependent pathways, as well as new insights into the specificity of Pol II termination among its diverse gene targets. Broader knowledge of the role of Pol II carboxy-terminal domain phosphorylation in promoting alternative mechanisms of termination has also been gained.
Collapse
|
30
|
Santangelo TJ, Artsimovitch I. Termination and antitermination: RNA polymerase runs a stop sign. Nat Rev Microbiol 2011; 9:319-29. [PMID: 21478900 DOI: 10.1038/nrmicro2560] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Termination signals induce rapid and irreversible dissociation of the nascent transcript from RNA polymerase. Terminators at the end of genes prevent unintended transcription into the downstream genes, whereas terminators in the upstream regulatory leader regions adjust expression of the structural genes in response to metabolic and environmental signals. Premature termination within an operon leads to potentially deleterious defects in the expression of the downstream genes, but also provides an important surveillance mechanism. This Review discusses the actions of bacterial and phage antiterminators that allow RNA polymerase to override a terminator when the circumstances demand it.
Collapse
Affiliation(s)
- Thomas J Santangelo
- Department of Microbiology and The RNA Group, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
31
|
Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. Proc Natl Acad Sci U S A 2010; 107:15517-22. [PMID: 20696893 DOI: 10.1073/pnas.1005203107] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report observations suggesting that the transcription elongation factor NusA promotes a previously unrecognized class of transcription-coupled repair (TCR) in addition to its previously proposed role in recruiting translesion synthesis (TLS) DNA polymerases to gaps encountered during transcription. Earlier, we reported that NusA physically and genetically interacts with the TLS DNA polymerase DinB (DNA pol IV). We find that Escherichia coli nusA11(ts) mutant strains, at the permissive temperature, are highly sensitive to nitrofurazone (NFZ) and 4-nitroquinolone-1-oxide but not to UV radiation. Gene expression profiling suggests that this sensitivity is unlikely to be due to an indirect effect on gene expression affecting a known DNA repair or damage tolerance pathway. We demonstrate that an N(2)-furfuryl-dG (N(2)-f-dG) lesion, a structural analog of the principal lesion generated by NFZ, blocks transcription by E. coli RNA polymerase (RNAP) when present in the transcribed strand, but not when present in the nontranscribed strand. Our genetic analysis suggests that NusA participates in a nucleotide excision repair (NER)-dependent process to promote NFZ resistance. We provide evidence that transcription plays a role in the repair of NFZ-induced lesions through the isolation of RNAP mutants that display altered ability to survive NFZ exposure. We propose that NusA participates in an alternative class of TCR involved in the identification and removal of a class of lesion, such as the N(2)-f-dG lesion, which are accurately and efficiently bypassed by DinB in addition to recruiting DinB for TLS at gaps encountered by RNAP.
Collapse
|
32
|
Ha KS, Toulokhonov I, Vassylyev DG, Landick R. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J Mol Biol 2010; 401:708-25. [PMID: 20600118 DOI: 10.1016/j.jmb.2010.06.036] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
Abstract
NusA is a core, multidomain regulator of transcript elongation in bacteria and archaea. Bacterial NusA interacts with elongating complexes and the nascent RNA transcript in ways that stimulate pausing and termination but that can be switched to antipausing and antitermination by other accessory proteins. This regulatory complexity of NusA likely depends on its multidomain structure, but it remains unclear which NusA domains possess which regulatory activity and how they interact with elongating RNA polymerase. We used a series of truncated NusA proteins to measure the effect of the NusA domains on transcriptional pausing and termination. We find that the N-terminal domain (NTD) of NusA is necessary and sufficient for enhancement of transcriptional pausing and that the other NusA domains contribute to NusA binding to elongating complexes. Stimulation of intrinsic termination requires higher concentrations of NusA and involves both the NTD and other NusA domains. Using a tethered chemical protease in addition to protein-RNA cross-linking, we show that the NusA NTD contacts the RNA exit channel of RNA polymerase. Finally, we report evidence that the NusA NTD recognizes duplex RNA in the RNA exit channel.
Collapse
Affiliation(s)
- Kook Sun Ha
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
33
|
Prasch S, Jurk M, Washburn RS, Gottesman ME, Wöhrl BM, Rösch P. RNA-binding specificity of E. coli NusA. Nucleic Acids Res 2009; 37:4736-42. [PMID: 19515940 PMCID: PMC2724277 DOI: 10.1093/nar/gkp452] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The RNA sequences boxA, boxB and boxC constitute the nut regions of phage λ. They nucleate the formation of a termination-resistant RNA polymerase complex on the λ chromosome. The complex includes E. coli proteins NusA, NusB, NusG and NusE, and the λ N protein. A complex that includes the Nus proteins and other factors forms at the rrn leader. Whereas RNA-binding by NusB and NusE has been described in quantitative terms, the interaction of NusA with these RNA sequences is less defined. Isotropic as well as anisotropic fluorescence equilibrium titrations show that NusA binds only the nut spacer sequence between boxA and boxB. Thus, nutR boxA5-spacer, nutR boxA16-spacer and nutR boxA69-spacer retain NusA binding, whereas a spacer mutation eliminates complex formation. The affinity of NusA for nutL is 50% higher than for nutR. In contrast, rrn boxA, which includes an additional U residue, binds NusA in the absence of spacer. The Kd values obtained for rrn boxA and rrn boxA-spacer are 19-fold and 8-fold lower, respectively, than those for nutR boxA-spacer. These differences may explain why λ requires an additional protein, λ N, to suppress termination. Knowledge of the different affinities now describes the assembly of the anti-termination complex in quantitative terms.
Collapse
Affiliation(s)
- Stefan Prasch
- Lehrstuhl für Struktur und Chemie der Biopolymere & Research Center for Bio-Macromolecules, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Conant CR, Goodarzi JP, Weitzel SE, von Hippel PH. The antitermination activity of bacteriophage lambda N protein is controlled by the kinetics of an RNA-looping-facilitated interaction with the transcription complex. J Mol Biol 2008; 384:87-108. [PMID: 18922547 PMCID: PMC2590625 DOI: 10.1016/j.jmb.2008.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/07/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
Abstract
Protein N of bacteriophage lambda activates the lytic phase of phage development in infected Escherichia coli cells by suppressing the activity of transcriptional terminators that prevent the synthesis of essential phage proteins. N binds tightly to the boxB RNA hairpin located near the 5' end of the nascent pL and pR transcripts and induces an antitermination response in the RNA polymerase (RNAP) of elongation complexes located at terminators far downstream. Here we test an RNA looping model for this N-dependent "action at a distance" by cleaving the nascent transcript between boxB and RNAP during transcript elongation. Cleavage decreases antitermination, showing that an intact RNA transcript is required to stabilize the interaction of boxB-bound N with RNAP during transcription. In contrast, an antitermination complex that also contains Nus factors retains N-dependent activity after transcript cleavage, suggesting that these host factors further stabilize the N-RNAP interaction. Thus, the binding of N alone to RNAP is controlled by an RNA looping equilibrium, but after formation of the initial RNA loop and in the presence of Nus factors the system no longer equilibrates on the transcription time scale, meaning that the "range" of antitermination activity along the template in the full antitermination system is kinetically controlled by the dissociation rate of the stabilized N-RNAP complex. Theoretical calculations of nucleic acid end-to-end contact probabilities are used to estimate the local concentrations of boxB-bound N at elongation complexes poised at terminators, and are combined with N activity measurements at various boxB-to-terminator distances to obtain an intrinsic affinity (K(d)) of approximately 2 x 10(-5) M for the N-RNAP interaction. This RNA looping approach is extended to include the effects of N binding at nonspecific RNA sites on the transcript and the implications for transcription control in other regulatory systems are discussed.
Collapse
Affiliation(s)
| | - Jim P. Goodarzi
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403
| | - Steven E. Weitzel
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403
| | - Peter H. von Hippel
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403
| |
Collapse
|
35
|
Abstract
The elongation phase of transcription by RNA polymerase is highly regulated and modulated. Both general and operon-specific elongation factors determine the local rate and extent of transcription to coordinate the appearance of transcript with its use as a messenger or functional ribonucleoprotein or regulatory element, as well as to provide operon-specific gene regulation.
Collapse
Affiliation(s)
- Jeffrey W Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
36
|
Transcriptional modulator NusA interacts with translesion DNA polymerases in Escherichia coli. J Bacteriol 2008; 191:665-72. [PMID: 18996995 DOI: 10.1128/jb.00941-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
NusA, a modulator of RNA polymerase, interacts with the DNA polymerase DinB. An increased level of expression of dinB or umuDC suppresses the temperature sensitivity of the nusA11 strain, requiring the catalytic activities of these proteins. We propose that NusA recruits translesion DNA synthesis (TLS) polymerases to RNA polymerases stalled at gaps, coupling TLS to transcription.
Collapse
|
37
|
Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader. Proc Natl Acad Sci U S A 2008; 105:16131-6. [PMID: 18852477 DOI: 10.1073/pnas.0808842105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NusA and NusG are transcription elongation factors that bind to RNA polymerase (RNAP) after sigma subunit release. Escherichia coli NusA (NusA(Ec)) stimulates intrinsic termination and RNAP(Ec) pausing, whereas NusG(Ec) promotes Rho-dependent termination and pause escape. Both Nus factors also participate in the formation of RNAP(Ec) antitermination complexes. We showed that Bacillus subtilis NusA (NusA(Bs)) stimulates intrinsic termination and RNAP(Bs) pausing at U107 and U144 in the trpEDCFBA operon leader. Pausing at U107 and U144 participates in the transcription attenuation and translational control mechanisms, respectively, presumably by providing additional time for trp RNA-binding attenuation protein (TRAP) to bind to the nascent trp leader transcript. Here, we show that NusG(Bs) causes modest pause stimulation at U107 and dramatic pause stimulation at U144. NusA(Bs) and NusG(Bs) act synergistically to increase the U107 and U144 pause half-lives. NusG(Bs)-stimulated pausing at U144 requires RNAP(Bs), whereas NusA(Bs) stimulates pausing of RNAP(Bs) and RNAP(Ec) at the U144 and E. coli his pause sites. Although NusG(Ec) does not stimulate pausing at U144, it competes with NusG(Bs)-stimulated pausing, suggesting that both proteins bind to the same surface of RNAP(Bs). Inactivation of nusG results in the loss of RNAP pausing at U144 in vivo and elevated trp operon expression, whereas plasmid-encoded NusG complements the mutant defects. Overexpression of nusG reduces trp operon expression to a larger extent than overexpression of nusA.
Collapse
|
38
|
Beuth B, Pennell S, Arnvig KB, Martin SR, Taylor IA. Structure of a Mycobacterium tuberculosis NusA-RNA complex. EMBO J 2005; 24:3576-87. [PMID: 16193062 PMCID: PMC1276712 DOI: 10.1038/sj.emboj.7600829] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 09/08/2005] [Indexed: 11/09/2022] Open
Abstract
NusA is a key regulator of bacterial transcriptional elongation, pausing, termination and antitermination, yet relatively little is known about the molecular basis of its activity in these fundamental processes. In Mycobacterium tuberculosis, NusA has been shown to bind with high affinity and specificity to BoxB-BoxA-BoxC antitermination sequences within the leader region of the single ribosomal RNA (rRNA) operon. We have determined high-resolution X-ray structures of a complex of NusA with two short oligo-ribonucleotides derived from the BoxC stem-loop motif and have characterised the interaction of NusA with a variety of RNAs derived from the antitermination region. These structures reveal the RNA bound in an extended conformation to a large interacting surface on both KH domains. Combining structural data with observed spectral and calorimetric changes, we now show that NusA binding destabilises secondary structure within rRNA antitermination sequences and propose a model where NusA functions as a chaperone for nascently forming RNA structures.
Collapse
Affiliation(s)
- Barbara Beuth
- Division of Protein Structure, National Institute for Medical Research, London, UK
| | | | | | | | | |
Collapse
|
39
|
King RA, Markov D, Sen R, Severinov K, Weisberg RA. A conserved zinc binding domain in the largest subunit of DNA-dependent RNA polymerase modulates intrinsic transcription termination and antitermination but does not stabilize the elongation complex. J Mol Biol 2004; 342:1143-54. [PMID: 15351641 DOI: 10.1016/j.jmb.2004.07.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 07/21/2004] [Accepted: 07/21/2004] [Indexed: 11/17/2022]
Abstract
An evolutionarily conserved zinc-binding motif is found close to the amino terminus of the largest subunits of DNA-dependent RNA polymerases from bacteria, archaea, and eukaryotes. In bacterial RNA polymerase, this motif, the zinc binding domain, has been implicated in protein-DNA interactions that stabilize the transcription elongation complex and that occur downstream of the catalytic center. Here, we show that this view is incorrect, and instead, the zinc binding domain interacts with product RNA located upstream of the catalytic center and the RNA-DNA hybrid, a view consistent with structural studies of the elongation complex. We engineered mutations that alter or remove the zinc binding domain of Escherichia coli RNA polymerase. Several mutants, including one that lacked all four zinc ligands and another that lacked the entire domain, produced enzymes that were active in vitro and formed stable elongation complexes. However, they were defective in two functions that require interaction of polymerase with product RNA. First, they terminated less efficiently than the wild-type at intrinsic transcription terminators. Second, enzymes lacking the tip of the zinc binding domain or the zinc ligands did not antiterminate in response to an intrinsic antiterminator encoded by the put site of phage HK022. Termination, but not antitermination, was restored by the bacterial termination factor NusA. Surprisingly, a mutant that lacks the entire zinc binding domain regained a partial response to put. To account for this we suggest that put RNA interacts with an additional site in the elongation complex to mediate antitermination, and that this site is occluded by the wild-type zinc binding domain.
Collapse
Affiliation(s)
- Rodney A King
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
40
|
Grundy FJ, Henkin TM. Kinetic analysis of tRNA-directed transcription antitermination of the Bacillus subtilis glyQS gene in vitro. J Bacteriol 2004; 186:5392-9. [PMID: 15292140 PMCID: PMC490933 DOI: 10.1128/jb.186.16.5392-5399.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding of uncharged tRNA to the nascent transcript promotes readthrough of a leader region transcription termination signal in genes regulated by the T box transcription antitermination mechanism. Each gene in the T box family responds independently to its cognate tRNA, with specificity determined by base pairing of the tRNA to the leader at the anticodon and acceptor ends of the tRNA. tRNA binding stabilizes an antiterminator element in the transcript that sequesters sequences that participate in formation of the terminator helix. tRNA(Gly)-dependent antitermination of the Bacillus subtilis glyQS leader was previously demonstrated in a purified in vitro assay system. This assay system was used to investigate the kinetics of transcription through the glyQS leader and the effect of tRNA and transcription elongation factors NusA and NusG on transcriptional pausing and antitermination. Several pause sites, including a major site in the loop of stem III of the leader, were identified, and the effect of modulation of pausing on antitermination efficiency was analyzed. We found that addition of tRNA(Gly) can promote antitermination as long as the tRNA is added before the majority of the transcription complexes reach the termination site, and variations in pausing affect the requirements for timing of tRNA addition.
Collapse
MESH Headings
- 5' Untranslated Regions
- Anticodon
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Base Pairing
- Base Sequence
- DNA-Directed RNA Polymerases/metabolism
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Peptide Elongation Factors/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- RNA, Transfer, Gly/metabolism
- RNA-Binding Proteins/metabolism
- Regulatory Sequences, Nucleic Acid
- Terminator Regions, Genetic
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Elongation Factors
Collapse
Affiliation(s)
- Frank J Grundy
- Department of Microbiology, The Ohio State University, Columbus, 43210, USA
| | | |
Collapse
|
41
|
Nudler E, Gusarov I. Analysis of the intrinsic transcription termination mechanism and its control. Methods Enzymol 2004; 371:369-82. [PMID: 14712715 DOI: 10.1016/s0076-6879(03)71028-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Evgeny Nudler
- Department of Biochemistry, New York University Medical Center, New York, New York 10016, USA
| | | |
Collapse
|
42
|
Zhang H, Switzer RL. Transcriptional pausing in the Bacillus subtilis pyr operon in vitro: a role in transcriptional attenuation? J Bacteriol 2003; 185:4764-71. [PMID: 12896995 PMCID: PMC166459 DOI: 10.1128/jb.185.16.4764-4771.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes encoding the enzymes of pyrimidine nucleotide biosynthesis (pyr genes) are regulated in Bacillus subtilis and many other bacterial species by transcriptional attenuation. When UMP or UTP is bound to the PyrR regulatory protein, it binds to pyr mRNA at specific sequences and secondary structures in the RNA. Binding to this site prevents formation of an antiterminator stem-loop in the RNA and permits formation of a downstream terminator, leading to reduced expression of the pyr genes lying downstream from the terminator. The functioning of several other transcriptional attenuation systems has been shown to involve transcriptional pausing; this observation stimulated us to use single-round transcription of pyr genes to test for formation of paused transcripts in vitro. Using templates with each of the three known B. subtilis pyr attenuation sites, we identified one major pause site in each in which the half-life of the paused transcript was increased four- to sixfold by NusA. In each case pausing at the NusA-stimulated site prevented formation of a complete antiterminator stem-loop, while it resulted in increased time for a PyrR binding loop to form and for PyrR to bind to this loop. Thus, the pausing detected in vitro is potentially capable of playing a role in establishing the correct timing for pyr attenuation in vivo. With two of three pyr templates the combination of NusA with PyrR markedly stimulated termination of transcription at the normal termination sites. This suggests that NusA, by stabilizing pausing, plays a role in termination of pyr transcription in vivo.
Collapse
Affiliation(s)
- Hesheng Zhang
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
43
|
Pasman Z, von Hippel PH. Active Escherichia coli transcription elongation complexes are functionally homogeneous. J Mol Biol 2002; 322:505-19. [PMID: 12225745 DOI: 10.1016/s0022-2836(02)00814-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The elongation phase of RNA transcription represents a major target for the regulation of gene expression. Two general classes of models have been proposed to define the dynamic properties of transcription complexes in the elongation phase. Stable heterogeneity models posit that the ensemble of active elongation-competent complexes consists of multiple distinct and stable forms that are specified early in the transcription cycle and isomerize to other forms slowly. In contrast, equilibrium or rapid interconversion models require that active elongation complexes interconvert rapidly on the time-scale of single nucleotide addition. Measurements of transcription termination efficiency (TE) can be used to distinguish between these models, because stable heterogeneity models predict that the termination-resistant fraction of an elongation complex population should be enriched after transcription through an upstream terminator, leading to a decreased TE at downstream terminators. In contrast, rapid interconversion models require that the population of active (elongation-competent) complexes equilibrate after transcription through each terminator and, therefore, that the value of TE observed at identical upstream and downstream terminators should be the same. We have constructed transcription templates containing multiple identical terminators and found no significant changes in TE with terminator position along the template. Various other forms of upstream treatment of elongation complex populations also were used to attempt to fractionate the complexes into functionally different forms. None of these treatments changed the apparent TE at downstream terminators. These results are consistent with a rapid interconversion model of transcript elongation. The consequences of these results for the regulation of gene expression are discussed.
Collapse
Affiliation(s)
- Zvi Pasman
- Department of Chemistry, Institute of Molecular Biology, University of Oregon, 97403, Eugene, OR, USA
| | | |
Collapse
|
44
|
Steiner T, Kaiser JT, Marinkoviç S, Huber R, Wahl MC. Crystal structures of transcription factor NusG in light of its nucleic acid- and protein-binding activities. EMBO J 2002; 21:4641-53. [PMID: 12198166 PMCID: PMC126194 DOI: 10.1093/emboj/cdf455] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microbial transcription modulator NusG interacts with RNA polymerase and termination factor rho, displaying striking functional homology to eukaryotic Spt5. The protein is also a translational regulator. We have determined crystal structures of Aquifex aeolicus NusG showing a modular design: an N-terminal RNP-like domain, a C-terminal element with a KOW sequence motif and a species-specific immunoglobulin-like fold. The structures reveal bona fide nucleic acid binding sites, and nucleic acid binding activities can be detected for NusG from three organisms and for the KOW element alone. A conserved KOW domain is defined as a new class of nucleic acid binding folds. This module is a close structural homolog of tudor protein-protein interaction motifs. Putative protein binding sites for the RNP and KOW domains can be deduced, which differ from the areas implicated in nucleic acid interactions. The results strongly argue that both protein and nucleic acid contacts are important for NusG's functions and that the factor can act as an adaptor mediating indirect protein-nucleic acid associations.
Collapse
Affiliation(s)
| | | | | | | | - Markus C. Wahl
- Max-Planck Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried and
Max-Planck Institut für biophysikalische Chemie, Abteilung Zelluläre Biochemie/Röntgenkristallographie, Am Faßberg 11, D-37077 Göttingen, Germany Corresponding author e-mail:
| |
Collapse
|
45
|
Yakhnin AV, Babitzke P. NusA-stimulated RNA polymerase pausing and termination participates in the Bacillus subtilis trp operon attenuation mechanism invitro. Proc Natl Acad Sci U S A 2002; 99:11067-72. [PMID: 12161562 PMCID: PMC123211 DOI: 10.1073/pnas.162373299] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2002] [Accepted: 06/21/2002] [Indexed: 11/18/2022] Open
Abstract
The trp RNA-binding attenuation protein (TRAP) regulates expression of the Bacillus subtilis trpEDCFBA operon by transcription attenuation and translation control mechanisms. Both mechanisms require the binding of tryptophan-activated TRAP to the 11 (G/U)AG-repeat segment in the trp leader transcript. To promote termination, TRAP must bind to the nascent RNA before the antiterminator structure forms. Because only 20 nucleotides separate the TRAP-binding site from the 3' end of the antiterminator, TRAP has a short time frame to control this regulatory decision. Synchronization of factor binding and/or RNA folding with the RNA polymerase position is a major challenge in all attenuation mechanisms. Because RNA polymerase pausing allows this synchronization in many attenuation mechanisms, we performed experiments in vitro to determine whether pausing participates in the B. subtilis trp attenuation mechanism. We identified two NusA-stimulated pause sites in the trp leader region. Formation of pause hairpins participates in pausing at both positions. The first pause occurred at the nucleotide just preceding the critical overlap between the alternative antiterminator and terminator structures. TRAP binding to transcripts containing preexisting pause complexes releases RNA polymerase, suggesting that pausing provides additional time for TRAP to bind and promote termination. The second pause is downstream from the trp leader termination point, raising the possibility that this pause event participates in the trpE translation control mechanism. NusA also increases the efficiency of termination in the trp leader region and shifts termination one nucleotide upstream. Finally, NusA-stimulated termination is cooperative, suggesting that binding of multiple NusA molecules influences termination.
Collapse
Affiliation(s)
- Alexander V Yakhnin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
46
|
Abstract
Transcription termination in Escherichia coli is controlled by many factors. The sequence of the DNA template, the structure of the transcript, and the actions of auxiliary proteins all play a role in determining the efficiency of the process. Termination is regulated and can be enhanced or suppressed by host and phage proteins. This complex reaction is rapidly yielding to biochemical and structural analysis of the interacting factors. Below we review and attempt to unify into basic principles the remarkable recent progress in understanding transcription termination and anti-termination.
Collapse
Affiliation(s)
- Evgeny Nudler
- Department of Biochemistry, NYU Medical Center, New York, NY 10016, USA.
| | | |
Collapse
|
47
|
Zhou Y, Mah TF, Greenblatt J, Friedman DI. Evidence that the KH RNA-binding domains influence the action of the E. coli NusA protein. J Mol Biol 2002; 318:1175-88. [PMID: 12083510 DOI: 10.1016/s0022-2836(02)00238-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The NusA transcription elongation protein, which binds RNA, contains sequences corresponding to the S1 and KH classes of identified RNA binding domains. An essential function in E. coli, NusA is also one of the host factors required for action of the N transcription antitermination protein of lambda. Tandem KH domains have been identified downstream of the S1 domain. We changed the first Gly to Asp of the GXXG motif, a tetrapeptide diagnostic of KH domains, of both NusA KH domains. The change in the first, G253D, has a large effect, while the change in the second, G319D, has a small effect on NusA action. The changes in both KH domains interfere with NusA binding to RNA. A change of a highly conserved Arg in the S1 domain, R199A, has previously been reported to interfere with RNA binding while exerting a small effect on NusA action. However, a nusA allele with both the R199A and G319D changes encodes a functionally inactive NusA protein. These studies provide direct evidence that the both KH as well as the S1 RNA binding domains are important for NusA action in support of bacterial viability as well as transcription antitermination mediated by the lambda N protein.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Intrinsic transcription termination plays a crucial role in regulating gene expression in prokaryotes. After a short pause, the termination signal appears in RNA as a hairpin that destabilizes the elongation complex (EC). We demonstrate that negative and positive termination factors control the efficiency of termination primarily through a direct modulation of hairpin folding and, to a much lesser extent, by changing pausing at the point of termination. The mechanism controlling hairpin formation at the termination point relies on weak protein interactions with single-stranded RNA, which corresponds to the upstream portion of the hairpin. Escherichia coli NusA protein destabilizes these interactions and thus promotes hairpin folding and termination. Stabilization of these contacts by phage lambda N protein leads to antitermination.
Collapse
MESH Headings
- Bacteriophage lambda/genetics
- Escherichia coli/genetics
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/physiology
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Viral
- Half-Life
- Models, Genetic
- Nucleic Acid Conformation
- Peptide Elongation Factors/physiology
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription Factors/physiology
- Transcription, Genetic/physiology
- Transcriptional Elongation Factors
- Viral Regulatory and Accessory Proteins/physiology
Collapse
Affiliation(s)
- I Gusarov
- Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA
| | | |
Collapse
|
49
|
Harrington KJ, Laughlin RB, Liang S. Balanced branching in transcription termination. Proc Natl Acad Sci U S A 2001; 98:5019-24. [PMID: 11309513 PMCID: PMC33156 DOI: 10.1073/pnas.240431598] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The theory of stochastic transcription termination based on free-energy competition [von Hippel, P. H. & Yager, T. D. (1992) Science 255, 809-812 and von Hippel, P. H. & Yager, T. D. (1991) Proc. Natl. Acad. Sci. USA 88, 2307-2311] requires two or more reaction rates to be delicately balanced over a wide range of physical conditions. A large body of work on glasses and large molecules suggests that this balancing should be impossible in such a large system in the absence of a new organizing principle of matter. We review the experimental literature of termination and find no evidence for such a principle, but do find many troubling inconsistencies, most notably, anomalous memory effects. These effects suggest that termination has a deterministic component and may conceivably not be stochastic at all. We find that a key experiment by Wilson and von Hippel [Wilson, K. S. & von Hippel, P. H. (1994) J. Mol. Biol. 244, 36-51] thought to demonstrate stochastic termination was an incorrectly analyzed regulatory effect of Mg(2+) binding.
Collapse
Affiliation(s)
- K J Harrington
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
50
|
Mah TF, Kuznedelov K, Mushegian A, Severinov K, Greenblatt J. The alpha subunit of E. coli RNA polymerase activates RNA binding by NusA. Genes Dev 2000; 14:2664-75. [PMID: 11040219 PMCID: PMC316996 DOI: 10.1101/gad.822900] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Escherichia coli NusA protein modulates pausing, termination, and antitermination by associating with the transcribing RNA polymerase core enzyme. NusA can be covalently cross-linked to nascent RNA within a transcription complex, but does not bind RNA on its own. We have found that deletion of the 79 carboxy-terminal amino acids of the 495-amino-acid NusA protein allows NusA to bind RNA in gel mobility shift assays. The carboxy-terminal domain (CTD) of the alpha subunit of RNA polymerase, as well as the bacteriophage lambda N gene antiterminator protein, bind to carboxy-terminal regions of NusA and enable full-length NusA to bind RNA. Binding of NusA to RNA in the presence of alpha or N involves an amino-terminal S1 homology region that is otherwise inactive in full-length NusA. The interaction of the alpha-CTD with full-length NusA stimulates termination. N may prevent termination by inducing NusA to interact with N utilization (nut) site RNA rather than RNA near the 3' end of the nascent transcript. Sequence analysis showed that the alpha-CTD contains a modified helix-hairpin-helix motif (HhH), which is also conserved in the carboxy-terminal regions of some eubacterial NusA proteins. These HhH motifs may mediate protein-protein interactions in NusA and the alpha-CTD.
Collapse
Affiliation(s)
- T F Mah
- Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | |
Collapse
|