1
|
Peters J, Jin C, Luczak A, Lyons B, Kalyanaraman R. Machine learning enabled protein secondary structure characterization using drop-coating deposition Raman spectroscopy. J Pharm Biomed Anal 2025; 259:116762. [PMID: 40031131 DOI: 10.1016/j.jpba.2025.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/28/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Protein structure characterization is critical for therapeutic protein drug development and production. Drop-coating deposition Raman (DCDR) spectroscopy offers rapid and cost-effective acquisition of vibrational spectral data characteristic of protein secondary structures. Amide I region (1600 -1700 cm-1) and amide II region (1500-1600 cm-1) of DCRD Raman spectra measured for model proteins of varying molecular size and structural distribution were first analyzed by peak fitting for their proportions of six secondary structure motifs: α-helices, 310-helices, β-sheets, turns (β-turns and γ-turns), bends, and random coil. The high spectral resolution and superior signal-to-noise of DCDR spectra made it possible to estimate all six structural motifs at accuracy comparable to X-ray crystallographic measurement. The ease of DCDR measurement was further explored by introducing machine learning algorithm to spectroscopic data analysis. Partial Least Squares (PLS) regression modeling was used as a machine learning tool to predict the protein secondary structural composition from the amide I band of model proteins. Once developed on a training sample set, the PLS model was tested by applying to a sample set that was not used previously for model development. Low prediction errors were achieved at 1.36 %, 0.78 %, 0.42 % 0.41 %, 0.81 %, and 0.52 %, respectively for the six structural component, α-Helix, β-Sheet, 310-helices, random, turns, and bends. The PLS model was further tested on an independent sample set that contains three IgG proteins. The proportion ofα-Helix, β-Sheet, 310-Helix were estimated with an error of 3.1 %, 2.3 % and 2.8 %, respectively.
Collapse
Affiliation(s)
- Jeremy Peters
- Cell Therapy Operations, Bristol Myers Squibb, Summit, NJ, United States
| | - Chunguang Jin
- Global Quality Control & Analytical Science, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Anna Luczak
- Global Quality Serialization and Product Surety, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Brendon Lyons
- Global Quality Control & Analytical Science, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Ravi Kalyanaraman
- Global Quality Control & Analytical Science, Bristol Myers Squibb, New Brunswick, NJ, United States.
| |
Collapse
|
2
|
Roney M, Uddin MN, Khan AA, Fatima S, Mohd Aluwi MFF, Hamim SMI, Ahmad A. Repurposing of dipeptidyl peptidase FDA-approved drugs in Alzheimer's disease using network pharmacology and in-silico approaches. Comput Biol Chem 2025; 116:108378. [PMID: 39938415 DOI: 10.1016/j.compbiolchem.2025.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/01/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) have similar clinical characteristics in the brain and islet, as well as an increased incidence with ageing and familial susceptibility. Therefore, in recent years there has been a great desire for research that elucidates how anti-diabetic drugs affect AD. This work attempts to first elucidate the possible mechanism of action of DPP-IV inhibitors in the treatment of AD by employing techniques from network pharmacology, molecular docking, molecular dynamic simulation, principal component analysis, and MM/PBSA. A total of 463 targets were identified from the SwissTargetPrediction and 784 targets were identified from the SuperPred databases. 79 common targets were screened using the PPI network. The GO and KEGG analyses indicated that the activity of DPP-IV against AD potentially involves the hsa04080 neuroactive ligand-receptor interaction signalling pathway, which contains 17 proteins, including CHRM2, CHRM3, CHRNB1, CHRNB4, CHRM1, PTGER2, CHRM4, CHRM5, TACR2, HTR2C, TACR1, F2, GABRG2, MC4R, HTR7, CHRNG, and DRD3. Molecular docking demonstrated that sitagliptin had the greatest binding affinity of -10.7 kcal/mol and established hydrogen bonds with the Asp103, Ser107, and Asn404 residues in the active site of the CHRM2 protein. Molecular dynamic simulation, PCA, and MM/PBSA were performed for the complex of sitagliptin with the above-mentioned proteins, which revealed a stable complex throughout the simulation. The work identifies the active component and possible molecular mechanism of sitagliptin in the treatment of AD and provides a theoretical foundation for future fundamental research and practical implementation.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia; Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia
| | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 12371, Saudi Arabia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia; Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia
| | - S M Istiaque Hamim
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia
| | - Asrar Ahmad
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
3
|
Al Khashali H, Ray R, Darweesh B, Wozniak C, Haddad B, Goel S, Seidu I, Khalil J, Lopo B, Murshed N, Guthrie J, Heyl D, Evans HG. Amyloid Beta Leads to Decreased Acetylcholine Levels and Non-Small Cell Lung Cancer Cell Survival via a Mechanism That Involves p38 Mitogen-Activated Protein Kinase and Protein Kinase C in a p53-Dependent and -Independent Manner. Int J Mol Sci 2024; 25:5033. [PMID: 38732252 PMCID: PMC11084752 DOI: 10.3390/ijms25095033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Several studies have shown an inverse correlation between the likelihood of developing a neurodegenerative disorder and cancer. We previously reported that the levels of amyloid beta (Aβ), at the center of Alzheimer's disease pathophysiology, are regulated by acetylcholinesterase (AChE) in non-small cell lung cancer (NSCLC). Here, we examined the effect of Aβ or its fragments on the levels of ACh in A549 (p53 wild-type) and H1299 (p53-null) NSCLC cell media. ACh levels were reduced by cell treatment with Aβ 1-42, Aβ 1-40, Aβ 1-28, and Aβ 25-35. AChE and p53 activities increased upon A549 cell treatment with Aβ, while knockdown of p53 in A549 cells increased ACh levels, decreased AChE activity, and diminished the Aβ effects. Aβ increased the ratio of phospho/total p38 MAPK and decreased the activity of PKC. Inhibiting p38 MAPK reduced the activity of p53 in A549 cells and increased ACh levels in the media of both cell lines, while opposite effects were found upon inhibiting PKC. ACh decreased the activity of p53 in A549 cells, decreased p38 MAPK activity, increased PKC activity, and diminished the effect of Aβ on those activities. Moreover, the negative effect of Aβ on cell viability was diminished by cell co-treatment with ACh.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI 48197, USA; (H.A.K.); (R.R.); (B.D.); (C.W.); (B.H.); (S.G.); (I.S.); (J.K.); (B.L.); (N.M.); (J.G.); (D.H.)
| |
Collapse
|
4
|
Karmakar S, Sukumar G, Prasanthkumar S, Jha BK, Mainkar PS, Nayani K, Chandrasekhar S. Metal-free functionalization of tyrosine residues in short peptides and study of the morphological alterations. Chem Commun (Camb) 2024; 60:3802-3805. [PMID: 38487891 DOI: 10.1039/d3cc06115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An efficient functionalization of tyrosine residues in phenolic regions is achieved under metal-free conditions. The strategy involves the conversion of a tyrosine residue to 4-amino phenylalanine or 4-amino-3-methoxy phenylalanine in short peptides through a controlled oxidative dearomatization. This transformation is achieved in one pot with good yields and excellent regioselectivity. Consequently, the self-assembly of the peptide compounds has been studied at the nanoscopic level before and after functionalization. The results suggest that the peptide derivatives comprising amide groups promote intermolecular H-bonding interactions and the difference in -OH and -NH2 functional groups is found to be responsible for the morphological changes. Morphological transitions from 1D nanowires to 2D nanosheets were observed during functional group modification.
Collapse
Affiliation(s)
- Santanu Karmakar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Genji Sukumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, Andhra Pradesh 533296, India
| | - Seelam Prasanthkumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Babli K Jha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kiranmai Nayani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Thurber KR, Yau WM, Tycko R. Structure of Amyloid Peptide Ribbons Characterized by Electron Microscopy, Atomic Force Microscopy, and Solid-State Nuclear Magnetic Resonance. J Phys Chem B 2024; 128:1711-1723. [PMID: 38348474 PMCID: PMC11423861 DOI: 10.1021/acs.jpcb.3c07867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Polypeptides often self-assemble to form amyloid fibrils, which contain cross-β structural motifs and are typically 5-15 nm in width and micrometers in length. In many cases, short segments of longer amyloid-forming protein or peptide sequences also form cross-β assemblies but with distinctive ribbon-like morphologies that are characterized by a well-defined thickness (on the order of 5 nm) in one lateral dimension and a variable width (typically 10-100 nm) in the other. Here, we use a novel combination of data from solid-state nuclear magnetic resonance (ssNMR), dark-field transmission electron microscopy (TEM), atomic force microscopy (AFM), and cryogenic electron microscopy (cryoEM) to investigate the structures within amyloid ribbons formed by residues 14-23 and residues 11-25 of the Alzheimer's disease-associated amyloid-β peptide (Aβ14-23 and Aβ11-25). The ssNMR data indicate antiparallel β-sheets with specific registries of intermolecular hydrogen bonds. Mass-per-area values are derived from dark-field TEM data. The ribbon thickness is determined from AFM images. For Aβ14-23 ribbons, averaged cryoEM images show a periodic spacing of β-sheets. The combined data support structures in which the amyloid ribbon growth direction is the direction of intermolecular hydrogen bonds between β-strands, the ribbon thickness corresponds to the width of one β-sheet (i.e., approximately the length of one molecule), and the variable ribbon width is a variable multiple of the thickness of one β-sheet (i.e., a multiple of the repeat distance in a stack of β-sheets). This architecture for a cross-β assembly may generally exist within amyloid ribbons.
Collapse
Affiliation(s)
- Kent R. Thurber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| |
Collapse
|
6
|
Cournut A, Moustiez P, Coffinier Y, Enjalbal C, Bich C. Innovative SALDI mass spectrometry analysis for Alzheimer's disease synthetic peptides detection. Talanta 2024; 268:125357. [PMID: 37951181 DOI: 10.1016/j.talanta.2023.125357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/13/2023]
Abstract
Alzheimer's disease (AD) is nowadays the prominent cause of senile dementia. This pathology is characterized by aggregation of neurofibrillary tangles in cells and by the accumulation of amyloid plaques in the brain. Noteworthy, a phosphorylated protein (tau protein) and a peptide presenting two overlapping sequences of 40 or 42 residues named β-amyloid peptides 1-40 (Aβ 1-40) and 1-42 (Aβ 1-42), respectively, were related to such deleterious phenomena. Singularly, the neurotoxicity was primarily attributed to the amyloid peptide Aβ 1-42 form due to its capacity to fold into beta-sheets rendering it insoluble thus causing subsequent aggregation and accumulation in vivo. Regarding AD diagnosis relying on mass spectrometry, Aβ 1-42 and/or Aβ 1-40 were considered as relevant biomarkers being measured in cerebrospinal fluids (CSF), blood and urine. Under that context, we aimed at implementing an innovative method to evidence the depletion of circulating Aβ 1-42 amyloid peptide compared to the shorter Aβ 1-40 form indicating a pathologic state. We investigated Surface-Assisted Laser Desorption/Ionization Mass Spectrometry (SALDI-MS) in order to monitor the Aβ 1-42/Aβ 1-40 ratio without any prior sample treatment or enrichment. Taking into account that β-amyloid peptide and 1-42 can aggregate into beta-sheets depending on the experimental conditions, specific attention was devoted to sample integrity monitoring performed by circular dichroism experiments during SALDI-MS method development.
Collapse
Affiliation(s)
- Aline Cournut
- Univ Montpellier, IBMM, CNRS, ENSCM, Montpellier, France
| | - Paul Moustiez
- Univ Lille, IEMN, UMR CNRS 8520, Villeneuve d'Ascq, France
| | | | | | - Claudia Bich
- Univ Montpellier, IBMM, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
7
|
Ehlbeck JT, Grimard DM, Hacker RM, Garcia JA, Wall BJ, Bothwell PJ, Jones MA, Webb MI. Finding the best location: Improving the anti-amyloid ability of ruthenium(III) complexes with pyridine ligands. J Inorg Biochem 2024; 250:112424. [PMID: 37952508 DOI: 10.1016/j.jinorgbio.2023.112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurological disorder where one of the primary pathological hallmarks are aggregate deposits of the peptide amyloid-beta (Aβ). Although the Food and Drug Administration (FDA) has recently approved therapeutics that specifically target Aβ, resulting in the removal of these deposits, the associated costs of such treatments create a need for effective, yet cheaper, alternatives. Metal-based compounds are propitious therapeutic candidates as they exploit the metal-binding properties of Aβ, forming stable interactions with the peptide, thereby limiting its aggregation and toxicity. Previously, ruthenium-based complexes have shown a strong ability to modulate the aggregation and cytotoxicity of Aβ, where the incorporation of a primary amine on the coordinated heterocyclic ligand gave the greatest activity. To determine the importance of the location of the primary amine on the pyridine ligand, thereby establishing structure-activity relationships (SAR), four complexes (RuP1-4) were prepared and evaluated for their ability to coordinate and subsequently modulate the aggregation and cytotoxicity of Aβ. Coordination to Aβ was determined using three complementary spectroscopic methods: UV-Vis, 1H NMR, and circular dichroism (CD). Similarly, the impact of the complexes on Aβ aggregation was evaluated using three sequential methods of turbidity, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Overall, the location of the primary amine on the pyridine ligand did affect the resultant anti-Aβ performance, with the 2-aminopyridine complex (RuP2) being the most active. This SAR will provide another guiding principle in the design of future metal-based anti-Aβ complexes.
Collapse
Affiliation(s)
- Johanna T Ehlbeck
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America
| | - Daniela M Grimard
- Department of Chemistry, SUNY Geneseo, Geneseo, NY 14454, United States of America
| | - Ryan M Hacker
- Department of Chemistry, SUNY Geneseo, Geneseo, NY 14454, United States of America
| | - Jimmy A Garcia
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America
| | - Brendan J Wall
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America
| | - Paige J Bothwell
- Core Microscope Facility, Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America
| | - Michael I Webb
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America; Department of Chemistry, SUNY Geneseo, Geneseo, NY 14454, United States of America.
| |
Collapse
|
8
|
Kepp KP, Robakis NK, Høilund-Carlsen PF, Sensi SL, Vissel B. The amyloid cascade hypothesis: an updated critical review. Brain 2023; 146:3969-3990. [PMID: 37183523 DOI: 10.1093/brain/awad159] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
Results from recent clinical trials of antibodies that target amyloid-β (Aβ) for Alzheimer's disease have created excitement and have been heralded as corroboration of the amyloid cascade hypothesis. However, while Aβ may contribute to disease, genetic, clinical, imaging and biochemical data suggest a more complex aetiology. Here we review the history and weaknesses of the amyloid cascade hypothesis in view of the new evidence obtained from clinical trials of anti-amyloid antibodies. These trials indicate that the treatments have either no or uncertain clinical effect on cognition. Despite the importance of amyloid in the definition of Alzheimer's disease, we argue that the data point to Aβ playing a minor aetiological role. We also discuss data suggesting that the concerted activity of many pathogenic factors contribute to Alzheimer's disease and propose that evolving multi-factor disease models will better underpin the search for more effective strategies to treat the disease.
Collapse
Affiliation(s)
- Kasper P Kepp
- Section of Biophysical and Biomedicinal chemistry, DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nikolaos K Robakis
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY 10029, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Stefano L Sensi
- Center for Advanced Studies and Technology-CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital, Sydney, 2010, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Saini R, Navale GR, Singh S, Singh HK, Chauhan R, Agrawal S, Sarkar D, Sarma M, Ghosh K. Inhibition of amyloid β 1-42 peptide aggregation by newly designed cyclometallated palladium complexes. Int J Biol Macromol 2023; 248:125847. [PMID: 37460075 DOI: 10.1016/j.ijbiomac.2023.125847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/16/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Uncontrolled amyloid aggregation is a frequent cause of neurodegenerative disorders such as prions and Alzheimer's disease (AD). As a result, many drug development approaches focus on evaluating novel molecules that can alter self-recognition pathways. Herein, we designed and synthesized the cyclometallated pyrene (Pd-1 and Pd-3) and anthracene (Pd-2) based palladium complexes ([Pd((L1)Cl] Pd-1, [Pd(L2)Cl](Pd-2), and [Pd(L3)Cl] (Pd-3)). This study explores the effect of these complexes on the aggregation, fibrillation, and amyloid formation of bovine serum albumin (BSA) and Aβ1-42 peptide. Several spectroscopic methods were used to characterize all the Pd-complexes, and the molecular structure of Pd-3 was determined by X-ray crystallography. The secondary structures were studied using circular dichroism (CD) and transmission electron microscopy (TEM), while amyloid aggregation and inhibitory activities were investigated using the Thioflavin-T (ThT) fluorescence assay. Molecular docking of the Pd-complex (Pd-3) was done using fibril (PDB: 2BEG) and monomeric (PDB: 1IYT) peptides using Auto-dock Vina. As a result, the hydrogen bonding and hydrophobic interaction between the aromatic rings of the Pd-complexes and the amino acids of amyloid-β peptides significantly reduced the production of ordered β-sheets of amyloid fibrils and protein aggregation in the presence of Pd-2 and Pd-3 complexes.
Collapse
Affiliation(s)
- Rahul Saini
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Haobam Kisan Singh
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Rahul Chauhan
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sonia Agrawal
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Dhiman Sarkar
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
10
|
Singh S, Navale GR, Agrawal S, Singh HK, Singla L, Sarkar D, Sarma M, Choudhury AR, Ghosh K. Design and synthesis of ruthenium complexes and their studies on the inhibition of amyloid β (1-42) peptide aggregation. Int J Biol Macromol 2023; 239:124197. [PMID: 36972817 DOI: 10.1016/j.ijbiomac.2023.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Misfolding and protein aggregation have been linked to numerous human neurodegenerative disorders such as Alzheimer's, prions, and Parkinson's. Due to their interesting photophysical properties, ruthenium (Ru) complexes have received considerable attention in studying protein aggregation. In this study, we synthesized the novel Ru complexes ([Ru(p-cymene)Cl(L-1)][PF6](Ru-1), and [Ru(p-cymene)Cl(L-2)][PF6](Ru-2)) and investigated their inhibitory activity against the bovine serum albumin (BSA) aggregation and the Aβ1-42 peptides amyloid formation. Several spectroscopic methods were used to characterize the complexes, and the molecular structure was determined by X-ray crystallography. Amyloid aggregation and inhibition activity were examined using the Thioflavin-T (ThT) assay, and secondary structures were analyzed by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). The cell viability assay was carried out on the neuroblastoma cell line, revealing that the Ru-2 complex showed better protective effects against Aβ1-42 peptide toxicity on neuro-2a cells than the Ru-1 complex. Molecular docking studies elucidate binding sites and interactions between the Ru-complexes and the Aβ1-42 fibrils. The experimental studies revealed that these complexes significantly inhibited BSA aggregation and Aβ1-42 amyloid fibril formation at 1:3 and 1:1 equimolar concentrations, respectively. Antioxidant assays demonstrated that these complexes act as antioxidants, protecting from amyloid-induced oxidative stress. Molecular docking studies with the monomeric Aβ1-42 (PDB: 1IYT) show hydrophobic interaction, and both complexes bind preferably in the central region of the peptide and coordinate with two binding sites of the peptide. Hence, we suggest that the Ru-based complexes could be applied as a potential agent in metallopharmaceutical research against Alzheimer's disease.
Collapse
Affiliation(s)
- Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sonia Agrawal
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Haobam Kisan Singh
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Labhini Singla
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Dhiman Sarkar
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Anghuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
11
|
Mallesh R, Juhee khan, Gharai PK, Gupta V, Roy R, Ghosh S. Controlling Amyloid Beta Peptide Aggregation and Toxicity by Protease-Stable Ligands. ACS BIO & MED CHEM AU 2023; 3:158-173. [PMID: 37101809 PMCID: PMC10125337 DOI: 10.1021/acsbiomedchemau.2c00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 02/17/2023]
Abstract
Polymerization of soluble amyloid beta (Aβ) peptide into protease-stable insoluble fibrillary aggregates is a critical step in the pathogenesis of Alzheimer's disease (AD). The N-terminal (NT) hydrophobic central domain fragment 16KLVFF20 plays an important role in the formation and stabilization of β-sheets by self-recognition of the parent Aβ peptide, followed by aggregation of Aβ in the AD brain. Here, we analyze the effect of the NT region inducing β-sheet formation in the Aβ peptide by a single amino acid mutation in the native Aβ peptide fragment. We designed 14 hydrophobic peptides (NT-01 to NT-14) by a single mutation at 18Val by using hydrophobic residues leucine and proline in the natural Aβ peptide fragment (KLVFFAE) and analyzed its effect on the formation of Aβ aggregates. Among all these peptides, NT-02, NT-03, and NT-13 significantly affected the Aβ aggregate formation. When the NT peptides were coincubated with the Aβ peptide, a significant reduction in β-sheet formation and increment in random coil content of Aβ was seen, confirmed by circular dichroism spectroscopy and Fourier transform infrared spectroscopy, followed by the reduction of fibril formation measured by the thioflavin-T (ThT) binding assay. The aggregation inhibition was monitored by Congo red and ThT staining and electron microscopic examination. Moreover, the NT peptides protect the PC-12 differentiated neurons from Aβ-induced toxicity and apoptosis in vitro. Thus, manipulation of the Aβ secondary structure with protease-stable ligands that promote the random coil conformation may provide a tool to control the Aβ aggregates observed in AD patients.
Collapse
Affiliation(s)
- Rathnam Mallesh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
- National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Juhee khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Prabir Kumar Gharai
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Varsha Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
- National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
12
|
Yamazaki M, Ikeda K, Kameda T, Nakao H, Nakano M. Kinetic Mechanism of Amyloid-β-(16-22) Peptide Fibrillation. J Phys Chem Lett 2022; 13:6031-6036. [PMID: 35748616 DOI: 10.1021/acs.jpclett.2c01065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The kinetic mechanism of amyloid fibril formation by a peptide fragment containing seven residues of the amyloid-β protein Aβ-(16-22) was investigated. We found that the N- and C-terminal unprotected Aβ-(16-22), containing no aggregation nuclei, showed rapid fibrillation within seconds to minutes in a neutral aqueous buffer solution. The fibrillation kinetics were well described by the nucleation-elongation model, suggesting that primary nucleation was the rate-limiting step. On the basis of both experimental and theoretical analyses, the aggregated nucleus was estimated to be composed of 6-7 peptide molecules, wherein the two β-sheets were associated with their hydrophobic surfaces. Thin fibers with widths of 10-20 nm were formed, which increased their length and thickness, attaining a width of >20 nm over several tens of minutes, probably owing to the lateral association of the fibers. Electrostatic and hydrophobic interactions play important roles in aggregation. These results provide a basis for understanding the fibrillation of short peptides.
Collapse
Affiliation(s)
- Moe Yamazaki
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
13
|
Blomgren F, Rodin A, Chrobak W, Pacut DW, Swenson J, Ermilova I. Two statins and cromolyn as possible drugs against the cytotoxicity of Aβ(31-35) and Aβ(25-35) peptides: a comparative study by advanced computer simulation methods. RSC Adv 2022; 12:13352-13366. [PMID: 35520132 PMCID: PMC9066867 DOI: 10.1039/d2ra01963a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, possible effective mechanisms of cromolyn, atorvastatin and lovastatin on the cytotoxicity of Aβ(31-35) and Aβ(25-35) peptides were investigated by classical molecular dynamics and well-tempered metadynamics simulations. The results demonstrate that all the drugs affect the behavior of the peptides, such as their ability to aggregate, and alter their secondary structures and their affinity to a particular drug. Our findings from the computed properties suggest that the best drug candidate is lovastatin. This medicine inhibits peptide aggregation, adsorbs the peptides on the surface of the drug clusters, changes the secondary structure and binds to MET35, which has been seen as the reason for the toxicity of the studied peptide sequences. Moreover, lovastatin is the drug which previously has demonstrated the strongest ability to penetrate the blood-brain barrier and makes lovastatin the most promising medicine among the three investigated drugs. Atorvastatin is also seen as a potential candidate if its penetration through the blood-brain barrier could be improved. Otherwise, its properties are even better than the ones demonstrated by lovastatin. Cromolyn appears to be less interesting as an anti-aggregant from the computational data, in comparison to the two statins.
Collapse
Affiliation(s)
- Fredrik Blomgren
- Department of Physics, Chalmers University of Technology Fysikgränd 4 Göteborg 41258 Sweden +46-728487773
| | - Alexander Rodin
- Department of Physics, Chalmers University of Technology Fysikgränd 4 Göteborg 41258 Sweden +46-728487773
| | - Wojciech Chrobak
- Department of Physics, Chalmers University of Technology Fysikgränd 4 Göteborg 41258 Sweden +46-728487773
| | - Dawid Wojciech Pacut
- Department of Physics, Chalmers University of Technology Fysikgränd 4 Göteborg 41258 Sweden +46-728487773
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology Fysikgränd 4 Göteborg 41258 Sweden +46-728487773
| | - Inna Ermilova
- Department of Physics, Chalmers University of Technology Fysikgränd 4 Göteborg 41258 Sweden +46-728487773
| |
Collapse
|
14
|
Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation. Molecules 2022; 27:molecules27082483. [PMID: 35458686 PMCID: PMC9030874 DOI: 10.3390/molecules27082483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease is understood to be caused by amyloid fibrils and oligomers formed by aggregated amyloid-β (Aβ) peptides. This review article presents molecular dynamics (MD) simulation studies of Aβ peptides and Aβ fragments on their aggregation, aggregation inhibition, amyloid fibril conformations in equilibrium, and disruption of the amyloid fibril by ultrasonic wave and infrared laser irradiation. In the aggregation of Aβ, a β-hairpin structure promotes the formation of intermolecular β-sheet structures. Aβ peptides tend to exist at hydrophilic/hydrophobic interfaces and form more β-hairpin structures than in bulk water. These facts are the reasons why the aggregation is accelerated at the interface. We also explain how polyphenols, which are attracting attention as aggregation inhibitors of Aβ peptides, interact with Aβ. An MD simulation study of the Aβ amyloid fibrils in equilibrium is also presented: the Aβ amyloid fibril has a different structure at one end from that at the other end. The amyloid fibrils can be destroyed by ultrasonic wave and infrared laser irradiation. The molecular mechanisms of these amyloid fibril disruptions are also explained, particularly focusing on the function of water molecules. Finally, we discuss the prospects for developing treatments for Alzheimer’s disease using MD simulations.
Collapse
|
15
|
Paul R, Bera S, Devi M, Paul S. Inhibition of Aβ 16–22 Peptide Aggregation by Small Molecules and Their Permeation through POPC Lipid Bilayer: Insight from Molecular Dynamics Simulation Study. J Chem Inf Model 2022; 62:5193-5207. [DOI: 10.1021/acs.jcim.1c01366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rabindranath Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Siddhartha Bera
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Madhusmita Devi
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| |
Collapse
|
16
|
All-Atom Molecular Dynamics Simulation Methods for the Aggregation of Protein and Peptides: Replica Exchange/Permutation and Nonequilibrium Simulations. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2340:197-220. [PMID: 35167076 DOI: 10.1007/978-1-0716-1546-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein aggregates are associated with more than 40 serious human diseases. To understand the formation mechanism of protein aggregates at atomic level, all-atom molecular dynamics (MD) simulation is a powerful computational tool. In this chapter, we review the all-atom MD simulation methods that are useful for study on the protein aggregation. We first explain conventional MD simulation methods in physical statistical ensembles, such as the canonical and isothermal-isobaric ensembles. We then describe the generalized-ensemble algorithms such as replica-exchange and replica-permutation MD methods. These methods can overcome a difficulty, in which simulations tend to get trapped in local-minimum free-energy states. Finally we explain the nonequilibrium MD method. Some simulation results based on these methods are also presented.
Collapse
|
17
|
Michno W, Blennow K, Zetterberg H, Brinkmalm G. Refining the amyloid β peptide and oligomer fingerprint ambiguities in Alzheimer's disease: Mass spectrometric molecular characterization in brain, cerebrospinal fluid, blood, and plasma. J Neurochem 2021; 159:234-257. [PMID: 34245565 DOI: 10.1111/jnc.15466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
Since its discovery, amyloid-β (Aβ) has been the principal target of investigation of in Alzheimer's disease (AD). Over the years however, no clear correlation was found between the Aβ plaque burden and location, and AD-associated neurodegeneration and cognitive decline. Instead, diagnostic potential of specific Aβ peptides and/or their ratio, was established. For instance, a selective reduction in the concentration of the aggregation-prone 42 amino acid-long Aβ peptide (Aβ42) in cerebrospinal fluid (CSF) was put forward as reflective of Aβ peptide aggregation in the brain. With time, Aβ oligomers-the proposed toxic Aβ intermediates-have emerged as potential drivers of synaptic dysfunction and neurodegeneration in the disease process. Oligomers are commonly agreed upon to come in different shapes and sizes, and are very poorly characterized when it comes to their composition and their "toxic" properties. The concept of structural polymorphism-a diversity in conformational organization of amyloid aggregates-that depends on the Aβ peptide backbone, makes the characterization of Aβ aggregates and their role in AD progression challenging. In this review, we revisit the history of Aβ discovery and initial characterization and highlight the crucial role mass spectrometry (MS) has played in this process. We critically review the common knowledge gaps in the molecular identity of the Aβ peptide, and how MS is aiding the characterization of higher order Aβ assemblies. Finally, we go on to present recent advances in MS approaches for characterization of Aβ as single peptides and oligomers, and convey our optimism, as to how MS holds a promise for paving the way for progress toward a more comprehensive understanding of Aβ in AD research.
Collapse
Affiliation(s)
- Wojciech Michno
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.,Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
18
|
Lee JH, Lin SY, Liu JW, Lin SZ, Harn HJ, Chiou TW. n-Butylidenephthalide Modulates Autophagy to Ameliorate Neuropathological Progress of Spinocerebellar Ataxia Type 3 through mTOR Pathway. Int J Mol Sci 2021; 22:6339. [PMID: 34199295 PMCID: PMC8231882 DOI: 10.3390/ijms22126339] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), a hereditary and lethal neurodegenerative disease, is attributed to the abnormal accumulation of undegradable polyglutamine (polyQ), which is encoded by mutated ataxin-3 gene (ATXN3). The toxic fragments processed from mutant ATXN3 can induce neuronal death, leading to the muscular incoordination of the human body. Some treatment strategies of SCA3 are preferentially focused on depleting the abnormal aggregates, which led to the discovery of small molecule n-butylidenephthalide (n-BP). n-BP-promoted autophagy protected the loss of Purkinje cell in the cerebellum that regulates the network associated with motor functions. We report that the n-BP treatment may be effective in treating SCA3 disease. n-BP treatment led to the depletion of mutant ATXN3 with the expanded polyQ chain and the toxic fragments resulting in increased metabolic activity and alleviated atrophy of SCA3 murine cerebellum. Furthermore, n-BP treated animal and HEK-293GFP-ATXN3-84Q cell models could consistently show the depletion of aggregates through mTOR inhibition. With its unique mechanism, the two autophagic inhibitors Bafilomycin A1 and wortmannin could halt the n-BP-induced elimination of aggregates. Collectively, n-BP shows promising results for the treatment of SCA3.
Collapse
Affiliation(s)
- Jui-Hao Lee
- Everfront Biotech Inc., New Taipei City 22180, Taiwan; (J.-H.L.); (S.-Y.L.); (J.-W.L.)
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| | - Si-Yin Lin
- Everfront Biotech Inc., New Taipei City 22180, Taiwan; (J.-H.L.); (S.-Y.L.); (J.-W.L.)
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| | - Jen-Wei Liu
- Everfront Biotech Inc., New Taipei City 22180, Taiwan; (J.-H.L.); (S.-Y.L.); (J.-W.L.)
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97002, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
- Department of Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97002, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| |
Collapse
|
19
|
Chowdhury UD, Bhargava BL. Helix-coil transition and conformational deformity in A β42-monomer: a case study using the Zn 2+ cation. J Biomol Struct Dyn 2021; 40:8949-8960. [PMID: 34018465 DOI: 10.1080/07391102.2021.1927190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The metal ions (like Fe2+, Zn2+, Cu2+) are known to influence the amyloid beta (Aβ) aggregation. In this study, we have examined the conformational and dynamical changes during the coordination of Aβ-monomer with the Zn2+ ion using all-atom molecular dynamics (MD) simulations using explicit solvent models. We have probed the unfolding of the full-length Aβ42 monomer both inclusive and exclusive of the Zn2+ cation, with 1:1 ratio of the peptide and the Zn2+ cation. The inclusion of the Zn2+ cation shows differential intra-peptide interactions which has been probed using various analyses. The Helix - Coil transition of the wild type Aβ42 monomer is studied using the steered molecular dynamics simulations by taking the end-to-end C-α distance across the peptide. This gives an idea of the unequal intra - peptide and peptide - water interactions being found across the length of the Aβ monomer. The transition of an α-helix dominated wild-type (WT) Aβ structure to the unfolded coil structure gives significant evidence of the intra-peptide hydrogen bonding shifts in the presence of the Zn2+ cation. This accounts for the structural and the dynamical variations that take place in the Aβ monomer in the presence of the Zn2+ cation to mimic the conditions/environment at the onset of fibrillation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Unmesh D Chowdhury
- School of Chemical Sciences, National Institute of Science Education and Research - Bhubaneswar, HBNI, Khurda, Odisha, India
| | - B L Bhargava
- School of Chemical Sciences, National Institute of Science Education and Research - Bhubaneswar, HBNI, Khurda, Odisha, India
| |
Collapse
|
20
|
Yakupova EI, Bobyleva LG, Shumeyko SA, Vikhlyantsev IM, Bobylev AG. Amyloids: The History of Toxicity and Functionality. BIOLOGY 2021; 10:biology10050394. [PMID: 34062910 PMCID: PMC8147320 DOI: 10.3390/biology10050394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Proteins can perform their specific function due to their molecular structure. Partial or complete unfolding of the polypeptide chain may lead to the misfolding and aggregation of proteins in turn, resulting in the formation of different structures such as amyloid aggregates. Amyloids are rigid protein aggregates with the cross-β structure, resistant to most solvents and proteases. Because of their resistance to proteolysis, amyloid aggregates formed in the organism accumulate in tissues, promoting the development of various diseases called amyloidosis, for instance Alzheimer's diseases (AD). According to the main hypothesis, it is considered that the cause of AD is the formation and accumulation of amyloid plaques of Aβ. That is why Aβ-amyloid is the most studied representative of amyloids. Therefore, in this review, special attention is paid to the history of Aβ-amyloid toxicity. We note the main problems with anti-amyloid therapy and write about new views on amyloids that can play positive roles in the different organisms including humans.
Collapse
Affiliation(s)
- Elmira I. Yakupova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-(985)687-77-27
| | - Liya G. Bobyleva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Sergey A. Shumeyko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Ivan M. Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| |
Collapse
|
21
|
Consoli GML, Tosto R, Baglieri A, Petralia S, Campagna T, Di Natale G, Zimbone S, Giuffrida ML, Pappalardo G. Novel Peptide-Calix[4]arene Conjugate Inhibits Aβ Aggregation and Rescues Neurons from Aβ's Oligomers Cytotoxicity In Vitro. ACS Chem Neurosci 2021; 12:1449-1462. [PMID: 33844495 PMCID: PMC9535895 DOI: 10.1021/acschemneuro.1c00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
![]()
Alzheimer’s
disease (AD) is a progressive neurodegenerative
condition affecting people in the elderly. Targeting aggregation of
β-amyloid peptides (Aβ) is considered a promising approach
for the therapeutic treatment of the disease. Peptide based inhibitors
of β-amyloid fibrillation are emerging as safe drug candidates
as well as interesting compounds for early diagnosis of AD. Peptide
conjugation via covalent bond with functional moieties enables the
resultant hybrid system to acquire desired functions. Here we report
the synthesis, the structural characterization, and the Aβ42 interaction of a p-amino-calix[4]arene
derivative bearing a GPGKLVFF peptide pendant at the lower rim. We
demonstrate that the p-amino-calix[4]arene–GPGKLVFF
conjugate alters the Aβ42 aggregation pathways by
preventing Aβ42’s conformational transition
from random coil to β-sheet with concomitant changes of the
aggregation kinetic profile as evidenced by circular dichroism (CD),
thioflavin T (ThT), and dynamic light scattering (DLS) measurements,
respectively. High resolution mass spectrometry (HR-MS) confirmed
a direct interaction of the p-amino-calix[4]arene–GPGKLVFF
conjugate with Aβ42 monomer which provided insight
into a possible working mechanism, whereas the alteration of the Aβ42’s fibrillary architecture, by the calix-peptide conjugate,
was further validated by atomic force microscopy (AFM) imaging. Finally,
the herein proposed compound was shown to be effective against Aβ42 oligomers’ toxicity in differentiated neuroblastoma
cells, SH-SY5Y.
Collapse
Affiliation(s)
| | - Rita Tosto
- International PhD School of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
- CNR-Institute of Crystallography, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ausilia Baglieri
- CNR-Institute of Biomolecular Chemistry, Via P. Gaifami 18, 95126 Catania, Italy
| | - Salvatore Petralia
- Department of Drug Sciences and Health, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Tiziana Campagna
- CNR-Institute of Crystallography, Via P. Gaifami 18, 95126 Catania, Italy
| | - Giuseppe Di Natale
- CNR-Institute of Crystallography, Via P. Gaifami 18, 95126 Catania, Italy
| | - Stefania Zimbone
- CNR-Institute of Crystallography, Via P. Gaifami 18, 95126 Catania, Italy
| | | | | |
Collapse
|
22
|
Alternative Targets to Fight Alzheimer's Disease: Focus on Astrocytes. Biomolecules 2021; 11:biom11040600. [PMID: 33921556 PMCID: PMC8073475 DOI: 10.3390/biom11040600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
The available treatments for patients affected by Alzheimer’s disease (AD) are not curative. Numerous clinical trials have failed during the past decades. Therefore, scientists need to explore new avenues to tackle this disease. In the present review, we briefly summarize the pathological mechanisms of AD known so far, based on which different therapeutic tools have been designed. Then, we focus on a specific approach that is targeting astrocytes. Indeed, these non-neuronal brain cells respond to any insult, injury, or disease of the brain, including AD. The study of astrocytes is complicated by the fact that they exert a plethora of homeostatic functions, and their disease-induced changes could be context-, time-, and disease specific. However, this complex but fervent area of research has produced a large amount of data targeting different astrocytic functions using pharmacological approaches. Here, we review the most recent literature findings that have been published in the last five years to stimulate new hypotheses and ideas to work on, highlighting the peculiar ability of palmitoylethanolamide to modulate astrocytes according to their morpho-functional state, which ultimately suggests a possible potential disease-modifying therapeutic approach for AD.
Collapse
|
23
|
Chrobak W, Pacut DW, Blomgren F, Rodin A, Swenson J, Ermilova I. Component of Cannabis, Cannabidiol, as a Possible Drug against the Cytotoxicity of Aβ(31-35) and Aβ(25-35) Peptides: An Investigation by Molecular Dynamics and Well-Tempered Metadynamics Simulations. ACS Chem Neurosci 2021; 12:660-674. [PMID: 33544587 PMCID: PMC8023578 DOI: 10.1021/acschemneuro.0c00692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
In this work cannabidiol (CBD) was investigated as a possible drug against the cytotoxicity of Aβ(31-35) and Aβ(25-35) peptides with the help of atomistic molecular dynamics (MD) and well-tempered metadynamics simulations. Four interrelated mechanisms of possible actions of CBD are proposed from our computations. This implies that one mechanism can be a cause or/and a consequence of another. CBD is able to decrease the aggregation of peptides at certain concentrations of compounds in water. This particular action is more prominent for Aβ(25-35), since originally Aβ(31-35) did not exhibit aggregation properties in aqueous solutions. Interactions of CBD with the peptides affect secondary structures of the latter ones. Clusters of CBD are seen as possible adsorbents of Aβ(31-35) and Aβ(25-35) since peptides are tending to aggregate around them. And last but not least, CBD exhibits binding to MET35. All four mechanisms of actions can possibly inhibit the Aβ-cytotoxicity as discussed in this paper. Moreover, the amount of water also played a role in peptide clustering: with a growing concentration of peptides in water without a drug, the aggregation of both Aβ(31-35) and Aβ(25-35) increased. The number of hydrogen bonds between peptides and water was significantly higher for simulations with Aβ(25-35) at the higher concentration of peptides, while for Aβ(31-35) that difference was rather insignificant. The presence of CBD did not substantially affect the number of hydrogen bonds in the simulated systems.
Collapse
Affiliation(s)
| | | | | | | | - Jan Swenson
- Department of Physics, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| | - Inna Ermilova
- Department of Physics, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
24
|
Residue Interaction Network Analysis Predicts a Val24-Ile31 Interaction May be Involved in Preventing Amyloid-Beta (1-42) Primary Nucleation. Protein J 2021; 40:175-183. [PMID: 33566321 DOI: 10.1007/s10930-021-09965-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) patients could benefit from a more effective treatment than the current FDA-approved options. Because amyloid-beta (Aβ) is thought to play a central role in AD pathogenesis, many experimental drugs attempt to reduce Aβ-induced pathology. Preventing amyloid accumulation may be a more effective strategy than clearing Aβ plaques after they form. If preventing Aβ accumulation can treat or prevent AD, then understanding Aβ primary nucleation may aid rational drug design. This study examines Aβ residue interaction networks and reports network and structural observations that may provide insight into primary nucleation. While many studies identify structural features of Aβ that promote aggregation, this study reports features that may resist primary nucleation by examining Aβ42 studies in more and less polar solvents. In Aβ42 in a less polar solvent (PDB ID: 1IYT), Val24 and Ile31 have higher betweenness and residue centrality values. This may be due to a predicted interaction between Val24 and Ile31. Residues in the central hydrophobic cluster (CHC) of Aβ40 and Aβ42 had significantly higher betweenness values compared to the average betweenness of the structures, highlighting the CHC's reported role in oligomerization. The predicted interaction between Val24 and Ile31 may reduce the likelihood of primary nucleation of Aβ.
Collapse
|
25
|
Bioactive Phytocompounds: Anti-amyloidogenic Effects Against Hen Egg-White Lysozyme Aggregation. Protein J 2021; 40:78-86. [PMID: 33392981 DOI: 10.1007/s10930-020-09946-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Amyloidosis is the process of fibril formation responsible for causing several diseases in the human being that involve protein aggregation such as Alzheimer's, Parkinson's, Huntington's disease, and type II diabetes. Natural phytocompounds such as curcumin shown promising anti-amyloidogenic activity. In the present study, selective phytocompounds such as piperine, cinnamaldehyde, eugenol, and cuminaldehyde present in Piper nigrum L, Cinnamomum zeylanicum Blume, Eugenia caryophyllus Thumb, and Cuminum cyminum L, respectively were analyzed for anti-amyloidogenic activity using hen egg white-lysozyme (HEWL) as a model system. Out of the selected phytocompounds, piperine showed the most significant anti-amyloidogenic activity, as evident from in vitro assays that were validated by in silico molecular docking study. Piperine showed 64.7 ± 3.74% inhibition of amyloid formation at 50 μM concentration, as observed by Thioflavin T assay. Subsequently, the anti-amyloidogenic activity of piperine was further validated by congo red, intrinsic fluorescence assay, and transmission electron microscopy analysis. The in silico molecular binding interaction showed piperine with the highest docking score and glide energy. Piperine was found to be interacting with amyloidogenic region residues and Trp62, the most important residue involved in the amyloidogenesis process. In conclusion, piperine can be used as a positive lead for a potential therapeutic role in targeting diseases involved amyloidogenesis.
Collapse
|
26
|
Barrett T, Stangis KA, Saito T, Saido T, Park KH. Neuronal Cell Cycle Re-Entry Enhances Neuropathological Features in AppNLF Knock-In Mice. J Alzheimers Dis 2021; 82:1683-1702. [PMID: 34219712 PMCID: PMC8461670 DOI: 10.3233/jad-210091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aberrant cell cycle re-entry is a well-documented process occurring early in Alzheimer's disease (AD). This is an early feature of the disease and may contribute to disease pathogenesis. OBJECTIVE To assess the effect of forced neuronal cell cycle re-entry in mice expressing humanized Aβ, we crossed our neuronal cell cycle re-entry mouse model with AppNLF knock-in (KI) mice. METHODS Our neuronal cell cycle re-entry (NCCR) mouse model is bitransgenic mice heterozygous for both Camk2a-tTA and TRE-SV40T. The NCCR mice were crossed with AppNLF KI mice to generate NCCR-AppNLF animals. Using this tet-off system, we triggered NCCR in our animals via neuronal expression of SV40T starting at 1 month of age. The animals were examined at the following time points: 9, 12, and 18 months of age. Various neuropathological features in our mice were evaluated by image analysis and stereology on brain sections stained using either immunofluorescence or immunohistochemistry. RESULTS We show that neuronal cell cycle re-entry in humanized Aβ plaque producing AppNLF KI mice results in the development of additional AD-related pathologies, namely, pathological tau, neuroinflammation, brain leukocyte infiltration, DNA damage response, and neurodegeneration. CONCLUSION Our findings show that neuronal cell cycle re-entry enhances AD-related neuropathological features in AppNLF mice and highlight our unique AD mouse model for studying the pathogenic role of aberrant cell cycle re-entry in AD.
Collapse
Affiliation(s)
- Tomás Barrett
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Kevin H.J. Park
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
- Biochemistry, Cellular & Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI, USA
- Michigan Alzheimer’s Disease Research Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Ayton S, Bush AI. β-amyloid: The known unknowns. Ageing Res Rev 2021; 65:101212. [PMID: 33188924 DOI: 10.1016/j.arr.2020.101212] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) stands out as a major disease without any form of preventative or disease modifying therapy. This is not for lack of trying. 33 phase 3 clinical trials of drugs targeting amyloid beta (Aβ) have failed to slow cognitive decline in AD. The field is at a cross-roads about whether to continue anti-Aβ therapy or more actively pursue alternative targets. With the burden of this disease to patients, families, and healthcare budgets growing yearly, the need for disease modifying AD therapies has become one of the highest priorities in all of medicine. While pathology, genetic and biochemical data offer a popular narrative for the causative role of Aβ, there are alternative explanations, and dissenting findings that, now more than ever, warrant thorough reanalysis. This review questions the major assumptions about Aβ on which therapies for AD were premised, and invites renewed interrogation into AD pathogenesis.
Collapse
Affiliation(s)
- Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
28
|
Kapadia A, Sharma KK, Maurya IK, Singh V, Khullar M, Jain R. Structural and mechanistic insights into the inhibition of amyloid-β aggregation by Aβ 39-42 fragment derived synthetic peptides. Eur J Med Chem 2020; 212:113126. [PMID: 33395622 DOI: 10.1016/j.ejmech.2020.113126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
The inhibition of amyloid-β (Aβ) aggregation is a promising approach towards therapeutic intervention for Alzheimer's disease (AD). Thirty eight tetrapeptides based upon Aβ39-42C-terminus fragment of the parent Aβ peptide were synthesized. The sequential replacement/modification employing unnatural amino acids imparted scaffold diversity, augmented activity, enhanced blood brain barrier permeability and offered proteolytic stability to the synthetic peptides. Several peptides exhibited promising protection against Aβ aggregation-mediated-neurotoxicity in PC-12 cells at doses ranged between 10 μM and 0.1 μM, further confirmed by the thioflavin-T fluorescence assay. CD study illustrate that these peptides restrict the β-sheet formation, and the non-appearance of Aβ42 fibrillar structures in the electron microscopy confirm the inhibition of Aβ42 aggregation. HRMS and ANS fluorescence spectroscopic analysis provided additional mechanistic insights. Two selected lead peptides 5 and 16 depicted enhanced blood-brain penetration and stability against serum and proteolytic enzyme. Structural insights into ligand-Aβ interactions on the monomeric and proto-fibrillar units of Aβ were computationally studied. Promising inhibitory potential and short sequence of the lead peptides offers new avenues for the advancement of peptide-derived therapeutics for AD.
Collapse
Affiliation(s)
- Akshay Kapadia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Punjab, 160 062, India
| | - Indresh Kumar Maurya
- Department of Microbial Biotechnology, Punjab University, Sector 25, Chandigarh, 160 014, India
| | - Varinder Singh
- Post Graduate Institute of Medical Education and Research, Sector 11, Chandigarh, 160 014, India
| | - Madhu Khullar
- Post Graduate Institute of Medical Education and Research, Sector 11, Chandigarh, 160 014, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Punjab, 160 062, India.
| |
Collapse
|
29
|
Said MS, Navale GR, Yadav A, Khonde N, Shinde SS, Jha A. Effect of tert-alcohol functional imidazolium salts on oligomerization and fibrillization of amyloid β (1–42) peptide. Biophys Chem 2020; 267:106480. [DOI: 10.1016/j.bpc.2020.106480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022]
|
30
|
Ngoc LLN, Itoh SG, Sompornpisut P, Okumura H. Replica-permutation molecular dynamics simulations of an amyloid-β(16–22) peptide and polyphenols. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Park KHJ, Barrett T. Gliosis Precedes Amyloid-β Deposition and Pathological Tau Accumulation in the Neuronal Cell Cycle Re-Entry Mouse Model of Alzheimer's Disease. J Alzheimers Dis Rep 2020; 4:243-253. [PMID: 32904753 PMCID: PMC7458550 DOI: 10.3233/adr-200170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: The presence of cell cycle markers in postmortem Alzheimer’s disease (AD) brains suggest a potential role of cell cycle activation in AD. It was shown that cell cycle activation in postmitotic neurons in mice produces Aβ and tau pathologies from endogenous mouse proteins in the absence of AβPP or tau mutations. Objective: In this study, we examined the microglial and astrocytic responses in these mice since neuroinflammation is another key pathological feature in AD. Methods: Our neuronal cell cycle re-entry (NCCR) mouse model are bitransgenic mice heterozygous for both Camk2a-tTA and TRE-SV40T. Using this tet-off system, we triggered NCCR in our animals via neuronal expression of SV40T starting at 1 month of age. TRE-SV40T Tg mice were used as SV40T transgene controls. The animals were examined at following time points: 2, 3, 4, 6, and 12 months of age. The microglia and astrocyte responses in our mice were determined by image analysis and stereology on brain sections immunofluorescently labeled using the following antibodies: Iba1, CD45, CD68, MHCII, and GFAP. Cellular senescent marker p16 was also used in this study. Results: Our NCCR mice demonstrate early and persistent activation of microglia and astrocytes. Additionally, proinflammatory and senescent microglia phenotype and brain leukocyte infiltration is present at 12 months of age. Conclusion: In the absence of FAD gene mutations, our NCCR mice simultaneously display many of the pathological changes associated with AD, such as ectopic neuronal cell cycle re-entry, Aβ and tau pathologies, neuroinflammation, and neurodegeneration. These animals represent a promising alternative AD mouse model.
Collapse
Affiliation(s)
- Kevin H J Park
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA.,Biochemistry, Cellular & Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA.,Michigan Alzheimer's Disease Center, University of Michigan, Ann Arbor, MI, USA
| | - Tomás Barrett
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
32
|
Analyzing microglial-associated Aβ in Alzheimer's disease transgenic mice with a novel mid-domain Aβ-antibody. Sci Rep 2020; 10:10590. [PMID: 32601313 PMCID: PMC7324359 DOI: 10.1038/s41598-020-67419-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/05/2020] [Indexed: 11/08/2022] Open
Abstract
The mechanisms of amyloid-β (Aβ)-degradation and clearance in Alzheimer's disease (AD) pathogenesis have been relatively little studied. Short Aβ-fragments form by enzymatic cleavage and alternate amyloid-beta precursor protein (APP)-processing. Here we characterized a novel polyclonal Aβ-antibody raised against an Aβ mid-domain and used it to investigate microglial Aβ-uptake in situ by microscopy at the light- and ultrastructural levels. The rabbit Aβ-mid-domain antibody (ab338), raised against the mid-domain amino acids 21-34 (Aβ21-34), was characterized with biochemical and histological techniques. To identify the epitope in Aβ recognized by ab338, solid phase and solution binding data were compared with peptide folding scores as calculated with the Tango software. The ab338 antibody displayed high average affinity (KD: 6.2 × 10-10 M) and showed preference for C-terminal truncated Aβ-peptides ending at amino acid 34 and Aβ-mid domain peptides with high scores of β-turn structure. In transgenic APP-mouse brain, ab338 labelled amyloid plaques and detected Aβ-fragments in microglia at the ultra- and light microscopic levels. This reinforces a role of microglia/macrophages in Aβ-clearance in vivo. The ab338 antibody might be a valuable tool to study Aβ-clearance by microglial uptake and Aβ-mid-domain peptides generated by enzymatic degradation and alternate production.
Collapse
|
33
|
Price D, Dorandish S, Williams A, Iwaniec B, Stephens A, Marshall K, Guthrie J, Heyl D, Evans HG. Humanin Blocks the Aggregation of Amyloid-β Induced by Acetylcholinesterase, an Effect Abolished in the Presence of IGFBP-3. Biochemistry 2020; 59:1981-2002. [PMID: 32383868 PMCID: PMC8193794 DOI: 10.1021/acs.biochem.0c00274] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is known that the humanin (HN) peptide binding to amyloid-β (Aβ) protects against its cytotoxic effects, while acetylcholinesterase (AChE) binding to Aβ increases its aggregation and cytotoxicity. HN is also known to bind the insulin-like growth factor binding protein-3 (IGFBP-3). Here, we examined the regulation of Aβ conformations by HN, AChE, and IGFBP-3 both in vitro and in the conditioned media from A549 and H1299 lung cancer cells. Our in vitro results showed the following: IGFBP-3 binds HN and blocks it from binding Aβ in the absence or presence of AChE; HN and AChE can simultaneously bind Aβ but not when in the presence of IGFBP-3; HN is unable to reduce the aggregation of Aβ in the presence of IGFBP-3; and HN abolishes the aggregation of Aβ induced by the addition of AChE in the absence of IGFBP-3. In the media, AChE and HN can simultaneously bind Aβ. While both AChE and HN are detected when using 6E10 Aβ antibodies, only AChE is detected when using the Aβ 17-24 antibody 4G8, the anti-oligomer A11, and the anti-amyloid fibril LOC antibodies. No signal was observed for IGFBP-3 with any of the anti-amyloid antibodies used. Exogenously added IGFBP-3 reduced the amount of HN found in a complex when using 6E10 antibodies and correlated with a concomitant increase in the amyloid oligomers. Immunodepletion of HN from the media of the A549 and H1299 cells increased the relative abundance of the oligomer vs the total amount of Aβ, the A11-positive prefibrillar oligomers, and to a lesser extent the LOC-positive fibrillar oligomers, and was also correlated with diminished cell viability and increased apoptosis.
Collapse
Affiliation(s)
- Deanna Price
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Sadaf Dorandish
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Asana Williams
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Brandon Iwaniec
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Alexis Stephens
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Keyan Marshall
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Jeffrey Guthrie
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Deborah Heyl
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Hedeel Guy Evans
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
34
|
Alpha-terpinyl acetate: A natural monoterpenoid from Elettaria cardamomum as multi-target directed ligand in Alzheimer’s disease. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
35
|
Dasari S, Mallik BS. Conformational dynamics of amyloid-β (16–22) peptide in aqueous ionic liquids. RSC Adv 2020; 10:33248-33260. [PMID: 35515066 PMCID: PMC9056671 DOI: 10.1039/d0ra06609e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 12/04/2022] Open
Abstract
Molecular dynamics simulations of amyloid-β (16–22) peptide dimer in water as well as at two different experimentally studied concentrations of hydrated ionic liquids (ILs), ethylammonium mesylate (EAM), ethylammonium nitrate (EAN), and triethylammonium mesylate (TEAM), were carried out employing an umbrella sampling method. We used the average Ψ angle of the peptide backbone as the reaction coordinate to observe the conformational changes of a peptide dimer. Secondary structural element values were calculated for the peptide dimer along the reaction coordinate to see the transition of the peptide dimer between β-sheet and α-helix conformations. We observe the β-sheet conformation as the global minimum on the free energy surfaces in both EAM and EAN ILs at both the concentrations and at a low concentration of TEAM. However, we observe α-helix conformation as the global minimum at a high concentration of TEAM. Our results are in good correlation with the experimental findings. We calculated the average number of intramolecular and intermolecular hydrogen bonds of α-helix and β-sheet conformations in all solutions, and they are in correlation with the secondary structure element values. To understand the peptide–IL interactions, atom–atom radial distribution functions of cation, anion, and water around amide oxygen and hydrogen atoms were calculated. The solvent-accessible surface area of the peptide dimer was calculated to understand the exposure of the peptide towards the solvent during conformational changes. Finally, van der Waals (vdW) and Coulomb interaction energies were calculated between peptide–cation, peptide–anion, and peptide–water to understand the stability of conformations in different concentrations. We find that the TEA cation has more vdW interaction energy compared to Coulomb interaction energy with peptide in 70% (w/w) TEAM, which mimics a membrane-like environment to induce α-helix conformation rather than β-sheet conformation. Molecular dynamics simulations of amyloid-β (16–22) peptide dimer at two different experimentally studied concentrations of hydrated ethylammonium mesylate, ethylammonium nitrate, and triethylammonium mesylate were carried out employing an umbrella sampling method.![]()
Collapse
Affiliation(s)
- Sathish Dasari
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy-502285
- India
| | - Bhabani S. Mallik
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy-502285
- India
| |
Collapse
|
36
|
Khalili Samani E, Mofid MR, Malakoutikhah M. The effect of terminal groups and halogenation of KLVFF peptide on its activity as an inhibitor of β-amyloid aggregation. J Pept Sci 2019; 26:e3227. [PMID: 31845472 DOI: 10.1002/psc.3227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 01/24/2023]
Abstract
The aggregation of Aβ peptide into amyloid fibrils in the brain is associated with Alzheimer's disease (AD). Inhibition of Aβ aggregation seemed a potential treatment for AD. It was previously shown that a short fragment of Aβ peptide (KLVFF, 16-20) bound Aβ inhibited its aggregation. In this work, using KLVFF peptide, we synthesized two peptide families and then evaluated their inhibitory capacities by conventional assays such as thioflavin T (ThT) fluorescence spectroscopy, turbidity measurement, and the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS). The effect of peptide terminal groups on its inhibitory activity was first studied. Subsequently, the influence of halogenated amino acids on peptide anti-aggregation properties was investigated. We found that iodinated peptide with amine in the N and amide in the C termini, respectively, was the best inhibitor of Aβ fibers formation. Halogenated peptides seemed to decrease the number of Aβ fibrils; however, they did not reduce Aβ cytotoxicity. The data obtained in this work seemed promising in developing potential peptide drugs for treatment of AD.
Collapse
Affiliation(s)
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry School of Pharmacy and Pharmaceutical Sciences, and Bioinformatics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
37
|
Cisternas P, Zolezzi JM, Lindsay C, Rivera DS, Martinez A, Bozinovic F, Inestrosa NC. New Insights into the Spontaneous Human Alzheimer's Disease-Like Model Octodon degus: Unraveling Amyloid-β Peptide Aggregation and Age-Related Amyloid Pathology. J Alzheimers Dis 2019; 66:1145-1163. [PMID: 30412496 DOI: 10.3233/jad-180729] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Despite advances in our understanding of the molecular milieu driving AD pathophysiology, no effective therapy is currently available. Moreover, various clinical trials have continued to fail, suggesting that our approach to AD must be revised. Accordingly, the development and validation of new models are highly desirable. Over the last decade, we have been working with Octodon degus (degu), a Chilean rodent, which spontaneously develops AD-like neuropathology, including increased amyloid-β (Aβ) aggregates, tau hyperphosphorylation, and postsynaptic dysfunction. However, for proper validation of degu as an AD model, the aggregation properties of its Aβ peptide must be analyzed. Thus, in this study, we examined the capacity of the degu Aβ peptide to aggregate in vitro. Then, we analyzed the age-dependent variation in soluble Aβ levels in the hippocampus and cortex of third- to fifth-generation captive-born degu. We also assessed the appearance and spatial distribution of amyloid plaques in O. degus and compared them with the plaques in two AD transgenic mouse models. In agreement with our previous studies, degu Aβ was able to aggregate, forming fibrillar species in vitro. Furthermore, amyloid plaques appeared in the anterior brain structures of O. degus at approximately 32 months of age and in the whole brain at 56 months, along with concomitant increases in Aβ levels and the Aβ42/Aβ40 ratio, indicating that O. degus spontaneously develops AD-like pathology earlier than other spontaneous models. Based on these results, we can confirm that O. degus constitutes a valuable model to improve AD research.
Collapse
Affiliation(s)
- Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Lindsay
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela S Rivera
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Ecología Aplicada y Sustentabilidad (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Martinez
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Centro de Ecología Aplicada y Sustentabilidad (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro UC-Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
38
|
Liu C, Zhao W, Xing X, Shi H, Kang B, Liu H, Li P, Ai H. An Original Monomer Sampling from a Ready‐Made Aβ
42
NMR Fibril Suggests a Turn‐β‐Strand Synergetic Seeding Mechanism. Chemphyschem 2019; 20:1649-1660. [DOI: 10.1002/cphc.201801137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Chengqiang Liu
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Wei Zhao
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Xiaofeng Xing
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Hu Shi
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 China
| | - Baotao Kang
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Haiying Liu
- School of PhysicsUniversity of Jinan Jinan 250022 China
| | - Ping Li
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Hongqi Ai
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| |
Collapse
|
39
|
Zhao DD, Fan XW, Hao H, Zhang HL, Guo Y. Temporary Solubilizing Tags Method for the Chemical Synthesis of Hydrophobic Proteins. CURR ORG CHEM 2019. [DOI: 10.2174/1385272822666181211121758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrophobic proteins, as one of the cellular protein classifications, play an essential function in maintaining the normal life cycle of living cells. Researches on the structure and function of hydrophobic proteins promote the exploration of the causes of major diseases, and development of new therapeutic agents for disease treatment. However, the poor water solubility of hydrophobic proteins creates problems for their preparation, separation, characterization and functional studies. The temporary solubilizing tags are considered a practical strategy to effectively solve the poor water solubility problem of hydrophobic proteins. This strategy can significantly improve the water solubility of hydrophobic peptides/proteins, making them like water-soluble peptides/proteins easy to be purified, characterized. More importantly, the temporary solubilizing tags can be removed after protein synthesis, so thus the structure and function of the hydrophobic proteins are not affected. At present, temporary solubilizing tags have been successfully used to prepare many important hydrophobic proteins such as membrane proteins, lipoproteins and chaperones. In this review, we summarize the recent researches and applications of temporary solubilizing tags.
Collapse
Affiliation(s)
- Dong-Dong Zhao
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Xiao-Wen Fan
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - He Hao
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Hong-Li Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Ye Guo
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| |
Collapse
|
40
|
Zhang S. Discovery of the first self-assembling peptide, study of peptide dynamic behaviors, and G protein-coupled receptors using an Aviv circular dichroism spectropolarimeter. Biopolymers 2019; 109:e23235. [PMID: 30269347 DOI: 10.1002/bip.23235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 11/10/2022]
Abstract
Circular dichroism (CD) spectroscopy is a useful technique to study the structure and dynamics of peptides, proteins and nucleic acids. CD is particularly useful because sample volumes may be as low as 50 μL, it provides high precision and sensitivity, and it achieves a good signal to noise ratio. CD characterizes molecular conformational changes in real time by finely controlling temperature, pH, and titrating urea and guanidine·HCl which is necessary for studying protein folding. Although CD does not provide detailed structure at the atomic level, it provides a global structural framework. Researchers use CD to observe molecular phenomena, namely how macromolecules unfold/refold and their overall self-assembly/disassembly. Using CD to monitor a peptide structure, I serendipitously discovered the self-assembling peptide EAK16 from yeast protein Zuotin. This unusual peptide formed a new type of nanofiber scaffold hydrogel material. The discovery in 1990 opened a new field in the design and study of numerous self-assembling peptides, thereby launching the area of peptide nanobiotechnology. In this review, I reflect on my personal discoveries of several self-assembling peptides, investigations into the dynamic behaviors of peptides, as well as the impact of the work on society. I also describe studies of natural membrane proteins and engineered membrane proteins using CD. Furthermore, I enjoyed numerous and close interactions with Jack Aviv since 1997. He generously supported 10 high impact workshops (Crete and Mikonos) and meetings in various countries around the world that left fond memories of many young researches who later became leading scientists in their respective fields.
Collapse
Affiliation(s)
- Shuguang Zhang
- Center for Bits and Atoms E15-401, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
41
|
An Aβ42 variant that inhibits intra- and extracellular amyloid aggregation and enhances cell viability. Biochem J 2018; 475:3087-3103. [DOI: 10.1042/bcj20180247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/02/2018] [Accepted: 09/07/2018] [Indexed: 01/06/2023]
Abstract
Aggregation and accumulation of the 42-residue amyloid β peptide (Aβ42) in the extracellular matrix and within neuronal cells is considered a major cause of neuronal cell cytotoxicity and death in Alzheimer's disease (AD) patients. Therefore, molecules that bind to Aβ42 and prevent its aggregation are therapeutically promising as AD treatment. Here, we show that a non-self-aggregating Aβ42 variant carrying two surface mutations, F19S and L34P (Aβ42DM), inhibits wild-type Aβ42 aggregation and significantly reduces Aβ42-mediated cell cytotoxicity. In addition, Aβ42DM inhibits the uptake and internalization of extracellularly added pre-formed Aβ42 aggregates into cells. This was the case in both neuronal and non-neuronal cells co-expressing Aβ42 and Aβ42DM or following pre-treatment of cells with extracellular soluble forms of the two peptides, even at high Aβ42 to Aβ42DM molar ratios. In cells, Aβ42DM associates with Aβ42, while in vitro, the two soluble recombinant peptides exhibit nano-molar binding affinity. Importantly, Aβ42DM potently suppresses Aβ42 amyloid aggregation in vitro, as demonstrated by thioflavin T fluorescence and transmission electron microscopy for detecting amyloid fibrils. Overall, we present a new approach for inhibiting Aβ42 fibril formation both within and outside cells. Accordingly, Aβ42DM should be evaluated in vivo for potential use as a therapeutic lead for treating AD.
Collapse
|
42
|
Rangachari V, Dean DN, Rana P, Vaidya A, Ghosh P. Cause and consequence of Aβ - Lipid interactions in Alzheimer disease pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:1652-1662. [PMID: 29526709 PMCID: PMC6133763 DOI: 10.1016/j.bbamem.2018.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/14/2022]
Abstract
Self-templating propagation of protein aggregate conformations is increasingly becoming a significant factor in many neurological diseases. In Alzheimer disease (AD), intrinsically disordered amyloid-β (Aβ) peptides undergo aggregation that is sensitive to environmental conditions. High-molecular weight aggregates of Aβ that form insoluble fibrils are deposited as senile plaques in AD brains. However, low-molecular weight aggregates called soluble oligomers are known to be the primary toxic agents responsible for neuronal dysfunction. The aggregation process is highly stochastic involving both homotypic (Aβ-Aβ) and heterotypic (Aβ with interacting partners) interactions. Two of the important members of interacting partners are membrane lipids and surfactants, to which Aβ shows a perpetual association. Aβ-membrane interactions have been widely investigated for more than two decades, and this research has provided a wealth of information. Although this has greatly enriched our understanding, the objective of this review is to consolidate the information from the literature that collectively showcases the unique phenomenon of lipid-mediated Aβ oligomer generation, which has largely remained inconspicuous. This is especially important because Aβ aggregate "strains" are increasingly becoming relevant in light of the correlations between the structure of aggregates and AD phenotypes. Here, we will focus on aspects of Aβ-lipid interactions specifically from the context of how lipid modulation generates a wide variety of biophysically and biochemically distinct oligomer sub-types. This, we believe, will refocus our thinking on the influence of lipids and open new approaches in delineating the mechanisms of AD pathogenesis. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Vijayaraghavan Rangachari
- Department of Chemistry & Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - Dexter N Dean
- Department of Chemistry & Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Pratip Rana
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Ashwin Vaidya
- Department of Mathematical Science, Montclair State University, Montclair, NJ 07043, USA
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
43
|
Iłowska E, Sawicka J, Szymańska A. Synthesis and physicochemical studies of amyloidogenic hexapeptides derived from human cystatin C. J Pept Sci 2018; 24:e3073. [PMID: 29573035 DOI: 10.1002/psc.3073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 01/20/2023]
Abstract
Human cystatin C (hCC) is a low molecular mass protein that belongs to the cystatin superfamily. It is an inhibitor of extracellular cysteine proteinases, present in all human body fluids. At physiological conditions, hCC is a monomer, but it has a tendency to dimerization. Naturally occurring hCC mutant, with leucine in position 68 substituted by glutamine (L68Q), is directly involved in the formation of amyloid deposits, independently of other proteins. This process is the primary cause of hereditary cerebral amyloid angiopathy, observed mainly in the Icelandic population. Oligomerization and fibrillization processes of hCC are not explained equally well, but it is proposed that domain swapping is involved in both of them. Research carried out on the fibrillization process led to new hypothesis about the existence of a steric zipper motif in amyloidogenic proteins. In the hCC sequence, there are 2 fragments which may play the role of a steric zipper: the loop L1 region and the C-terminal fragment. In this work, we focused on the first of these. Nine hexapeptides covering studied hCC fragment were synthesized, and their fibrillogenic potential was assessed using an array of biophysical methods. The obtained results showed that the studied hCC fragment has strong profibrillogenic propensities because it contains 2 fragments fulfilling the requirements for an effective steric zipper located next to each other, forming 1 super-steric zipper motif. This hCC fragment might therefore be responsible for the enhanced amyloidogenic properties of dimeric or partially unfolded hCC.
Collapse
Affiliation(s)
- Emilia Iłowska
- Faculty of Chemistry, Department of Biomedical Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Justyna Sawicka
- Faculty of Chemistry, Department of Biomedical Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Aneta Szymańska
- Faculty of Chemistry, Department of Biomedical Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
44
|
Oil Palm Phenolics Inhibit the In Vitro Aggregation of β-Amyloid Peptide into Oligomeric Complexes. Int J Alzheimers Dis 2018; 2018:7608038. [PMID: 29666700 PMCID: PMC5831689 DOI: 10.1155/2018/7608038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a severe neurodegenerative disease characterized by the aggregation of amyloid-β peptide (Aβ) into toxic oligomers which activate microglia and astrocytes causing acute neuroinflammation. Multiple studies show that the soluble oligomers of Aβ42 are neurotoxic and proinflammatory, whereas the monomers and insoluble fibrils are relatively nontoxic. We show that Aβ42 aggregation is inhibited in vitro by oil palm phenolics (OPP), an aqueous extract from the oil palm tree (Elaeis guineensis). The data shows that OPP inhibits stacking of β-pleated sheets, which is essential for oligomerization. We demonstrate the inhibition of Aβ42 aggregation by (1) mass spectrometry; (2) Congo Red dye binding; (3) 2D-IR spectroscopy; (4) dynamic light scattering; (5) transmission electron microscopy; and (6) transgenic yeast rescue assay. In the yeast rescue assay, OPP significantly reduces the cytotoxicity of aggregating neuropeptides in yeast genetically engineered to overexpress these peptides. The data shows that OPP inhibits (1) the aggregation of Aβ into oligomers; (2) stacking of β-pleated sheets; and (3) fibrillar growth and coalescence. These inhibitory effects prevent the formation of neurotoxic oligomers and hold potential as a means to reduce neuroinflammation and neuronal death and thereby may play some role in the prevention or treatment of Alzheimer's disease.
Collapse
|
45
|
Coskuner-Weber O, Uversky VN. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. Int J Mol Sci 2018; 19:E336. [PMID: 29364151 PMCID: PMC5855558 DOI: 10.3390/ijms19020336] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Türkisch-Deutsche Universität, Theoretical and Computational Biophysics Group, Molecular Biotechnology, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
46
|
Agrawal N, Skelton AA. Binding of 12-Crown-4 with Alzheimer’s Aβ40 and Aβ42 Monomers and Its Effect on Their Conformation: Insight from Molecular Dynamics Simulations. Mol Pharm 2017; 15:289-299. [DOI: 10.1021/acs.molpharmaceut.7b00966] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nikhil Agrawal
- College
of Health Sciences, Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville, Durban 4041, South Africa
| | - Adam A. Skelton
- College
of Health Sciences, Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville, Durban 4041, South Africa
| |
Collapse
|
47
|
Hu D, Zhao W, Zhu Y, Ai H, Kang B. Bead‐Level Characterization of Early‐Stage Amyloid β
42
Aggregates: Nuclei and Ionic Concentration Effects. Chemistry 2017; 23:16257-16273. [PMID: 28792099 DOI: 10.1002/chem.201702388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Dingkun Hu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials School of Chemistry and Chemical Engineering University of Jinan No. 336, West Road of Nan Xinzhuang Jinan Shandong 250022 P. R. China
| | - Wei Zhao
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials School of Chemistry and Chemical Engineering University of Jinan No. 336, West Road of Nan Xinzhuang Jinan Shandong 250022 P. R. China
| | - Yong Zhu
- Hospital in University of Jinan University of Jinan No. 336, West Road of Nan Xinzhuang Jinan Shandong 250022 P. R. China
| | - Hongqi Ai
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials School of Chemistry and Chemical Engineering University of Jinan No. 336, West Road of Nan Xinzhuang Jinan Shandong 250022 P. R. China
| | - Baotao Kang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials School of Chemistry and Chemical Engineering University of Jinan No. 336, West Road of Nan Xinzhuang Jinan Shandong 250022 P. R. China
| |
Collapse
|
48
|
Zapadka KL, Becher FJ, Gomes Dos Santos AL, Jackson SE. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 2017; 7:20170030. [PMID: 29147559 DOI: 10.1098/rsfs.2017.0030] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The number of biological therapeutic agents in the clinic and development pipeline has increased dramatically over the last decade and the number will undoubtedly continue to increase in the coming years. Despite this fact, there are considerable challenges in the development, production and formulation of such biologics particularly with respect to their physical stabilities. There are many cases where self-association to form either amorphous aggregates or highly structured fibrillar species limits their use. Here, we review the numerous factors that influence the physical stability of peptides including both intrinsic and external factors, wherever possible illustrating these with examples that are of therapeutic interest. The effects of sequence, concentration, pH, net charge, excipients, chemical degradation and modification, surfaces and interfaces, and impurities are all discussed. In addition, the effects of physical parameters such as pressure, temperature, agitation and lyophilization are described. We provide an overview of the structures of aggregates formed, as well as our current knowledge of the mechanisms for their formation.
Collapse
Affiliation(s)
| | - Frederik J Becher
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | - Sophie E Jackson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
49
|
Pascual AC, Gaveglio VL, Giusto NM, Pasquaré SJ. 2-Arachidonoylglycerol metabolism is differently modulated by oligomeric and fibrillar conformations of amyloid beta in synaptic terminals. Neuroscience 2017; 362:168-180. [PMID: 28844762 DOI: 10.1016/j.neuroscience.2017.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent disorder of senile dementia mainly characterized by amyloid-beta peptide (Aβ) deposits in the brain. Cannabinoids are relevant to AD as they exert several beneficial effects in many models of this disease. Still, whether the endocannabinoid system is either up- or down-regulated in AD has not yet been fully elucidated. Thus, the aim of the present paper was to analyze endocannabinoid 2-arachidonoylglycerol (2-AG) metabolism in cerebral cortex synaptosomes incubated with Aβ oligomers or fibrils. These Aβ conformations were obtained by "aging" the 1-40 fragment of the peptide under different agitation and time conditions. A diminished availability of 2-AG resulting from a significant decrease in diacylglycerol lipase (DAGL) activity was observed in the presence of large Aβ1-40 oligomers along with synaptosomal membrane damage, as judged by transmission electron microscopy and LDH release. Conversely, a high availability of 2-AG resulting from an increase in DAGL and lysophosphatidic acid phosphohydrolase activities occurred in the presence of Aβ1-40 fibrils although synaptosomal membrane disruption was also observed. Interestingly, neither synaptosomal mitochondrial viability assayed by MTT reduction nor membrane lipid peroxidation assayed by TBARS formation measurements were altered by Aβ1-40 oligomers or fibrils. These results show a differential effect of Aβ1-40 peptide on 2-AG metabolism depending on its conformation.
Collapse
Affiliation(s)
- Ana C Pascual
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB, UNS-CONICET), Edificio E1, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Virginia L Gaveglio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB, UNS-CONICET), Edificio E1, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Norma M Giusto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB, UNS-CONICET), Edificio E1, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Susana J Pasquaré
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB, UNS-CONICET), Edificio E1, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
50
|
Teplyakov A, Obmolova G, Gilliland GL. A coiled conformation of amyloid-β recognized by antibody C706. ALZHEIMERS RESEARCH & THERAPY 2017; 9:66. [PMID: 28830506 PMCID: PMC5568176 DOI: 10.1186/s13195-017-0296-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/03/2017] [Indexed: 01/23/2023]
Abstract
Background β-Amyloid (Aβ) peptide is believed to play a pivotal role in the development of Alzheimer’s disease. Passive immunization with anti-Aβ monoclonal antibodies may facilitate the clearance of Aβ in the brain and may thus prevent the downstream pathology. Antibodies targeting the immunodominant N-terminal epitope of Aβ and capable of binding both the plaques and soluble species have been most efficacious in animal models. Structural studies of such antibodies with bound Aβ peptides provided the basis for understanding the mechanisms of action and the differences in potency. To gain further insight into the structural determinants of antigen recognition and the preferential Aβ conformations, we determined the crystal structure of murine antibody C706 in complex with the N-terminal Aβ 1–16 peptide sequence. Methods The antigen-binding fragment of C706 was expressed in HEK293 cells and was crystallized in complex with the Aβ peptide. The X-ray structure was determined at 1.9-Å resolution. Results The binding epitope of C706 is centered on residues Arg5 and His6, which provide the majority of interactions. Unlike most antibodies, C706 recognizes a coiled rather than extended conformation of Aβ. Conclusions Comparison with other antibodies targeting the N-terminal section of Aβ suggests that the conformation of the bound peptide may be linked to the immunization protocol and may reflect the preference for the extended conformation in the context of a longer Aβ peptide as opposed to the coiled conformation in the isolated short peptide.
Collapse
Affiliation(s)
- Alexey Teplyakov
- Janssen Research and Development, LLC, 1400 McKean Road, Spring House, PA, 19477, USA.
| | - Galina Obmolova
- Janssen Research and Development, LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Gary L Gilliland
- Janssen Research and Development, LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| |
Collapse
|