1
|
McTavish KJ, Almeida RND, Tersigni J, Raimundi MK, Gong Y, Wang PW, Gontijo GF, de Souza RM, de Resende MLV, Desveaux D, Guttman DS. Pseudomonas syringae coffee blight is associated with the horizontal transfer of plasmid-encoded type III effectors. THE NEW PHYTOLOGIST 2024; 241:409-429. [PMID: 37953378 DOI: 10.1111/nph.19364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
The emergence of new pathogens is an ongoing threat to human health and agriculture. While zoonotic spillovers received considerable attention, the emergence of crop diseases is less well studied. Here, we identify genomic factors associated with the emergence of Pseudomonas syringae bacterial blight of coffee. Fifty-three P. syringae strains from diseased Brazilian coffee plants were sequenced. Comparative and evolutionary analyses were used to identify loci associated with coffee blight. Growth and symptomology assays were performed to validate the findings. Coffee isolates clustered in three lineages, including primary phylogroups PG3 and PG4, and secondary phylogroup PG11. Genome-wide association study of the primary PG strains identified 37 loci, including five effectors, most of which were encoded on a plasmid unique to the PG3 and PG4 coffee strains. Evolutionary analyses support the emergence of coffee blight in PG4 when the coffee-associated plasmid and associated effectors derived from a divergent plasmid carried by strains associated with other hosts. This plasmid was only recently transferred into PG3. Natural diversity and CRISPR-Cas9 plasmid curing were used to show that strains with the coffee-associated plasmid grow to higher densities and cause more severe disease symptoms in coffee. This work identifies possible evolutionary mechanisms underlying the emergence of a new lineage of coffee pathogens.
Collapse
Affiliation(s)
- Kathryn J McTavish
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
| | - Renan N D Almeida
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
| | - Jonathan Tersigni
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
| | - Melina K Raimundi
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Yunchen Gong
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| | - Pauline W Wang
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| | - Guilherme F Gontijo
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Ricardo M de Souza
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Mario L V de Resende
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| |
Collapse
|
2
|
Luo H, Gao F. DoriC 10.0: an updated database of replication origins in prokaryotic genomes including chromosomes and plasmids. Nucleic Acids Res 2020; 47:D74-D77. [PMID: 30364951 PMCID: PMC6323995 DOI: 10.1093/nar/gky1014] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022] Open
Abstract
DoriC, a database of replication origins, was initially created to present the bacterial oriCs predicted by Ori-Finder or determined by experiments in 2007. DoriC 5.0, an updated database of oriC regions in both bacterial and archaeal genomes, was published in the 2013 Nucleic Acids Research database issue. Now, the latest release DoriC 10, a large-scale update of replication origins in prokaryotic genomes including chromosomes and plasmids, has been presented with a completely redesigned user interface, which is freely available at http://tubic.org/doric/ and http://tubic.tju.edu.cn/doric/. In the current release, the database of DoriC has made significant improvements compared with version 5.0 as follows: (i) inclusion of oriCs on more bacterial chromosomes increased from 1633 to 7580; (ii) inclusion of oriCs on more archaeal chromosomes increased from 86 to 226; (iii) inclusion of 1209 plasmid replication origins retrieved from NCBI annotations or predicted by in silico analysis; (iv) inclusion of more replication origin elements on bacterial chromosomes including DnaA-trio motifs. Now, DoriC becomes the most complete and scalable database of replication origins in prokaryotic genomes, and facilitates the studies in large-scale oriC data mining, strand-biased analyses and replication origin predictions.
Collapse
Affiliation(s)
- Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
3
|
Pu L, Yang S, Xia A, Jin F. Optogenetics Manipulation Enables Prevention of Biofilm Formation of Engineered Pseudomonas aeruginosa on Surfaces. ACS Synth Biol 2018; 7:200-208. [PMID: 29053252 DOI: 10.1021/acssynbio.7b00273] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synthetic biologists have attempted to solve real-world problems, such as those of bacterial biofilms, that are involved in the pathogenesis of many clinical infections and difficult to eliminate. To address this, we employed a blue light responding system and integrated it into the chromosomes of Pseudomonas aeruginosa. With making rational adaptions and improvements of the light-activated system, we provided a robust and convenient means to spatiotemporally control gene expression and manipulate biological processes with minimal perturbation in P. aeruginosa. It increased the light-induced gene expression up to 20-fold. Moreover, we deliberately introduced a functional protein gene PA2133 containing an EAL domain to degrade c-di-GMP into the modified system, and showed that the optimally engineered optogenetic tool inhibited the formation of P. aeruginosa biofilms through the induction of blue light, resulting in much sparser and thinner biofilms. Our approach establishes a methodology for leveraging the tools of synthetic biology to guide biofilm formation and engineer biofilm patterns with unprecedented spatiotemporal resolution. Furthermore, the findings suggest that the synthetic optogenetic system may provide a promising strategy that could be applied to control and fight biofilms.
Collapse
Affiliation(s)
- Lu Pu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, PR China
| | - Shuai Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, PR China
| | - Aiguo Xia
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, PR China
| | - Fan Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, PR China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
4
|
Wegrzyn KE, Gross M, Uciechowska U, Konieczny I. Replisome Assembly at Bacterial Chromosomes and Iteron Plasmids. Front Mol Biosci 2016; 3:39. [PMID: 27563644 PMCID: PMC4980987 DOI: 10.3389/fmolb.2016.00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
The proper initiation and occurrence of DNA synthesis depends on the formation and rearrangements of nucleoprotein complexes within the origin of DNA replication. In this review article, we present the current knowledge on the molecular mechanism of replication complex assembly at the origin of bacterial chromosome and plasmid replicon containing direct repeats (iterons) within the origin sequence. We describe recent findings on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively, and their sequence-specific interactions with double- and single-stranded DNA. Also, we discuss the current understanding of the activities of DnaA and Rep proteins required for replisome assembly that is fundamental to the duplication and stability of genetic information in bacterial cells.
Collapse
Affiliation(s)
- Katarzyna E Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Marta Gross
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Urszula Uciechowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|
5
|
Karlowicz A, Wegrzyn K, Dubiel A, Ropelewska M, Konieczny I. Proteolysis in plasmid DNA stable maintenance in bacterial cells. Plasmid 2016; 86:7-13. [PMID: 27252071 DOI: 10.1016/j.plasmid.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/12/2023]
Abstract
Plasmids, as extrachromosomal genetic elements, need to work out strategies that promote independent replication and stable maintenance in host bacterial cells. Their maintenance depends on constant formation and dissociation of nucleoprotein complexes formed on plasmid DNA. Plasmid replication initiation proteins (Rep) form specific complexes on direct repeats (iterons) localized within the plasmid replication origin. Formation of these complexes along with a strict control of Rep protein cellular concentration, quaternary structure, and activity, is essential for plasmid maintenance. Another important mechanism for maintenance of low-copy-number plasmids are the toxin-antitoxin (TA) post-segregational killing (psk) systems, which prevent plasmid loss from the bacterial cell population. In this mini review we discuss the importance of nucleoprotein complex processing by energy-dependent host proteases in plasmid DNA replication and plasmid type II toxin-antitoxin psk systems, and draw attention to the elusive role of DNA in this process.
Collapse
Affiliation(s)
- Anna Karlowicz
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Andrzej Dubiel
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Malgorzata Ropelewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
6
|
Molina-García L, Gasset-Rosa F, Moreno-del Álamo M, Fernández-Tresguerres ME, Moreno-Díaz de la Espina S, Lurz R, Giraldo R. Functional amyloids as inhibitors of plasmid DNA replication. Sci Rep 2016; 6:25425. [PMID: 27147472 PMCID: PMC4857107 DOI: 10.1038/srep25425] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/12/2016] [Indexed: 12/24/2022] Open
Abstract
DNA replication is tightly regulated to constrain the genetic material within strict spatiotemporal boundaries and copy numbers. Bacterial plasmids are autonomously replicating DNA molecules of much clinical, environmental and biotechnological interest. A mechanism used by plasmids to prevent over-replication is 'handcuffing', i.e. inactivating the replication origins in two DNA molecules by holding them together through a bridge built by a plasmid-encoded initiator protein (Rep). Besides being involved in handcuffing, the WH1 domain in the RepA protein assembles as amyloid fibres upon binding to DNA in vitro. The amyloid state in proteins is linked to specific human diseases, but determines selectable and epigenetically transmissible phenotypes in microorganisms. Here we have explored the connection between handcuffing and amyloidogenesis of full-length RepA. Using a monoclonal antibody specific for an amyloidogenic conformation of RepA-WH1, we have found that the handcuffed RepA assemblies, either reconstructed in vitro or in plasmids clustering at the bacterial nucleoid, are amyloidogenic. The replication-inhibitory RepA handcuff assembly is, to our knowledge, the first protein amyloid directly dealing with DNA. Built on an amyloid scaffold, bacterial plasmid handcuffs can bring a novel molecular solution to the universal problem of keeping control on DNA replication initiation.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - Fátima Gasset-Rosa
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | | | | | - Rudi Lurz
- Max Planck Institute for Molecular Genetics, D14195 Berlin, Germany
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| |
Collapse
|
7
|
Abstract
Iteron-containing plasmids are model systems for studying the metabolism of extrachromosomal genetic elements in bacterial cells. Here we describe the current knowledge and understanding of the structure of iteron-containing replicons, the structure of the iteron plasmid encoded replication initiation proteins, and the molecular mechanisms for iteron plasmid DNA replication initiation. We also discuss the current understanding of control mechanisms affecting the plasmid copy number and how host chaperone proteins and proteases can affect plasmid maintenance in bacterial cells.
Collapse
|
8
|
Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome. Proc Natl Acad Sci U S A 2015; 112:14343-7. [PMID: 26534993 DOI: 10.1073/pnas.1514326112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
rRNA is essential for life because of its functional importance in protein synthesis. The rRNA (rrn) operon encoding 16S, 23S, and 5S rRNAs is located on the "main" chromosome in all bacteria documented to date and is frequently used as a marker of chromosomes. Here, our genome analysis of a plant-associated alphaproteobacterium, Aureimonas sp. AU20, indicates that this strain has its sole rrn operon on a small (9.4 kb), high-copy-number replicon. We designated this unusual replicon carrying the rrn operon on the background of an rrn-lacking chromosome (RLC) as the rrn-plasmid. Four of 12 strains close to AU20 also had this RLC/rrn-plasmid organization. Phylogenetic analysis showed that those strains having the RLC/rrn-plasmid organization represented one clade within the genus Aureimonas. Our finding introduces a previously unaddressed viewpoint into studies of genetics, genomics, and evolution in microbiology and biology in general.
Collapse
|
9
|
Abstract
ABSTRACT
The scientific and technical ambition of contemporary synthetic biology is the engineering of biological objects with a degree of predictability comparable to those made through electric and industrial manufacturing. To this end, biological parts with given specifications are sequence-edited, standardized, and combined into devices, which are assembled into complete systems. This goal, however, faces the customary context dependency of biological ingredients and their amenability to mutation. Biological orthogonality (i.e., the ability to run a function in a fashion minimally influenced by the host) is thus a desirable trait in any deeply engineered construct. Promiscuous conjugative plasmids found in environmental bacteria have evolved precisely to autonomously deploy their encoded activities in a variety of hosts, and thus they become excellent sources of basic building blocks for genetic and metabolic circuits. In this article we review a number of such reusable functions that originated in environmental plasmids and keep their properties and functional parameters in a variety of hosts. The properties encoded in the corresponding sequences include
inter alia
origins of replication, DNA transfer machineries, toxin-antitoxin systems, antibiotic selection markers, site-specific recombinases, effector-dependent transcriptional regulators (with their cognate promoters), and metabolic genes and operons. Several of these sequences have been standardized as BioBricks and/or as components of the SEVA (Standard European Vector Architecture) collection. Such formatting facilitates their physical composability, which is aimed at designing and deploying complex genetic constructs with new-to-nature properties.
Collapse
|
10
|
Dziewit L, Grzesiak J, Ciok A, Nieckarz M, Zdanowski MK, Bartosik D. Sequence determination and analysis of three plasmids of Pseudomonas sp. GLE121, a psychrophile isolated from surface ice of Ecology Glacier (Antarctica). Plasmid 2013; 70:254-62. [PMID: 23721858 DOI: 10.1016/j.plasmid.2013.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/12/2013] [Accepted: 05/17/2013] [Indexed: 11/24/2022]
Abstract
Pseudomonas sp. GLE121 (a psychrophilic Antarctic strain) carries three plasmids: pGLE121P1 (6899 bp), pGLE121P2 (8330 bp) and pGLE121P3 (39,583 bp). Plasmids pGLE121P1 and pGLE121P2 show significant sequence similarity to members of the IncP-9 and IncP-7 incompatibility groups, respectively, while the largest replicon, pGLE121P3, is highly related to plasmid pNCPPB880-40 of Pseudomonas syringae pathovar tomato NCPPB880. All three plasmids have a narrow host range, limited to members of the genus Pseudomonas. Plasmid pGLE121P3 encodes a conjugal transfer system, while pGLE121P1 carries only a putative MOB module, conserved in many mobilizable plasmids. Plasmid pGLE121P3 contains an additional load of genetic information, including a pair of genes with homology to the rulAB operon, responsible for ultraviolet radiation (UVR) tolerance. Given the increasing UV exposure in Antarctic regions, the expression of these genes is likely to be an important adaptive response.
Collapse
Affiliation(s)
- Lukasz Dziewit
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Genetics, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
11
|
Structural and molecular genetic analyses of the bacterial carbazole degradation system. Biosci Biotechnol Biochem 2012; 76:1-18. [PMID: 22232235 DOI: 10.1271/bbb.110620] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbazole degradation by several bacterial strains, including Pseudomonas resinovorans CA10, has been investigated over the last two decades. As the initial reaction in degradation pathways, carbazole is commonly oxygenated at angular (C9a) and adjacent (C1) carbons as two hydroxyl groups in a cis configuration. This type of dioxygenation is termed "angular dioxygenation," and is catalyzed by carbazole 1,9a-dioxygenase (CARDO), consisting of terminal oxygenase, ferredoxin, and ferredoxin reductase components. The crystal structures of all components and the electron transfer complex between terminal oxygenase and ferredoxin indicate substrate recognition mechanisms suitable for angular dioxygenation and specific electron transfer among the three components. In contrast, the carbazole degradative car operon of CA10 is located on IncP-7 conjugative plasmid pCAR1. Together with conventional molecular genetic and biochemical investigations, recent genome sequencing and RNA mapping studies have clarified that transcriptional cross-regulation via nucleoid-associated proteins is established between pCAR1 and the host chromosome.
Collapse
|
12
|
Rajewska M, Wegrzyn K, Konieczny I. AT-rich region and repeated sequences - the essential elements of replication origins of bacterial replicons. FEMS Microbiol Rev 2011; 36:408-34. [PMID: 22092310 DOI: 10.1111/j.1574-6976.2011.00300.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/07/2011] [Indexed: 11/27/2022] Open
Abstract
Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
13
|
Nucleotide sequence analysis of small cryptic plasmid pGP2 from Acetobacter estunensis. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0017-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Voyage of RepA protein from plasmid DNA replication through amyloid aggregation towards synthetic biology. J Appl Biomed 2010. [DOI: 10.2478/v10136-009-0018-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Broek AV, Okon Y, Vanderleyden J. Isolation and Sequence Analysis ofrep Afrom the Incurable 90 MDA Plasmid ofAzospirillum Brasilense. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10425170009033976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Gasset-Rosa F, Maté MJ, Dávila-Fajardo C, Bravo J, Giraldo R. Binding of sulphonated indigo derivatives to RepA-WH1 inhibits DNA-induced protein amyloidogenesis. Nucleic Acids Res 2008; 36:2249-56. [PMID: 18285361 PMCID: PMC2367726 DOI: 10.1093/nar/gkn067] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The quest for inducers and inhibitors of protein amyloidogenesis is of utmost interest, since they are key tools to understand the molecular bases of proteinopathies such as Alzheimer, Parkinson, Huntington and Creutzfeldt–Jakob diseases. It is also expected that such molecules could lead to valid therapeutic agents. In common with the mammalian prion protein (PrP), the N-terminal Winged-Helix (WH1) domain of the pPS10 plasmid replication protein (RepA) assembles in vitro into a variety of amyloid nanostructures upon binding to different specific dsDNA sequences. Here we show that di- (S2) and tetra-sulphonated (S4) derivatives of indigo stain dock at the DNA recognition interface in the RepA-WH1 dimer. They compete binding of RepA to its natural target dsDNA repeats, found at the repA operator and at the origin of replication of the plasmid. Calorimetry points to the existence of a major site, with micromolar affinity, for S4-indigo in RepA-WH1 dimers. As revealed by electron microscopy, in the presence of inducer dsDNA, both S2/S4 stains inhibit the assembly of RepA-WH1 into fibres. These results validate the concept that DNA can promote protein assembly into amyloids and reveal that the binding sites of effector molecules can be targeted to inhibit amyloidogenesis.
Collapse
Affiliation(s)
- Fátima Gasset-Rosa
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas (CSIC), C/ Ramiro de Maeztu, 9. E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
17
|
Gasset-Rosa F, Díaz-López T, Lurz R, Prieto A, Fernández-Tresguerres ME, Giraldo R. Negative regulation of pPS10 plasmid replication: origin pairing by zipping-up DNA-bound RepA monomers. Mol Microbiol 2008; 68:560-72. [PMID: 18284592 DOI: 10.1111/j.1365-2958.2008.06166.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In many plasmid replicons of gram-negative bacteria, Rep protein dimers are transcriptional self-repressors of their genes, whereas monomers are initiators of DNA replication. Switching between both functions implies conformational remodelling of Rep, and is promoted by Rep binding to the origin DNA repeats (iterons) or chaperones. Rep proteins play another key role: they bridge together two iteron DNA stretches, found either on the same or on different plasmid molecules. These so-called, respectively, 'looped' and 'handcuffed' complexes are thought to be negative regulators of plasmid replication. Although evidence for Rep-dependent plasmid handcuffing has been found in a number of replicons, the structure of these Rep-DNA assemblies is still unknown. Here, by a combination of proteomics, electron microscopy, genetic analysis and modelling, we provide insight on a possible three-dimensional structure for two handcuffed arrays of the iterons found at the origin of pPS10 replicon. These are brought together in parallel register by zipping-up DNA-bound RepA monomers. We also present evidence for a distinct role of RepA dimers in DNA looping. This work defines a new regulatory interface in Rep proteins.
Collapse
Affiliation(s)
- Fátima Gasset-Rosa
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Singh SK, Banerjee PC. Nucleotide sequence analysis of cryptic plasmid pAM5 from Acidiphilium multivorum. Plasmid 2007; 58:101-14. [PMID: 17363056 DOI: 10.1016/j.plasmid.2007.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 01/15/2007] [Accepted: 01/21/2007] [Indexed: 11/16/2022]
Abstract
Plasmid pAM5 of Acidiphilium multivorum JCM-8867 has been completely sequenced by initial cloning of HindIII-PstI fragments followed by primer walking. It has a size of 5161bp and single site for several restriction enzymes as revealed by DNA sequencing. Sequence analysis predicts five putative open reading frames. ORF1 and ORF3 show significant identity with various plasmid encoded mobilization (Mob) and replication initiation (Rep) proteins, respectively. The putative Mob protein has several characteristics of the MOB(Q) family having the motifs with conserved amino acid residues. Upstream of the Mob ORF, there exists a 34bp oriT region having a nic consensus sequence. The constructed plasmid pSK1 bearing pAM5 mob region can be mobilized to Escherichia coli in presence of conjugative plasmid pRK2013. The replication module comprises of several DnaA like boxes, several perfect direct and inverted repeats, a potential prokaryotic promoter and putative rep gene. The rep module is very similar to several theta replicating iteron family plasmids, suggesting pAM5 replication to follow the same course. Any phenotypic character determinant (e.g., metal resistance, antibiotic resistance etc.) gene is absent in pAM5, suggesting this plasmid to be cryptic in nature. However, a pAM5 derivative plasmid named pSK2, containing the putative pAM5 rep region, can replicate and be stably maintained in Acidiphilium, Acidocella, and E. coli strains; it can also carry foreign DNA fragments. Thus, pSK2 could serve as a cloning shuttle vector between these bacteria. It was observed that pAM5 Rep is essential for pSK2 to replicate in acidophiles. In its natural host, A. multivorum JCM-8867, pAM5 maintains a copy number of 50-60, and its derivative pSK2 maintains a comparatively, higher copy number in E. coli than in acidophiles.
Collapse
Affiliation(s)
- Samarendra K Singh
- Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700 032, India
| | | |
Collapse
|
19
|
Díaz-López T, Dávila-Fajardo C, Blaesing F, Lillo MP, Giraldo R. Early Events in the Binding of the pPS10 Replication Protein RepA to Single Iteron and Operator DNA Sequences. J Mol Biol 2006; 364:909-20. [PMID: 17045290 DOI: 10.1016/j.jmb.2006.09.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 09/04/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
RepA protein, encoded in the Pseudomonas pPS10 replicon, is a stable dimer in solution (dRepA), acting as a self-repressor of repA transcription through binding to an inverted repeat operator. However, RepA monomers (mRepA) are required to initiate plasmid replication upon binding to four directly repeated DNA sequences (iterons). RepA is composed of two winged-helix (WH) domains: C-terminal WH2 is the main DNA-binding domain (DBD) for both target sequences, whereas N-terminal WH1 acts as dimerization interface in dRepA, but becomes a second DBD in mRepA. On the basis of CD spectroscopy, hydrodynamics, X-ray crystallography and model building studies, we proposed previously that the activation of RepA initiator implies a large structural change in WH1, coupled to protein monomerization and interdomain compaction. Here, we report novel features in the process. Binding curves of RepA to an iteron, followed by fluorescence anisotropy in solution and by surface plasmon resonance on immobilized DNA, exhibit the profiles characteristic of transitions between three states. In contrast, RepA-R93C, a monomeric activated mutant, exhibits a single binding transition. This suggests the presence of an intermediate species in the iteron-induced dissociation and structural transformation of RepA. High concentrations of bovine serum albumin or ovalbumin (macromolecular crowding) enhance RepA affinity for an iteron in solution and, in gel mobility-shift assays, result in the visualization of novel protein-DNA complexes. RepA-induced DNA bending requires the binding of two WH domains: either both WH2 in dimers (operator) or WH1 plus WH2 in monomers (iteron).
Collapse
Affiliation(s)
- Teresa Díaz-López
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Fong-Chong J, Rodríguez-Bonano NM, González-Cordero L, Torres-Bauzá LJ. Functional analysis of ori1 and repA of the R-plasmid pSJ5.6 from Neisseria gonorrhoeae. Plasmid 2006; 57:324-31. [PMID: 17137626 DOI: 10.1016/j.plasmid.2006.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 10/02/2006] [Accepted: 10/10/2006] [Indexed: 11/28/2022]
Abstract
The functional ori1 of the 5.6kb gonococcal R-plasmid pSJ5.6 contains an A-T rich region followed by four 22bp direct repeats and one 19bp inverted repeat. The replication region of the plasmid also contains a gene encoding for a 39kD RepA protein. We have further assessed the functionality of the replication region in pSJ5.6, an-iteron type plasmid, using in vivo complementation assays in Escherichia coli. A 2.1kb PstI-RsaI fragment containing the ori1 and repA gene of pSJ5.6 was cloned into vector pZErO -2 to obtain pZA-MRR. The pUC origin in pZA-MRR was deleted to render the plasmid dependable on the cis-acting ori1 for replication. The resulting plasmid, pMRR, was capable of replication and maintenance in E. coli. We also cloned the ori1 and repA gene separately to obtain pA-Ori and pZG-Rep, respectively. Using in vivo complementation assays, we demonstrated that the ori1(+) plasmid (pA-Ori) was maintained only when the RepA protein was supplied in trans by the high copy number plasmid pZG-Rep.
Collapse
|
21
|
Shintani M, Yano H, Habe H, Omori T, Yamane H, Tsuda M, Nojiri H. Characterization of the replication, maintenance, and transfer features of the IncP-7 plasmid pCAR1, which carries genes involved in carbazole and dioxin degradation. Appl Environ Microbiol 2006; 72:3206-16. [PMID: 16672459 PMCID: PMC1472330 DOI: 10.1128/aem.72.5.3206-3216.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2005] [Accepted: 02/08/2006] [Indexed: 11/20/2022] Open
Abstract
Isolated from Pseudomonas resinovorans CA10, pCAR1 is a 199-kb plasmid that carries genes involved in the degradation of carbazole and dioxin. The nucleotide sequence of pCAR1 has been determined previously. In this study, we characterized pCAR1 in terms of its replication, maintenance, and conjugation. By constructing miniplasmids of pCAR1 and testing their establishment in Pseudomonas putida DS1, we show that pCAR1 replication is due to the repA gene and its upstream DNA region. The repA gene and putative oriV region could be separated in P. putida DS1, and the oriV region was determined to be located within the 345-bp region between the repA and parW genes. Incompatibility testing using the minireplicon of pCAR1 and IncP plasmids indicated that pCAR1 belongs to the IncP-7 group. Monitoring of the maintenance properties of serial miniplasmids in nonselective medium, and mutation and complementation analyses of the parWABC genes, showed that the stability of pCAR1 is attributable to the products of the parWAB genes. In mating assays, the transfer of pCAR1 from CA10 was detected in a CA10 derivative that was cured of pCAR1 (CA10dm4) and in P. putida KT2440 at frequencies of 3 x 10(-1) and 3 x 10(-3) per donor strain, respectively. This is the first report of the characterization of this completely sequenced IncP-7 plasmid.
Collapse
Affiliation(s)
- Masaki Shintani
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Giraldo R, Fernández-Tresguerres ME. Twenty years of the pPS10 replicon: insights on the molecular mechanism for the activation of DNA replication in iteron-containing bacterial plasmids. Plasmid 2004; 52:69-83. [PMID: 15336485 DOI: 10.1016/j.plasmid.2004.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Indexed: 10/26/2022]
Abstract
This review focuses on the contributions of the Pseudomonas replicon pPS10 to understanding the initiation of DNA replication in iteron-containing plasmids from Gram-negative bacteria. Dimers of the pPS10 initiator protein (RepA) repress repA transcription by binding to the two halves of an inverted repeat operator. RepA monomers are the active initiator species that bind to four directly repeated sequences (iterons). pPS10 initiator was the first Rep protein whose domains were defined (two "winged-helix," WH modules) and their binding sites were identified at each half of the iteron repeat. This was confirmed by the crystal structure of the monomer of a homologous initiator (RepE from F plasmid) bound to iteron DNA. The recently solved structure of the dimeric N-terminal domain (WH1) of pPS10 RepA, when compared to the RepE monomer, shows that upon dimer dissociation an alpha-helix at WH1 C-terminus becomes part of an interdomain beta-sheet. In solution, the iteron sequence, by itself, can induce the same kind of structural transformation in RepA. This seems to alter the package of both WH domains to adapt their DNA reading heads (HTH motifs) to the distinct spacing between half repeats in iterons and operator. Based on biochemical and spectroscopic work, structural and functional similarities were proposed between RepA and archaeal/eukaryal initiators. This was independently confirmed by the crystal structure of the archaeal initiator Cdc6. Characterization of mutants, either in pPS10 or in the Escherichia coli chromosome, has provided some evidence on a WH1-mediated interaction between RepA and the chromosomal initiator DnaA that results in a broadened-host range.
Collapse
Affiliation(s)
- Rafael Giraldo
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas--CSIC, C/Ramiro de Maeztu, 9. 28040 Madrid, Spain.
| | | |
Collapse
|
23
|
Stavrinides J, Guttman DS. Nucleotide sequence and evolution of the five-plasmid complement of the phytopathogen Pseudomonas syringae pv. maculicola ES4326. J Bacteriol 2004; 186:5101-15. [PMID: 15262947 PMCID: PMC451608 DOI: 10.1128/jb.186.15.5101-5115.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Plasmids are transmissible, extrachromosomal genetic elements that are often responsible for environmental or host-specific adaptations. In order to identify the forces driving the evolution of these important molecules, we determined the complete nucleotide sequence of the five-plasmid complement of the radish and Arabidopsis pathogen Pseudomonas syringae pv. maculicola ES4326 and conducted an intraspecific comparative genomic analysis. To date, this is the most complex fully sequenced plasmid complement of any gram-negative bacterium. The plasmid complement comprises two pPT23A-like replicons, pPMA4326A (46,697 bp) and pPMA4326B (40,110 bp); a pPS10-like replicon, pPMA4326C (8,244 bp); and two atypical, replicase-deficient replicons, pPMA4326D (4,833 bp) and pPMA4326E (4,217 bp). A complete type IV secretion system is found on pPMA4326A, while the type III secreted effector hopPmaA is present on pPMA4326B. The region around hopPmaA includes a shorter hopPmaA homolog, insertion sequence (IS) elements, and a three-element cassette composed of a resolvase, an integrase, and an exeA gene that is also present in several human pathogens. We have also identified a novel genetic element (E622) that is present on all but the smallest plasmid (pPMA4326E) that has features of an IS element but lacks an identifiable transposase. This element is associated with virulence-related genes found in a wide range of P. syringae strains. Comparative genomic analyses of these and other P. syringae plasmids suggest a role for recombination and integrative elements in driving plasmid evolution.
Collapse
Affiliation(s)
- John Stavrinides
- Department of Botany, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada.
| | | |
Collapse
|
24
|
Giraldo R, Fernández-Tornero C, Evans PR, Díaz-Orejas R, Romero A. A conformational switch between transcriptional repression and replication initiation in the RepA dimerization domain. Nat Struct Mol Biol 2003; 10:565-71. [PMID: 12766757 DOI: 10.1038/nsb937] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 05/01/2003] [Indexed: 11/08/2022]
Abstract
Plasmids are natural vectors for gene transfer. In Gram-negative bacteria, plasmid DNA replication is triggered when monomers of an initiator protein (Rep) bind to direct repeats at the origin sequence. Rep dimers, which are inactive as initiators, bind to an inverse repeat operator, repressing transcription of the rep gene. Rep proteins are composed of N-terminal dimerization and C-terminal DNA-binding domains. Activation of Rep is coupled to dimer dissociation, converting the dimerization domain into a second origin-binding module. Although the structure of the monomeric F plasmid initiator (mRepE) has been determined, the molecular nature of Rep activation remains unknown. Here we report the crystal structure of the dimeric N-terminal domain of the pPS10 plasmid initiator (dRepA). dRepA has a winged-helix fold, as does its homologous domain in mRepE. However, dimerization transforms an interdomain loop and beta-strand (monomeric RepE) into an alpha-helix (dimeric RepA). dRepA resemble the C terminus of eukaryotic and archaeal Cdc6, giving clues to the phylogeny of DNA replication initiators.
Collapse
Affiliation(s)
- Rafael Giraldo
- Department of Molecular Microbiology Centro de Investigaciones Biológicas-CSIC, C/ Velázquez 144, Madrid, 28006, Spain.
| | | | | | | | | |
Collapse
|
25
|
Díaz-López T, Lages-Gonzalo M, Serrano-López A, Alfonso C, Rivas G, Díaz-Orejas R, Giraldo R. Structural changes in RepA, a plasmid replication initiator, upon binding to origin DNA. J Biol Chem 2003; 278:18606-16. [PMID: 12637554 DOI: 10.1074/jbc.m212024200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RepA protein is the DNA replication initiator of the Pseudomonas plasmid pPS10. RepA dimers bind to an inversely repeated operator sequence in repA promoter, thus repressing its own synthesis, whereas monomers bind to four directly repeated sequences (iterons) to initiate DNA replication. We had proposed previously that RepA is composed of two winged-helix (WH) domains, a structural unit also present in eukaryotic and archaeal initiators. To bind to the whole iteron sequence through both domains, RepA should couple monomerization to a conformational change in the N-terminal WH, which includes a leucine zipper-like sequence motif. We show for the first time that, by itself, binding to iteron DNA in vitro dissociates RepA dimers into monomers and alters RepA conformation, suggesting an allosteric effect. Furthermore, we also show that similar changes in RepA are promoted by mutations that substitute two Leu residues of the putative leucine zipper by Ala, destabilizing the hydrophobic core of the first WH. We propose that this mutant (RepA-2L2A) resembles a transient folding intermediate in the pathway leading to active monomers. These findings, together with the known activation of other Rep-type proteins by chaperones, are relevant to understand the molecular basis of plasmid DNA replication initiation.
Collapse
Affiliation(s)
- Teresa Díaz-López
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), C/Velázquez, 144, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Rohmer L, Kjemtrup S, Marchesini P, Dangl JL. Nucleotide sequence, functional characterization and evolution of pFKN, a virulence plasmid in Pseudomonas syringae pathovar maculicola. Mol Microbiol 2003; 47:1545-62. [PMID: 12622811 DOI: 10.1046/j.1365-2958.2003.03402.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas syringae pv. maculicola strain M6 (Psm M6) carries the avrRpm1 gene, encoding a type III effector, on a 40 kb plasmid, pFKN. We hypothesized that this plasmid might carry additional genes required for pathogenesis on plants. We report the sequence and features of pFKN. In addition to avrRpm1, pFKN carries an allele of another type III effector, termed avrPphE, and a gene of unknown function (ORF8), expression of which is induced in planta, suggesting a role in the plant-pathogen interaction. The region of pFKN carrying avrRpm1, avrPphE and ORF8 exhibits several features of pathogenicity islands (PAIs). Curing of pFKN (creating Psm M6C) caused a significant reduction in virulence on Arabidopsis leaves. However, complementation studies using Psm M6C demonstrated an obvious virulence function only for avrRpm1. pFKN can integrate and excise from the chromosome of Psm M6 at low frequency via homologous recombination between identical sequence segments located on the chromosome and on pFKN. These segments are part of two nearly identical transposons carrying avrPphE. The avrPphE transposon was also detected in other strains of P. s. pv. maculicola and in P. s. tomato strain DC3000. The avrPphE transposon was found inserted at different loci in different strains. The analysis of sequences surrounding the avrPphE transposon insertion site in the chromosome of Psm M6 indicates that pFKN integrates into a PAI that encodes type III effectors. The integration of pFKN into this chromosomal region may therefore be seen as an evolutionary process determining the formation of a new PAI in the chromosome of Psm M6.
Collapse
Affiliation(s)
- Laurence Rohmer
- Department of Biology, Coker Hall 108, CB#3280, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | |
Collapse
|
27
|
Maeda K, Nojiri H, Shintani M, Yoshida T, Habe H, Omori T. Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676. J Mol Biol 2003; 326:21-33. [PMID: 12547188 DOI: 10.1016/s0022-2836(02)01400-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The car and ant operons originally isolated from Pseudomonas resinovorans strain CA10 contain the genes encoding the carbazole/dioxin-degrading enzymes and anthranilate 1,2-dioxygenase, respectively, and are located on the plasmid pCAR1. The entire nucleotide sequence of pCAR1 was determined to elucidate the mechanism by which the car operon may have been assembled and distributed in nature. pCAR1 is a 199,035-bp circular plasmid, and carries 190 open reading frames. Although the incompatibility group of pCAR1 is unclear, its potential origin for replication, OriP, and Rep and Par proteins appeared to be closely related to those of plasmid pL6.5 isolated from Pseudomonas fluorescens. The potential tellurite-resistance klaABC genes identified in the neighboring region of repA gene were also related to those in IncP plasmid originally identified from pseudomonads. On the other hand, we found genes encoding proteins that showed low but significant homology (20-45% identity) with Trh and Tra proteins from Enterobacteriaceae, which are potentially involved in conjugative transfer of plasmids or genomic island, suggesting that pCAR1 is also a conjugative plasmid. In pCAR1, we found tnpAcCST genes that encoded the proteins showing >70% length-wise identities with those are encoded by the toluene/xylene-degrading transposon Tn4651 of TOL plasmid pWW0. Both car and ant degradative operons were found within a 72.8-kb Tn4676 sequence defined by flanking tnpAcC and tnpST genes and bordered by a 46-bp inverted repeat (IR). Within Tn4676 and its flanking region, we found the remnants of numerous mobile genetic elements, such as the duplicated transposase genes that are highly homologous to tnpR of Tn4653 and the multiple candidates of IRs for Tn4676 and Tn4653-like element. We also found distinct regions with high and low G+C contents within Tn4676, which contain an ant operon and car operon, respectively. These results suggested that multiple step assembly could have taken place before the current structure of Tn4676 had been captured.
Collapse
Affiliation(s)
- Kana Maeda
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, 113-8657, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Maestro B, Sanz JM, Díaz-Orejas R, Fernández-Tresguerres E. Modulation of pPS10 host range by plasmid-encoded RepA initiator protein. J Bacteriol 2003; 185:1367-75. [PMID: 12562807 PMCID: PMC142854 DOI: 10.1128/jb.185.4.1367-1375.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the isolation and analysis of novel repA host range mutants of pPS10, a plasmid originally found in Pseudomonas savastanoi. Upon hydroxylamine treatment, five plasmid mutants were selected for their establishment in Escherichia coli at 37 degrees C, a temperature at which the wild-type form cannot be established. The mutations were located in different functional regions of the plasmid RepA initiation protein, and the mutants differ in their stable maintenance, copy number, and ability to interact with sequences of the basic replicon. Four of them have broadened their host range, and one of them, unable to replicate in Pseudomonas, has therefore changed its host range. Moreover, the mutants also have increased their replication efficiency in strains other than E. coli such as Pseudomonas putida and Alcaligenes faecalis. None of these mutations drastically changed the structure or thermal stability of the wild-type RepA protein, but in all cases an enhanced interaction with host-encoded DnaA protein was detected by gel filtration chromatography. The effects of the mutations on the functionality of RepA protein are discussed in the framework of a three-dimensional model of the protein. We propose possible explanations for the host range effect of the different repA mutants, including the enhancement of limiting interactions of RepA with specific host replication factors such as DnaA.
Collapse
Affiliation(s)
- Beatriz Maestro
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Giraldo R. Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives. FEMS Microbiol Rev 2003; 26:533-54. [PMID: 12586394 DOI: 10.1111/j.1574-6976.2003.tb00629.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although DNA replication is the universal process for the transmission of genetic information in all living organisms, until very recently evidence was lacking for a related structure and function in the proteins (initiators) that trigger replication in the three 'Life Domains' (Bacteria, Archaea and Eukarya). In this article new data concerning the presence of common features in the initiators of chromosomal replication in bacteria, archaea and eukaryotes are reviewed. Initiators are discussed in the light of: (i) The structure and function of their conserved ATPases Associated with various cellular Activities (AAA+) and winged-helix domains. (ii) The nature of the macromolecular assemblies that they constitute at the replication origins. (iii) Their possible phylogenetic relationship, attempting to sketch the essentials of a hypothetical DNA replication initiator in the micro-organism proposed to be the ancestor of all living cells.
Collapse
Affiliation(s)
- Rafael Giraldo
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas (CSIC), C/Velázquez 144, 28006 Madrid, Spain.
| |
Collapse
|
30
|
Maestro B, Sanz JM, Faelen M, Couturier M, Díaz-Orejas R, Fernández-Tresguerres E. Modulation of pPS10 host range by DnaA. Mol Microbiol 2002; 46:223-34. [PMID: 12366845 DOI: 10.1046/j.1365-2958.2002.03155.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Narrow-host-range plasmid pPS10, originally found in Pseudomonas savastanoi, is unable to replicate in other strains such as Escherichia coli. Here, we report that the establishment of pPS10 in E. coli can be achieved by a triple mutation in the dnaA gene of E. coli (dnaA403), leading to Q14amber, P297S and A412V changes in the DnaA host replication protein (DnaA403 mutant). As the E. coli strain used contained double amber suppressor mutations (supE, supF), the amber codon in dnaA403 can be translated into glutamine or tyrosine. Genetic analysis of DnaA proteins containing either the individual changes or their different combinations suggests that the P297S mutation is crucial for the establishment of the pPS10 replicon in E. coli. The data also indicate that the P297S change is toxic to the cell and that the additional mutations in DnaA403 could contribute to neutralize this toxicity. To our knowledge, this work reports the first chromosome mutant described in the literature that allows the host range broadening of a plasmid, highlights the essential role played by DnaA in the establishment of pPS10 replicon in E. coli and provides support for the hypothesis that interactions between RepA and DnaA modulate the establishment of pPS10 in that bacteria and probably in other species.
Collapse
Affiliation(s)
- Beatriz Maestro
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Bartosik D, Baj J, Bartosik AA, Wlodarczyk M. Characterization of the replicator region of megaplasmid pTAV3 of Paracoccus versutus and search for plasmid-encoded traits. MICROBIOLOGY (READING, ENGLAND) 2002; 148:871-881. [PMID: 11882723 DOI: 10.1099/00221287-148-3-871] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The replicon of the pTAV3 megaplasmid (approx. 400 kb) of Paracoccus versutus has been localized to a 4center dot3 kb EcoRI restriction fragment and its entire nucleotide sequence determined. The G+C content of the entire sequence is 66 mol%, which is within the range (62-66 mol%) previously determined for P. versutus total DNA. ORF1 encodes a replication initiation protein Rep (47.2 kDa), which shares substantial similarity with putative proteins of the Coxiella burnetii plasmids QpH1 and QpDV, and the replication protein of Pseudomonas syringae plasmid pPS10. ORF2, located in the opposite transcriptional orientation to ORF1, encodes a putative protein that shares similarity to a subfamily of ATPases involved in plasmid partitioning. The highest similarity was observed with homologous proteins (RepA) encoded by the repABC family of replicons found in several plasmids of Agrobacterium, Rhizobium and Paracoccus spp. The predicted product of ORF3 was similar to AcoR, Nif and NtrC transcriptional activators. A strong incompatibility determinant (inc) was localized between ORF1 (rep) and ORF2 (parA). The origin of replication of pTAV400 contains a short A+T-rich region and several imperfect palindromic sequences. Curing experiments demonstrated that the megaplasmid bears genes required for growth in minimal media and can therefore be referred to as a mini-chromosome. Megaplasmids pTAV3 of P. versutus UW1 and pKLW2 of Paracoccus pantotrophus DSM 11073 were found to carry closely related, incompatible replicons. It has been shown that plasmid pORI6 (containing oriV of pTAV3 cloned into plasmid pABW1, which does not replicate in Paracoccus spp.) can be trans activated not only by pTAV3, but also by pKLW2. Using pORI6, it was demonstrated that replication systems related to pTAV3 are also present in the replicons of Paracoccus alcaliphilus JCM 7364, Paracoccus thiocyanatus IAM 12816 and Paracoccus methylutens DM 12.
Collapse
Affiliation(s)
- Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland1
| | - Jadwiga Baj
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland1
| | - Aneta A Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland1
| | - Miroslawa Wlodarczyk
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland1
| |
Collapse
|
32
|
Peters M, Jõgi E, Suitso I, Punnisk T, Nurk A. Features of the replicon of plasmid pAM10.6 of Pseudomonas fluorescens. Plasmid 2001; 46:25-36. [PMID: 11535033 DOI: 10.1006/plas.2001.1524] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe features of the basic replicon of the 10.6-kb medium-copy-number plasmid pAM10.6. pAM10.6 was able to replicate in various Pseudomonas strains but was maintained in Escherichia coli only after the p15A origin of replication was inserted. Deletion analysis suggests that the pAM10.6 origin of replication is located in a 0.5-kb region that includes inverted and direct repeats upstream of the repA gene. RepA (204 aa) has a clear homology to plasmid replication proteins of some other gram-negative bacteria. The pas (plasmid addiction system) (genes encoded in the region of 480-bp) stabilizes plasmid maintenance in P. putida cells under nonselective conditions for at least 200 generations. A 3.75-kb PstI fragment of pAM10.6 joined to a Km(r) gene was shown to be a minimal plasmid unit maintained in P. putida as a monomer. Further deletions of this 3.75-kb fragment caused a drive to form stable head-to-tail dimeric plasmids in P. putida.
Collapse
Affiliation(s)
- M Peters
- Institute of Molecular and Cell Biology, University of Tartu, Estonia.
| | | | | | | | | |
Collapse
|
33
|
Pacek M, Konopa G, Konieczny I. DnaA box sequences as the site for helicase delivery during plasmid RK2 replication initiation in Escherichia coli. J Biol Chem 2001; 276:23639-44. [PMID: 11316803 DOI: 10.1074/jbc.m100255200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DnaA box sequences are a common motif present within the replication origin region of a diverse group of bacteria and prokaryotic extrachromosomal genetic elements. Although the origin opening caused by binding of the host DnaA protein has been shown to be critical for the loading of the DnaB helicase, to date there has been no direct evidence presented for the formation of the DnaB complex at the DnaA box site. For these studies, we used the replication origin of plasmid RK2 (oriV), containing a cluster of four DnaA boxes that bind DnaA proteins isolated from different bacterial species (Caspi, R., Helinski, D. R., Pacek, M., and Konieczny, I. (2000) J. Biol. Chem. 275, 18454-18461). Size exclusion chromatography, surface plasmon resonance, and electron microscopy experiments demonstrated that the DnaB helicase is delivered to the DnaA box region, which is localized approximately 200 base pairs upstream from the region of origin opening and a potential site for helicase entry. The DnaABC complex was formed on both double-stranded superhelical and linear RK2 templates. A strict DnaA box sequence requirement for stable formation of that nucleoprotein structure was confirmed. In addition, our experiments provide evidence for interaction between the plasmid initiation protein TrfA and the DnaABC prepriming complex, formed at DnaA box region. This interaction is facilitated via direct contact between TrfA and DnaB proteins.
Collapse
Affiliation(s)
- M Pacek
- Faculty of Biotechnology, Department of Molecular and Cellular Biology and the Faculty of Biology, Department of Molecular Biology, University of Gdansk, 24 Kladki, PL-80822 Gdansk, Poland
| | | | | |
Collapse
|
34
|
Giraldo R, Diaz-Orejas R. Similarities between the DNA replication initiators of Gram-negative bacteria plasmids (RepA) and eukaryotes (Orc4p)/archaea (Cdc6p). Proc Natl Acad Sci U S A 2001; 98:4938-43. [PMID: 11296251 PMCID: PMC33142 DOI: 10.1073/pnas.081079298] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteins responsible for the initiation of DNA replication are thought to be essentially unrelated in bacteria and archaea/eukaryotes. Here we show that RepA, the initiator from the Pseudomonas plasmid pPS10, and the C-terminal domain of ScOrc4p, a subunit of Saccharomyces cerevisiae (Sc) origin recognition complex (ORC), share sequence similarities. Based on biochemical and spectroscopic evidence, these similarities include common structural elements, such as a winged-helix domain and a leucine-zipper dimerization motif. We have also found that ScOrc4p, as previously described for RepA-type initiators, interacts with chaperones of the Hsp70 family both in vitro and in vivo, most probably to regulate the assembly of active ORC. In evolutionary terms, our results are compatible with the recruitment of the same protein module for initiation of DNA replication by the ancestors of present-day Gram-negative bacteria plasmids, archaea, and eukaryotes.
Collapse
Affiliation(s)
- R Giraldo
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, c/Velázquez 144, 28006 Madrid, Spain.
| | | |
Collapse
|
35
|
Van Ham RCHJ, Martínez-Torres D, Moya A, Latorre A. Plasmid-encoded anthranilate synthase (TrpEG) in Buchnera aphidicola from aphids of the family pemphigidae. Appl Environ Microbiol 1999; 65:117-125. [PMID: 9872768 PMCID: PMC90991 DOI: 10.1128/aem.65.1.117-125.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/1998] [Accepted: 10/09/1998] [Indexed: 02/07/2023] Open
Abstract
Buchnera aphidicola is an obligate intracellular symbiont of aphids. One of its proposed functions is the synthesis of essential amino acids, nutrients required by aphids but deficient in their diet of plant phloem sap. The genetic organization of the tryptophan pathway in Buchnera from proliferous aphids of the family Aphididae has previously been shown to reflect a capacity to overproduce this essential amino acid (C.-Y. Lai, L. Baumann, and P. Baumann, Proc. Natl. Acad. Sci. USA 91:3819-3823, 1994). This involved amplification of the genes for the first enzyme in the pathway, anthranilate synthase (TrpEG), on a low-copy-number plasmid. Here we report on the finding and molecular characterization of TrpEG-encoding plasmids in Buchnera from aphids of the distantly related family Pemphigidae. Buchnera from Tetraneura caerulescens contained a 3.0-kb plasmid (pBTc2) that carried a single copy of trpEG and resembled trpEG plasmids of Buchnera from the Aphididae. The second plasmid (pBPs2), isolated from Buchnera of Pemphigus spyrothecae, contained a different replicon. It consisted of a putative origin of replication containing iterons and an open reading frame, designated repAC, which showed a high similarity to the gene encoding the replication initiation protein RepA of the RepA/C replicon from the broad-host-range IncA/C group of plasmids. The plasmid population was heterogeneous with respect to the number of tandem repeats of a 1.8-kb unit carrying repAC1, trpG, and remnants of trpE. The two principal forms consisted of either five or six copies of this repeat and a single-copy region carrying repAC2, the putative origin of replication, and trpE. The unexpected finding of elements of the RepA/C replicon in previously characterized trpEG plasmids from Buchnera of the Aphididae suggests that a replacement of replicons has occurred during the evolution of these plasmids, which may point to a common ancestry for all Buchnera trpEG amplifications.
Collapse
Affiliation(s)
- Van Ham RCHJ
- Department of Genetics, University of Valencia, 46100 Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
36
|
Sanchez-Romero JM, Diaz-Orejas R, De Lorenzo V. Resistance to tellurite as a selection marker for genetic manipulations of Pseudomonas strains. Appl Environ Microbiol 1998; 64:4040-6. [PMID: 9758838 PMCID: PMC106597 DOI: 10.1128/aem.64.10.4040-4046.1998] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to the toxic compound potassium tellurite (Telr) has been employed as a selection marker built into a set of transposon vectors and broad-host-range plasmids tailored for genetic manipulations of Pseudomonas strains potentially destined for environmental release. In this study, the activated Telr determinants encoded by the cryptic telAB genes of plasmid RK2 were produced, along with the associated kilA gene, as DNA cassettes compatible with cognate vectors. In one case, the Telr determinants were assembled between the I and O ends of a suicide delivery vector for mini-Tn5 transposons. In another case, the kilA and telAB genes were combined with a minimal replicon derived from a variant of Pseudomonas plasmid pPS10, which is able to replicate in a variety of gram-negative hosts and is endowed with a modular collection of cloning and expression assets. Either in the plasmid or in the transposon vector, the Telr marker was combined with a 12-kb DNA segment of plasmid pWW0 of Pseudomonas putida mt-2 encoding the upper TOL pathway enzymes. This allowed construction of antibiotic resistance-free but selectable P. putida strains with the ability to grow on toluene as the sole carbon source through an ortho-cleavage catabolic pathway.
Collapse
Affiliation(s)
- J M Sanchez-Romero
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | | | | |
Collapse
|
37
|
Giraldo R, Andreu JM, Díaz-Orejas R. Protein domains and conformational changes in the activation of RepA, a DNA replication initiator. EMBO J 1998; 17:4511-26. [PMID: 9687517 PMCID: PMC1170782 DOI: 10.1093/emboj/17.15.4511] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RepA is the DNA replication initiator protein of the Pseudomonas plasmid pPS10. RepA has a dual function: as a dimer, it binds to an inversely-repeated sequence acting as a repressor of its own synthesis; as a monomer, RepA binds to four directly-repeated sequences to constitute a specialized nucleoprotein complex responsible for the initiation of DNA replication. We have previously shown that a Leucine Zipper-like motif (LZ) at the N-terminus of RepA is responsible for protein dimerization. In this paper we characterize the existence in RepA of two protein globular domains C-terminal to the LZ. We propose that dissociation of RepA dimers into monomers results in a conformational change from a compact arrangement of both domains, competent for binding to the operator, to an extended species that is suited for iteron binding. This model establishes the structural basis for the activation of DNA replication initiators in plasmids from Gram-negative bacteria.
Collapse
Affiliation(s)
- R Giraldo
- Departmento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | |
Collapse
|
38
|
del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 1998; 62:434-64. [PMID: 9618448 PMCID: PMC98921 DOI: 10.1128/mmbr.62.2.434-464.1998] [Citation(s) in RCA: 704] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An essential feature of bacterial plasmids is their ability to replicate as autonomous genetic elements in a controlled way within the host. Therefore, they can be used to explore the mechanisms involved in DNA replication and to analyze the different strategies that couple DNA replication to other critical events in the cell cycle. In this review, we focus on replication and its control in circular plasmids. Plasmid replication can be conveniently divided into three stages: initiation, elongation, and termination. The inability of DNA polymerases to initiate de novo replication makes necessary the independent generation of a primer. This is solved, in circular plasmids, by two main strategies: (i) opening of the strands followed by RNA priming (theta and strand displacement replication) or (ii) cleavage of one of the DNA strands to generate a 3'-OH end (rolling-circle replication). Initiation is catalyzed most frequently by one or a few plasmid-encoded initiation proteins that recognize plasmid-specific DNA sequences and determine the point from which replication starts (the origin of replication). In some cases, these proteins also participate directly in the generation of the primer. These initiators can also play the role of pilot proteins that guide the assembly of the host replisome at the plasmid origin. Elongation of plasmid replication is carried out basically by DNA polymerase III holoenzyme (and, in some cases, by DNA polymerase I at an early stage), with the participation of other host proteins that form the replisome. Termination of replication has specific requirements and implications for reinitiation, studies of which have started. The initiation stage plays an additional role: it is the stage at which mechanisms controlling replication operate. The objective of this control is to maintain a fixed concentration of plasmid molecules in a growing bacterial population (duplication of the plasmid pool paced with duplication of the bacterial population). The molecules involved directly in this control can be (i) RNA (antisense RNA), (ii) DNA sequences (iterons), or (iii) antisense RNA and proteins acting in concert. The control elements maintain an average frequency of one plasmid replication per plasmid copy per cell cycle and can "sense" and correct deviations from this average. Most of the current knowledge on plasmid replication and its control is based on the results of analyses performed with pure cultures under steady-state growth conditions. This knowledge sets important parameters needed to understand the maintenance of these genetic elements in mixed populations and under environmental conditions.
Collapse
Affiliation(s)
- G del Solar
- Centro de Investigaciones Biológicas, CSIC, E-28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Kwong SM, Yeo CC, Chuah D, Poh CL. Sequence analysis of plasmid pRA2 from Pseudomonas alcaligenes NCIB 9867 (P25X) reveals a novel replication region. FEMS Microbiol Lett 1998; 158:159-65. [PMID: 9465390 DOI: 10.1111/j.1574-6968.1998.tb12815.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The replication region of plasmid pRA2 from Pseudomonas alcaligenes NCIB 9867 (strain P25X) was localized within a 5.9-kbp DNA fragment and its sequence was determined. An interesting feature of the sequence is the presence of a 1.3-kbp region containing seven, highly conserved, direct repeats of 72 bp in length. The pRA2 replication region has two open reading frames (ORFs). ORF1 appeared to be essential for replication and had the potential to encode a novel 30-kDa protein with a predicted helix-turn-helix motif located at the C-terminal end. ORF2 was not essential for replication and may encode for a 37-kDa protein which shares 41% and 27% amino acid sequence identity to the KfrA proteins from plasmids RK2 and R751, respectively. The essential region of replication was narrowed down to 2819 nucleotides and included four of the seven 72-bp direct repeats, a potential DnaA-binding site and ORF1.
Collapse
Affiliation(s)
- S M Kwong
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
40
|
Gravesen A, von Wright A, Josephsen J, Vogensen FK. Replication regions of two pairs of incompatible lactococcal theta-replicating plasmids. Plasmid 1997; 38:115-27. [PMID: 9339469 DOI: 10.1006/plas.1997.1302] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Incompatibility tests were performed employing 12 replicons belonging to a family of homologous lactococcal theta-replicating plasmids. Two pairs of incompatible plasmids were found, namely, pFV1001 and pFV1201, and pJW565 and pFW094. The replicons of plasmids pFV1001, pFV1201, pJW565, pJW566, and pFW094 were sequenced. Alignments were made of the replicational origins (repA) and putative replication proteins (RepB) of these and 11 related plasmid sequences. Comparison of the alignments with the incompatibility data indicated that the incompatibility determinant could be contained within the 22-bp tandem repeats DRII and/or the inverted repeat IR1 in repA. In support, the incompatibility determinant of pJW563 was localized to a 743-bp fragment encompassing repA. A stretch of 13 amino acids of RepB was proposed to be responsible for the plasmid-specific initiation of replication. This stretch is part of a domain containing features that are highly conserved within the proposed DNA binding regions of the initiation proteins from several well-characterized plasmids from Gram-negative bacteria, including pSC101, R6K, and mini-F.
Collapse
Affiliation(s)
- A Gravesen
- Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | |
Collapse
|
41
|
García de Viedma D, Serrano-López A, Díaz-Orejas R. Specific binding of the replication protein of plasmid pPS10 to direct and inverted repeats is mediated by an HTH motif. Nucleic Acids Res 1995; 23:5048-54. [PMID: 8559664 PMCID: PMC307512 DOI: 10.1093/nar/23.24.5048] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The initiator protein of the plasmid pPS10, RepA, has a putative helix-turn-helix (HTH) motif at its C-terminal end. RepA dimers bind to an inverted repeat at the repA promoter (repAP) to autoregulate RepA synthesis. [D. García de Viedma, et al. (1996) EMBO J. in press]. RepA monomers bind to four direct repeats at the origin of replication (oriV) to initiate pPS10 replication This report shows that randomly generated mutations in RepA, associated with defficiencies in autoregulation, map either at the putative HTH motif or in its vicinity. These mutant proteins do not promote pPS10 replication and are severely affected in binding to both the repAP and oriV regions in vitro. Revertants of a mutant that map in the vicinity of the HTH motif have been obtained and correspond to a second amino acid substitution far upstream of the motif. However, reversion of mutants that map in the helices of the motif occurs less frequently, at least by an order of magnitude. All these data indicate that the helices of the HTH motif play an essential role in specific RepA-DNA interactions, although additional regions also seem to be involved in DNA binding activity. Some mutations have slightly different effects in replication and autoregulation, suggesting that the role of the HTH motif in the interaction of RepA dimers or monomers with their respective DNA targets (IR or DR) is not the same.
Collapse
|
42
|
Ruiz-Echevarría MJ, de la Cueva G, Díaz-Orejas R. Translational coupling and limited degradation of a polycistronic messenger modulate differential gene expression in the parD stability system of plasmid R1. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:599-609. [PMID: 7476860 DOI: 10.1007/bf02423456] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The parD stability system of plasmid R1 is an auto-regulated operon containing two genes, kis and kid, that code, respectively, for a killer protein (Kid) and for an antagonist of Kid action (Kis protein). A polycistronic transcript and a shorter mRNA, coding only for Kis and ending in a stem-loop sequence, have been identified as the main parD transcripts in cells carrying a derepressed parD operon. In this communication we show that both parD mRNAs have a half-life close to 1 min and are present in similar amounts. Using an assay based on cell-free extracts of Escherichia coli, we demonstrate that the short kis mRNA originates from limited degradation of the bicistronic parD transcript and that the stem-loop structure within the 5' end of the kid gene is specifically required for the formation of this short transcript. In vivo experiments show that synthesis of Kis is required for efficient synthesis of Kid. These data indicate that RNA processing and translational coupling are important mechanisms that modulate the differential expression of the two genes, kis and kid, in the bicistronic parD operon.
Collapse
|
43
|
Ruiz-Echevarría MJ, de la Torre MA, Díaz-Orejas R. A mutation that decreases the efficiency of plasmid R1 replication leads to the activation of parD, a killer stability system of the plasmid. FEMS Microbiol Lett 1995; 130:129-35. [PMID: 7649433 DOI: 10.1111/j.1574-6968.1995.tb07709.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The silent parD (kis/kid) stability operon of plasmid R1 is normally repressed by the co-ordinated action of the Kis and Kid proteins. In this report it is shown that a mutation in repA, the gene of the plasmid replication protein, that reduces two-fold the copy number of the plasmid, leads to the derepression of the parD system. This derepression can be prevented by a suppressor mutation in copB, a copy number control gene of plasmid R1, that increases the efficiency of replication of the repA mutant. Derepression of the wild-type parD system leads to high plasmid stability. These data show the activation of a plasmid stability operon by a mutation that reduces the efficiency of wild-type plasmid replication.
Collapse
|
44
|
Fernández-Tresguerres ME, Martín M, García de Viedma D, Giraldo R, Díaz-Orejas R. Host growth temperature and a conservative amino acid substitution in the replication protein of pPS10 influence plasmid host range. J Bacteriol 1995; 177:4377-84. [PMID: 7635822 PMCID: PMC177187 DOI: 10.1128/jb.177.15.4377-4384.1995] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
pPS10 is a replicon isolated from Pseudomonas syringe pv. savastanoi that can be established at 37 degrees C efficiently in Pseudomonas aeruginosa but very inefficiently in Escherichia coli. The establishment of the wild-type pPS10 replicon in E. coli is favored at low temperatures (30 degrees C or below). RepA protein of pPS10 promotes in vitro plasmid replication in extracts from E. coli, and this replication depends on host proteins DnaA, DnaB, DnaG, and SSB. Mutant plasmids able to efficiently replicate in E. coli at 37 degrees C were obtained. Three of four mutants whose mutations were mapped show a conservative Ala-->Val change in the amino-terminal region of the replication protein RepA. Plasmids carrying this mutation maintain the capacity to replicate in P. aeruginosa and have a fourfold increase in copy number in this host. The mutation does not substantially alter the autoregulation mediated by RepA. These results show that the physiological conditions of the host as well as subtle changes in the plasmid replication protein can modulate the host range of the pPS10 replicon.
Collapse
|
45
|
Mellado E, Asturias JA, Nieto JJ, Timmis KN, Ventosa A. Characterization of the basic replicon of pCM1, a narrow-host-range plasmid from the moderate halophile Chromohalobacter marismortui. J Bacteriol 1995; 177:3443-50. [PMID: 7768853 PMCID: PMC177047 DOI: 10.1128/jb.177.12.3443-3450.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The moderately halophilic bacterium Chromohalobacter marismortui contains a 17.5-kb narrow-host-range plasmid, pCM1, which shows interesting properties for the development of cloning vectors for the genetic manipulation of this important group of extremophiles. Plasmid pCM1 can stably replicate and is maintained in most gram-negative moderate halophiles tested. The replication origin has been identified and sequenced, and the minimal pCM1 replicon has been localized to a 1,600-bp region which includes two functionally discrete regions, the oriV region and the repA gene. oriV, located on a 700-bp fragment, contains four iterons 20 bp in length adjacent to a DnaA box that is dispensable but required for efficient replication of pCM1, and it requires trans-acting functions. The repA gene, which encodes a replication protein of 289 residues, is similar to the replication proteins of other gram-negative bacteria.
Collapse
Affiliation(s)
- E Mellado
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Spain
| | | | | | | | | |
Collapse
|
46
|
Matsunaga F, Kawasaki Y, Ishiai M, Nishikawa K, Yura T, Wada C. DNA-binding domain of the RepE initiator protein of mini-F plasmid: involvement of the carboxyl-terminal region. J Bacteriol 1995; 177:1994-2001. [PMID: 7721691 PMCID: PMC176841 DOI: 10.1128/jb.177.8.1994-2001.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The RepE initiator protein (251 residues) is essential for mini-F replication in Escherichia coli and exhibits two major functions: initiation of DNA replication from ori2 and autogenous repression of repE transcription. Whereas the initiation is mediated by RepE monomers that bind to the ori2 iterons (direct repeats), the autogenous repression is mediated by dimers that bind to the repE operator, which contains an inverted repeat sequence related to the iterons. We now report that the binding of RepE to these DNA sites is primarily determined by the C-terminal region of this protein. The mutant RepE proteins lacking either the N-terminal 33 (or more) residues or the C-terminal 7 (or more) residues were first shown to be defective in binding to both the ori2 and the operator DNAs. However, direct screening and analysis of mutant RepEs which are specifically affected in binding to the ori2 iterons revealed that the mutations (mostly amino acid substitutions) occur exclusively in the C-terminal region (residues 168 to 242). These mutant proteins exhibited reduced binding to ori2 and no detectable binding to the operator. Thus, whereas truncation of either end of RepE can destroy the DNA-binding activities, the C-terminal region appears to represent a primary DNA-binding domain of RepE for both ori2 and the operator. Analogous DNA-binding domains seem to be conserved among the initiator proteins of certain related plasmids.
Collapse
Affiliation(s)
- F Matsunaga
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
47
|
West SE, Schweizer HP, Dall C, Sample AK, Runyen-Janecky LJ. Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 1994; 148:81-6. [PMID: 7926843 DOI: 10.1016/0378-1119(94)90237-2] [Citation(s) in RCA: 483] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleotide sequence of the 1.9-kb PstI fragment from pRO1614, that allows stable maintenance of pMB1 (ColE1)-based cloning vectors in Pseudomonas, was determined. This fragment encodes a putative origin of replication (ori), a replication-controlling protein, and the C terminus of the Tn3 beta-lactamase-encoding gene. Improved versions of the broad-host-range plasmid vectors, pUCP18 and pUCP19, were constructed by deletion of nonessential DNA or replacement of nonessential DNA with an antibiotic-resistance cassette.
Collapse
Affiliation(s)
- S E West
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison 53706
| | | | | | | | | |
Collapse
|
48
|
Boivin R, Bellemare G, Dion P. Novel narrow-host-range vectors for direct cloning of foreign DNA in Pseudomonas. Curr Microbiol 1994; 28:41-7. [PMID: 7764307 DOI: 10.1007/bf01575984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Narrow-host-range vectors, based on an indigenous replicon and containing a multiple cloning site, have been constructed in a Pseudomonas host capable of growth on unusual substrates. The new cloning vectors yield sufficient amounts of DNA for preparative purposes and belong to an incompatibility group different from that of the incP and incQ broad-host-range vectors. One of these vectors, named pDB47F, was used to clone, directly in Pseudomonas, DNA fragments from Agrobacterium, Pseudomonas, and Rhizobium. A clone containing Agrobacterium and KmR gene sequences was transformed with a higher efficiency than an RSF1010-derived vector (by as much as 1250-fold) in four out of five Pseudomonas strains tested. The considerable efficiency obtained with this system makes possible the direct cloning and phenotypic selection of foreign DNA in Pseudomonas.
Collapse
Affiliation(s)
- R Boivin
- Department of Phytology, Faculty of Agricultural and Food Sciences, Laval University, Québec, Canada
| | | | | |
Collapse
|
49
|
Mercado-Blanco J, Olivares J. Stability and transmissibility of the cryptic plasmids of Rhizobium meliloti GR4. Arch Microbiol 1993. [DOI: 10.1007/bf00245309] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Brolle DF, Pape H, Hopwood DA, Kieser T. Analysis of the transfer region of the Streptomyces plasmid SCP2. Mol Microbiol 1993; 10:157-70. [PMID: 7968512 DOI: 10.1111/j.1365-2958.1993.tb00912.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
pIJ903, a bifunctional derivative of the 31.4 kb low-copy-number, conjugative Streptomyces plasmid SCP2*, was mutagenized in Streptomyces lividans using Tn4560. Mutant plasmids differing in their transfer frequencies, chromosome mobilization abilities, pock formation, and complementation properties were isolated. The mutations defined five transfer-related genes, traA, traB, traC, traD and spd, clustered in a region of 9 kb. The deduced sequences of the putative TraA and TraB proteins showed no overall similarity to known protein sequences, but the phenotype of traA mutant plasmids and sequence motifs in the putative TraA protein suggested that it might be a DNA helicase.
Collapse
Affiliation(s)
- D F Brolle
- John Innes Institute, John Innes Centre, Norwich, UK
| | | | | | | |
Collapse
|