1
|
Matuszewska A, Kowalski K, Jawień P, Tomkalski T, Gaweł-Dąbrowska D, Merwid-Ląd A, Szeląg E, Błaszczak K, Wiatrak B, Danielewski M, Piasny J, Szeląg A. The Hypothalamic-Pituitary-Gonadal Axis in Men with Schizophrenia. Int J Mol Sci 2023; 24:6492. [PMID: 37047464 PMCID: PMC10094807 DOI: 10.3390/ijms24076492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
Schizophrenia is a severe mental disorder with a chronic, progressive course. The etiology of this condition is linked to the interactions of multiple genes and environmental factors. The earlier age of onset of schizophrenia, the higher frequency of negative symptoms in the clinical presentation, and the poorer response to antipsychotic treatment in men compared to women suggests the involvement of sex hormones in these processes. This article aims to draw attention to the possible relationship between testosterone and some clinical features in male schizophrenic patients and discuss the complex nature of these phenomena based on data from the literature. PubMed, Web of Science, and Google Scholar databases were searched to select the papers without limiting the time of the publications. Hormone levels in the body are regulated by many organs and systems, and take place through the neuroendocrine, hormonal, neural, and metabolic pathways. Sex hormones play an important role in the development and function of the organism. Besides their impact on secondary sex characteristics, they influence brain development and function, mood, and cognition. In men with schizophrenia, altered testosterone levels were noted. In many cases, evidence from available single studies gave contradictory results. However, it seems that the testosterone level in men affected by schizophrenia may differ depending on the phase of the disease, types of clinical symptoms, and administered therapy. The etiology of testosterone level disturbances may be very complex. Besides the impact of the illness (schizophrenia), stress, and antipsychotic drug-induced hyperprolactinemia, testosterone levels may be influenced by, i.a., obesity, substances of abuse (e.g., ethanol), or liver damage.
Collapse
Affiliation(s)
- Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Krzysztof Kowalski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 25/27, 50-375 Wroclaw, Poland
| | - Tomasz Tomkalski
- Department of Endocrinology, Diabetology and Internal Medicine, Tadeusz Marciniak Lower Silesia Specialist Hospital–Centre for Medical Emergency, A.E. Fieldorfa 2, 54-049 Wroclaw, Poland
| | - Dagmara Gaweł-Dąbrowska
- Department of Population Health, Division of Public Health, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| | - Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Ewa Szeląg
- Department of Maxillofacial Orthopaedics and Orthodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Karolina Błaszczak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Janusz Piasny
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| |
Collapse
|
2
|
Engstrom CA, Kasper CE. Physiology and Endocrinology of Hot Flashes in Prostate Cancer. Am J Mens Health 2016; 1:8-17. [DOI: 10.1177/1557988306294162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of this article is to integrate the physiology of the male reproductive system and the role of hormones in the pathophysiology and treatment of prostate cancer. The primary focus is to review hormonal changes associated with androgen ablation treatment and to integrate the available hormonal data into a hypothesis. This review used a systematic search of Medline references from 1990 to 2006. All sources were critically evaluated to arrive at an understanding of androgen deprivation symptoms, such as hot flushes/flashes, and to identify research needed in this area. Research is needed to explore the physiological mechanisms of hot flashes to develop better therapeutic treatment options to ameliorate side effects of hormonal treatment. Studies are needed to investigate all aspects of hot flashes in populations other than those with breast cancer, such as men with prostate cancer, carcinoid tumors, medullary thyroid tumors, pancreatic islet-cell tumors, renal cell carcinoma, and phenochromocytoma.
Collapse
Affiliation(s)
- Christine A. Engstrom
- Uniformed Services University of the Health Sciences, Graduate School of Nursing, Bethesda, Maryland, VA Maryland Health Care System, Baltimore, Maryland,
| | - Christine E. Kasper
- Uniformed Services University of the Health Sciences, Graduate School of Nursing, Bethesda, Maryland, VA Office of Nursing Services, VA Headquarters, Washington, D.C
| |
Collapse
|
3
|
Okamura H, Tsukamura H, Ohkura S, Uenoyama Y, Wakabayashi Y, Maeda KI. Kisspeptin and GnRH pulse generation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:297-323. [PMID: 23550012 DOI: 10.1007/978-1-4614-6199-9_14] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The reproductive neuropeptide gonadotropin-releasing hormone (GnRH) has two modes of secretion. Besides the surge mode, which induces ovulation in females, the pulse mode of GnRH release is essential to cause various reproductive events in both sexes, such as spermatogenesis, follicular development, and sex steroid synthesis. Some environmental cues control gonadal activities through modulating GnRH pulse frequency. Researchers have looked for the anatomical location of the mechanism generating GnRH pulses, the GnRH pulse generator, in the brain, because an artificial manipulation of GnRH pulse frequency is of therapeutic importance to stimulate or suppress gonadal activity. Discoveries of kisspeptin and, consequently, KNDy (kisspeptin/neurokinin B/dynorphin) neurons in the hypothalamus have provided a clue to the possible location of the GnRH pulse generator. Our analyses of hypothalamic multiple-unit activity revealed that KNDy neurons located in the hypothalamic arcuate nucleus might play a central role in the generation of GnRH pulses in goats, and perhaps other mammalian species. This chapter further discusses the possible mechanisms for GnRH pulse generation.
Collapse
Affiliation(s)
- Hiroaki Okamura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
4
|
Krsmanovic LZ, Hu L, Leung PK, Feng H, Catt KJ. The hypothalamic GnRH pulse generator: multiple regulatory mechanisms. Trends Endocrinol Metab 2009; 20:402-8. [PMID: 19740674 PMCID: PMC2769988 DOI: 10.1016/j.tem.2009.05.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 12/30/2022]
Abstract
Pulsatile secretion of gonadotropin-releasing hormone (GnRH) release is an intrinsic property of hypothalamic GnRH neurons. Pulse generation has been attributed to multiple specific mechanisms, including spontaneous electrical activity of GnRH neurons, calcium and cAMP signaling, a GnRH receptor autocrine regulatory component, a GnRH concentration-dependent switch in GnRH receptor (GnRH-R) coupling to specific G proteins, the expression of G protein-coupled receptors (GPCRs) and steroid receptors, and homologous and heterologous interactions between cell membrane receptors expressed in GnRH neurons. The coexistence of multiple regulatory mechanisms for pulsatile GnRH secretion provides a high degree of redundancy in maintaining this crucial component of the mammalian reproductive process. These studies provide insights into the basic cellular and molecular mechanisms involved in GnRH neuronal function.
Collapse
Affiliation(s)
- Lazar Z Krsmanovic
- Section on Hormonal Regulation, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
5
|
Krause BT, Ohlinger R, Haase A. Lutropin alpha, recombinant human luteinizing hormone, for the stimulation of follicular development in profoundly LH-deficient hypogonadotropic hypogonadal women: a review. Biologics 2009; 3:337-47. [PMID: 19707419 PMCID: PMC2726078 DOI: 10.2147/btt.2009.3306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hypogonadotropic hypogonadism is defined as a medical condition with low or undetectable gonadotropin secretion, associated with a complete arrest of follicular growth and very low estradiol. The main cause can be traced back to an irregular or absent hypothalamic GnRH secretion, whereas only a minority suffers from a pituitary disorder. The choice of treatment to reverse this situation is a pulsatile GnRH application or a direct ovarian stimulation using gonadotropin injections. The goal is to achieve a proper ovarian function in these cases for a short time to allow ovulation and chance of pregnancy. Since the pulsatile GnRH treatment lost its former importance, several gonadotropins are in use to stimulate follicular growth, such as urine-derived human menopausal gonadotropin, highly purified follicle stimulating hormone (FSH) or recombinant FSH, all with different success. The introduction of recombinant luteinizing hormone (LH) and FSH provided an opportunity to investigate the distinct influences of LH and FSH alone and in combination on follicular growth in monofollicular ovulation induction cycles, and additionally on oocyte maturation, fertilization competence of the oocyte and embryo quality in downregulated IVF patients. Whereas FSH was known to be indispensable for normal follicular growth, the role of LH remained questionable. Downregulated IVF patients with this short-term gonadotropin depletion displayed no advance in stimulation success with the use of recombinant LH. Patients with hypogonadotropic hypogonadism undergoing monofollicular stimulation for ovulation induction showed clearly a specific role and need for both hormones in normal follicular growth. Therefore, a combined stimulation with FSH and LH seems to be the best treatment choice. In the first half of the stimulation cycle the FSH dosage should exceed that of LH by 2:1, with an inverse ratio for the second half.
Collapse
Affiliation(s)
- Bernd Th Krause
- Center for Endocrinology and Reproductive Medicine, MVZ Uhlandstr, Berlin, Germany.
| | | | | |
Collapse
|
6
|
Jansen HT, Cutter C, Hardy S, Lehman MN, Goodman RL. Seasonal plasticity within the gonadotropin-releasing hormone (GnRH) system of the ewe: changes in identified GnRH inputs and glial association. Endocrinology 2003; 144:3663-76. [PMID: 12865349 DOI: 10.1210/en.2002-0188] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The annual reproductive cycle in sheep may reflect a functional remodeling within the GnRH system. Specifically, changes in total synaptic input and association with the polysialylated form of neural cell adhesion molecule have been observed. Whether seasonal changes in a specific subset(s) of GnRH inputs occur or whether glial cells specifically play a role in this remodeling is not clear. We therefore examined GnRH neurons of breeding season (BS) and nonbreeding season (anestrus) ewes and tested the hypotheses that specific (i.e. gamma-aminobutyric acid, catecholamine, neuropeptide Y, or beta-endorphin) inputs to GnRH neurons change seasonally, and concomitant with any changes in neural inputs is a change in glial apposition. Using triple-label immunofluorescent visualization of GnRH, glial acidic fibrillary protein and neuromodulator/neural terminal markers combined with confocal microscopy and optical sectioning techniques, we confirmed that total numbers of neural inputs to GnRH neurons vary with season and demonstrated that specific inputs contribute to these overall changes. Specifically, neuropeptide Y and gamma-aminobutyric acid inputs to GnRH neurons increased during BS and beta-endorphin inputs were greater during either anestrus (GnRH somas) or BS (GnRH dendrites). Associated with the changes in GnRH inputs were seasonal changes in glial apposition, glial acidic fibrillary protein density, and the thickness of glial fibrils. These findings are interpreted to suggest an increase in net stimulatory inputs to GnRH neurons during the BS contributes to the seasonal changes in GnRH neurosecretion and that this increased innervation is perhaps stabilized by glial processes.
Collapse
Affiliation(s)
- Heiko T Jansen
- Department of Veterinary and Comparative Anatomy, Washington State University College of Veterinary Medicine, Pullman, Washington 99164-6520, USA.
| | | | | | | | | |
Collapse
|
7
|
Stojilkovic SS, Catt KJ. Expression and signal transduction pathways of gonadotropin-releasing hormone receptors. RECENT PROGRESS IN HORMONE RESEARCH 1995; 50:161-205. [PMID: 7740156 DOI: 10.1016/b978-0-12-571150-0.50012-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S S Stojilkovic
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
8
|
Tillet Y, Batailler M, Thibault J. Neuronal projections to the medial preoptic area of the sheep, with special reference to monoaminergic afferents: immunohistochemical and retrograde tract tracing studies. J Comp Neurol 1993; 330:195-220. [PMID: 8491868 DOI: 10.1002/cne.903300205] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The preoptic area contains most of the luteinizing hormone releasing hormone immunoreactive neurons and numerous monoaminergic afferents whose cell origins are unknown in sheep. Using tract tracing methods with a specific retrograde fluorescent tracer, fluorogold, we examined the cells of origin of afferents to the medial preoptic area in sheep. Among the retrogradely labeled neurons, immunohistochemistry for tyrosine hydroxylase, dopamine-beta-hydroxylase, phenylethanolamine N-methyltransferase, and serotonin was used to characterize catecholamine and serotonin fluorogold labeled neurons. Most of the afferents came from the ipsilateral side to the injection site. It was observed that the medial preoptic area received major inputs from the diagonal band of Broca, the lateral septum, the thalamic paraventricular nucleus, the lateral hypothalamus, the area dorsolateral to the third ventricle, the perimamillary area, the amygdala, and the ventral part of the hippocampus. Other numerous, scattered, retrogradely labeled neurons were observed in the ventral part of the preoptic area, the vascular organ of the lamina terminalis, the ventromedial part of the hypothalamus, the periventricular area, the area lateral to the interpeduncular nucleus, and the dorsal vagal complex. Noradrenergic afferents came from the complex of the locus coeruleus (A6/A7 groups) and from the ventro-lateral medulla (group A1). However, dopaminergic and adrenergic neuronal groups retrogradely labeled with fluorogold were not observed. Serotoninergic fluorogold labeled neurons belonged to the medial raphe nucleus (B8, B5) and to the serotoninergic group situated lateral to the interpeduncular nucleus (S4). In the light of these anatomical data we hypothesize that these afferents have a role in the regulation of several functions of the preoptic area, particularly those related to reproduction. Accordingly these afferents could be involved in the control of luteinizing hormone releasing hormone (LHRH) pulsatility or of preovulatory LHRH surge.
Collapse
Affiliation(s)
- Y Tillet
- Unité de Neuroendocrinologie Sexuelle, INRA Station de Physiologie de la Reproduction, Nouzilly, France
| | | | | |
Collapse
|
9
|
Witkin JW. Reproductive history affects the synaptology of the ageing gonadotropin-releasing hormone system in the male rat. J Neuroendocrinol 1992; 4:427-32. [PMID: 21554626 DOI: 10.1111/j.1365-2826.1992.tb00189.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study is an examination of the density of synaptic input to gonadotropin-releasing hormone (GnRH) neurons in young adult and aged retired breeder male rats. In earlier experiments on aged virgin male rats we observed an increase in synaptic input to this specific neuronal population, ascribable in part to synapses containing flattened vesicles, suggesting GABAergic input. The present study utilized retired breeders in order to dissect the effects of ageing from those associated with reproductive behavioral history. Tissue from the preoptic area was treated for the simultaneous electron microscopic immunocytochemical demonstration of GnRH with tetramethylbenzidine and glutamic acid decarboxylase (the essential enzyme in the production of GABA) using 3,3'-diaminobenzidine. Estimates of the density of synaptic input to the soma of GnRH neurons were made by calculating the percentage of perikaryal membrane with postsynaptic modification. Five GnRH neurons per animal were measured using computerized morpho-metrics and differences in the percent of membrane with synaptic modification between experimental groups were tested using the Mann-Whitney U non-parametric statistic. There was no difference in the total density of synaptic input to GnRH neurons in the young and old animals, or in the proportion of this input that was immunoreactive for glutamic acid decarboxylase. Similar measurements were made on random, non-identified neurons in the same region and a significant decrease with ageing in total synaptic input was found, though the glutamic acid decarboxylase component was unchanged. The present results are in contrast to our earlier findings on virgin males and suggest that reproductive behavioral experience affects the connectivity of GnRH neurons.
Collapse
Affiliation(s)
- J W Witkin
- Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| |
Collapse
|
10
|
Desan PH, Lopez KH, Austin HB, Jones RE. Asymmetric metabolism of hypothalamic catecholamines alternates with side of ovulation in a lizard (Anolis carolinensis). THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1992; 262:105-12. [PMID: 1583449 DOI: 10.1002/jez.1402620114] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We determined levels of monoamines and their metabolites in 2 hypothalami dissected from the right and left hemibrains of 15 females during the right-left alternating ovulatory cycle of Anolis carolinensis. Tissue contents of the following were measured using HPLC and electrochemical (coulometric) detection: dopamine (DA) and its metabolite 2,4-dihydroxyphenylacetic acid (DOPAC), norepinephrine (NE) and its metabolites 3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxyphenylglycol (DHPG), and serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). An asymmetry ratio (AR) was determined by subtracting hypothalamic content (pM/mg) on the larger ovary (LO) side from that on the smaller ovary (SO) side, divided by the sum of the 2 sides (AR = SO - LO/SO+LO). The Ar of MHPG and DHPG both decreased as the largest follicle in the LO grew during the cycle, from greater than 0 (content higher on the SO side) at the beginning of the cycle to less than 0 (content higher on the LO side). The average content of MHPG in the 2 sides significantly increased during the cycle. There were no significant asymmetric changes in hypothalamic DA or DOPAC. The average content of DA increased during the cycle, whereas the content of DOPAC, as well as DOPAC/DA, did not change. The average content of 5-HT increased, and the average metabolite ratio of 5-HIAA/5-HT decreased during the cycle without significant asymmetries. The metabolite ratios of NE and DA, but not 5-HT, were asymmetric on the same side in a given female.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P H Desan
- Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder 80309
| | | | | | | |
Collapse
|
11
|
Wang C, Swerdloff RS. Evaluation of testicular function. BAILLIERE'S CLINICAL ENDOCRINOLOGY AND METABOLISM 1992; 6:405-34. [PMID: 1616451 DOI: 10.1016/s0950-351x(05)80156-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The evaluation of testicular function is based primarily on a detailed medical history, a careful physical examination, basal measurements of FSH, LH and testosterone and a routine semen analysis. In a patient with androgen deficiency, the diagnosis can often be made with these basic tests. The clinician will then decide on other investigations to localize the organic lesion and to plan further treatment for the patient. Sperm function tests are often performed in patients presenting with infertility. These newer tests may help to delineate the abnormality of the spermatozoa at each stage during the achievement of fertilizing capacity such as adequate forward motility, penetration of cervical mucus, acrosome reaction, development of hyperactivated motility, binding to the zona pellucida, and fusion with the oocyte. Currently, many of these sperm function tests depend on cumbersome bioassays with many limiting factors contributing to their availability, accuracy and precision. The development of biochemical tests as markers of sperm function may allow more precise definition of sperm functional abnormalities. With the continued improvement of computer-aided sperm analysis, objective motion parameter measurements are possible and morphological assessment are being developed. These newer objective methods of semen analysis have to be shown to be valuable in the clinical assessment of patients with testicular dysfunction.
Collapse
|