1
|
Banreti A, Bhattacharya S, Wien F, Matsuo K, Réfrégiers M, Meinert C, Meierhenrich U, Hudry B, Thompson D, Noselli S. Biological effects of the loss of homochirality in a multicellular organism. Nat Commun 2022; 13:7059. [PMID: 36400783 PMCID: PMC9674851 DOI: 10.1038/s41467-022-34516-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Homochirality is a fundamental feature of all known forms of life, maintaining biomolecules (amino-acids, proteins, sugars, nucleic acids) in one specific chiral form. While this condition is central to biology, the mechanisms by which the adverse accumulation of non-L-α-amino-acids in proteins lead to pathophysiological consequences remain poorly understood. To address how heterochirality build-up impacts organism's health, we use chiral-selective in vivo assays to detect protein-bound non-L-α-amino acids (focusing on aspartate) and assess their functional significance in Drosophila. We find that altering the in vivo chiral balance creates a 'heterochirality syndrome' with impaired caspase activity, increased tumour formation, and premature death. Our work shows that preservation of homochirality is a key component of protein function that is essential to maintain homeostasis across the cell, tissue and organ level.
Collapse
Affiliation(s)
- Agnes Banreti
- grid.461605.0Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Shayon Bhattacharya
- grid.10049.3c0000 0004 1936 9692Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Frank Wien
- grid.426328.9DISCO Beamline, Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Koichi Matsuo
- grid.257022.00000 0000 8711 3200HiSOR Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
| | - Matthieu Réfrégiers
- grid.417870.d0000 0004 0614 8532Centre de Biophysique Moléculaire, CNRS; UPR4301, 45071 Orléans, France
| | - Cornelia Meinert
- grid.462124.70000 0004 0384 8488Université Côte d’Azur, Institut de Chimie de Nice, CNRS; UMR 7272, 06108 Nice, France
| | - Uwe Meierhenrich
- grid.462124.70000 0004 0384 8488Université Côte d’Azur, Institut de Chimie de Nice, CNRS; UMR 7272, 06108 Nice, France
| | - Bruno Hudry
- grid.461605.0Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Damien Thompson
- grid.10049.3c0000 0004 1936 9692Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Stéphane Noselli
- grid.461605.0Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| |
Collapse
|
2
|
Park JS, Cho JY, Kim SS, Bae HJ, Han JW, Lee HW, Hong SY. Immunoglobulin can be functionally regulated by protein carboxylmethylation in Fc region. Arch Pharm Res 2006; 29:384-93. [PMID: 16756083 DOI: 10.1007/bf02968588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein carboxylmethylation methylates the free carboxyl groups in various substrate proteins by protein carboxyl O-methyltransferase (PCMT) and is one of the post-translational modifications. There have been many studies on protein carboxylmethylation. However, the precise functional role in mammalian systems is unclear. In this study, immunoglobulin, a specific form of gamma-globulin, which is a well-known substrate for PCMT, was chosen to investigate the regulatory roles of protein carboxylmethylation in the immune system. It was found that the anti-BSA antibody could be carboxylmethylated via spleen PCMT to a level similar to gamma-globulin. This carboxylmethylation increased the hydrophobicity of the anti-BSA antibody up to 11.4%, and enhanced the antigen-binding activity of this antibody up to 24.6%. In particular, the Fc region showed a higher methyl accepting capacity with 80% of the whole structure level. According to the amino acid sequence alignment, indeed, 7 aspartic acids and 5 glutamic acids, as potential carboxylmethylation sites, were found to be conserved in the Fc portion in the human, mouse and rabbit. The carboxylmethylation of the anti-BSA antibody was reversibly demethylated under a higher pH and long incubation time. Therefore, these results suggest that protein carboxylmethylation may reversibly regulate the antibody-mediated immunological events via the Fc region.
Collapse
Affiliation(s)
- Jong Sun Park
- Department of Genetic Engineering, Faculty of Life Science and Technology, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | | | | | |
Collapse
|
3
|
Bilodeau D, Béliveau R. Inhibition of GTPgammaS-dependent L-isoaspartyl protein methylation by tyrosine kinase inhibitors in kidney. Cell Signal 1999; 11:45-52. [PMID: 10206344 DOI: 10.1016/s0898-6568(98)00030-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Protein carboxyl methylation in rat kidney cytosol is increased by the addition of guanosine 5'-O-[gamma-thio]triphosphate (GTPgammaS), a non-hydrolysable analogue of GTP. GTPgammaS-stimulated methyl ester group incorporation takes place on isoaspartyl residues, as attested by the alkaline sensitivity of the labelling and its competitive inhibition by L-isoaspartyl-containing peptides. GTPgammaS was the most potent nucleotide tested, whereas GDPbetaS and ATPgammaS also stimulated methylation but to a lesser extent. Maximal stimulation (5-fold) of protein L-isoaspartyl methytransferase (PIMT) activity by GTPgammaS was reached at a physiological pH in the presence of 10 mM MgCl2. Other divalent cations, such as Cu2+, Zn2+ and Co2+ (100 microM), totally inhibited GTPgammaS-dependent carboxyl methylation. The phosphotyrosine phosphatase inhibitor vanadate potentiated the GTPgammaS stimulation of PIMT activity in the kidney cytosol at a concentration lower than 40 microM, but increasing the vanadate concentration to more than 40 microM resulted in a dose-dependent inhibition of the GTPgammaS effect. The tyrosine kinase inhibitors genistein (IC50 = 4 microM) and tyrphostin (IC50 = 1 microM) abolished GTPgammaS-dependent PIMT activity by different mechanisms, as was revealed by acidic gel analysis of methylated proteins. Whereas tyrphostin stabilised the methyl ester groups, genistein acted by blocking a crucial step required for the activation of PIMT activity by GTPgammaS. The results obtained with vanadate and genistein suggest that tyrosine phosphorylation regulates GTPgammaS-stimulated PIMT activity in the kidney cytosol.
Collapse
Affiliation(s)
- D Bilodeau
- Département de chimie-biochimie, Université du Québec à Montréal et Centre de Cancérologìe Charles Bruneau, Hôpital Ste-Justine, Montréal, Québec, Canada
| | | |
Collapse
|
4
|
Biswas N, Ghosh AK. Possible role of isoaspartyl methyltransferase towards regulation of acid trehalase activity in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1335:273-82. [PMID: 9202190 DOI: 10.1016/s0304-4165(96)00145-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Logarithmically growing cells of S. cerevisiae contained high neutral trehalase (NT) activity while stationary-phase cells had high acid trehalase (AT) activity. Change in activity profile of AT and NT were different during growth under different conditions, particularly during growth in acetate medium and up to 1 h of germination period, but that for AT and isoaspartyl methyltransferase (IMT) were found to be almost identical. Concomitant increase in NT activity as well as increase in cAMP level was noticed at the onset of spore germination. Increase in AT and IMT activities as well as decrease in S-adenosyl-L-methionine (AdoMet) level were noticed during stationary phase of growth. Acidic polyacrylamide gel electrophoresis and subsequent autoradiography revealed that substrate of IMT was a protein of molar mass around 82 kDa which could be an AT. Methylated AT was found to be more active while non-methylated AT was relatively less active in comparison to the untreated sample. Since AT existed as an equilibrium mixture of protomer and oligomer, it was suggested that IMT catalysed carboxyl methylation might have some contribution towards the regulation of AT activity.
Collapse
Affiliation(s)
- N Biswas
- Applied Biochemistry Department, Indian Institute of Chemical Biology, Calcutta
| | | |
Collapse
|
5
|
Kodama T, Mizobuchi M, Takeda R, Torikai H, Shinomiya H, Ohashi Y. Hampered expression of isoaspartyl protein carboxyl methyltransferase gene in the human cataractous lens. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1245:269-72. [PMID: 7492588 DOI: 10.1016/0304-4165(95)00092-p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Isoaspartyl protein carboxyl methyltransferase (PIMT) is implicated in the repair of age-damaged proteins by converting altered aspartic acid residues to normal L-aspartic acid residues. Northern blot and reverse transcription (RT)-PCR analyses have revealed that PIMT gene expression in the human lens is detected exclusively in epithelial cells, and that the mRNA levels in cataractous lens epithelia are significantly lower than those in normal age-matched lens tissue. These results suggest that PIMT may play a vital role in maintaining the clarity of the lens and preventing cataract formation.
Collapse
Affiliation(s)
- T Kodama
- Department of Ophthalmology Microbiology, Ehime University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Boivin D, Bilodeau D, Béliveau R. Immunochemical characterization of L-isoaspartyl-protein carboxyl methyltransferase from mammalian tissues. Biochem J 1995; 309 ( Pt 3):993-8. [PMID: 7639720 PMCID: PMC1135729 DOI: 10.1042/bj3090993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polyclonal antibodies were raised against a synthetic peptide corresponding to a sequence of 14 amino acid residues found near the C-terminus of L-isoaspartyl (D-aspartyl)-protein carboxyl methyltransferase (PCMT). The affinity-purified antibodies were used to detect the methyltransferase by Western-blot analysis in cytosolic and membrane fractions from several mammalian tissues. A protein of 27 kDa was detected in the cytosol of most tissues; co-incubation with the peptide used for immunization abolished the detection. The identity of the 27 kDa protein as a PCMT was demonstrated by renaturation of PCMT activity from SDS/polyacrylamide gels. The methyltransferase from brain cytosol was immunoprecipitated by the anti-PCMT antibodies and Protein A-agarose, indicating that the native protein was recognized by the antibodies. PCMT was also immunodetected in crude membranes from brain, testes and heart, and in purified membranes from kidney cortex. The expression of the methyltransferase was higher in bovine and human brain than in rat tissues. The bovine enzyme had a greater electrophoretic mobility, suggesting small structural differences. The membrane-bound methyltransferase could be extracted with detergents above their critical micellar concentration, but not with salt, alkaline or urea solutions suggesting that the binding of the enzyme to membranes is hydrophobic by nature. Anti-PCMT antibodies provide an interesting tool for studies regarding the expression of these enzymes in both soluble and membrane fractions of various cell types.
Collapse
Affiliation(s)
- D Boivin
- GRTM, Département de Chimie-biochimie, Université du Québec à Montréal, Canada
| | | | | |
Collapse
|
7
|
Visick JE, Clarke S. Repair, refold, recycle: how bacteria can deal with spontaneous and environmental damage to proteins. Mol Microbiol 1995; 16:835-45. [PMID: 7476182 DOI: 10.1111/j.1365-2958.1995.tb02311.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Proteins, like DNA, are subject to various forms of damage that can render them non-functional. Conformational changes and covalent chemical alterations occur spontaneously, and the rates of these reactions can be increased by environmental stresses such as heat, oxidative agents, or changes in pH or osmotic conditions. Although affected proteins can be replaced by de novo biosynthesis, cells--especially those subjected to stress or nutrient limitation--have developed mechanisms which can either restore damaged polypeptides to an active state or remove them. Such mechanisms can spare the biosynthetic capacity of the cell and ensure that the presence of non-functional molecules does not disrupt cell physiology. Three major mechanisms, which operate in bacteria as well as eukaryotic organisms, have been described. First, chaperones not only assist in proper de novo folding of proteins but also provide an important means of restoring activity to conformationally damaged proteins. Second, enzymatic 'repair' systems exist to directly reverse certain forms of protein damage, including proline isomerization, methionine oxidation and the formation of isoaspartyl residues. Finally, proteolysis provides a 'last-resort' means of dealing with abnormal proteins which cannot be repaired. Protein maintenance and repair may be of special importance for bacteria preparing to survive extended periods in stationary phase: both constitutive and induced mechanisms are utilized to permit survival despite greatly reduced protein synthesis.
Collapse
Affiliation(s)
- J E Visick
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569, USA
| | | |
Collapse
|
8
|
Hormonal and environmental responsiveness of a developmentally regulated protein repair L-isoaspartyl methyltransferase in wheat. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47293-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Ichikawa JK, Li C, Fu J, Clarke S. A gene at 59 minutes on the Escherichia coli chromosome encodes a lipoprotein with unusual amino acid repeat sequences. J Bacteriol 1994; 176:1630-8. [PMID: 8132457 PMCID: PMC205248 DOI: 10.1128/jb.176.6.1630-1638.1994] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We report a 1.432-kb DNA sequence at 59 min on the Escherichia coli chromosome that connects the published sequences of the pcm gene for the isoaspartyl protein methyltransferase and that of the katF or rpoS (katF/rpoS) gene for a sigma factor involved in stationary-phase gene expression. Analysis of the DNA sequence reveals an open reading frame potentially encoding a polypeptide of 379 amino acids. The polypeptide sequence includes a consensus bacterial lipidation sequence present at residues 23 to 26 (Leu-Ala-Gly-Cys), four octapeptide proline- and glutamine-rich repeats of consensus sequence QQPQIQPV, and four heptapeptide threonine- and serine-rich repeats of consensus sequence PTA(S,T)TTE. The deduced amino acid sequence, especially in the C-terminal region, is similar to that of the Haemophilus somnus LppB lipoprotein outer membrane antigen (40% overall sequence identity; 77% identity in last 95 residues). The LppB lipoprotein binds Congo red dye and has been proposed to be a virulence determinant in H. somnus. Utilizing a plasmid construct with the E. coli gene under the control of a phage T7 promoter, we demonstrate the lipidation of this gene product by the incorporation of [3H]palmitic acid into a 42-kDa polypeptide. We also show that treatment of E. coli cells with globomycin, an inhibitor of the lipoprotein signal peptidase, results in the accumulation of a 46-kDa precursor. We thus designate the protein NlpD (new lipoprotein D). E. coli cells overexpressing NlpD bind Congo red dye, suggesting a common function with the H. somnus LppB protein. Disruption of the chromosomal E. coli nlpD gene by insertional mutagenesis results in decreased stationary-phase survival after 7 days.
Collapse
Affiliation(s)
- J K Ichikawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | | | | | |
Collapse
|
10
|
Mizobuchi M, Murao K, Takeda R, Kakimoto Y. Tissue-specific expression of isoaspartyl protein carboxyl methyltransferase gene in rat brain and testis. J Neurochem 1994; 62:322-8. [PMID: 8263531 DOI: 10.1046/j.1471-4159.1994.62010322.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Isoaspartyl protein carboxyl methyltransferase (PIMT) is widely distributed in mammalian tissues. Using a polymerase chain reaction-generated 124-bp DNA fragment from brain cDNA as a probe, four different sizes (approximately 4.0, 2.5, 1.7, and 1.1 kb) of transcripts were detected with northern blot analysis. They were expressed predominantly in rat brain and testis. The major transcripts were 2.5 and 1.7 kb in the brain and 2.5 and 1.1 kb in the testis. One of the major transcripts specific to the testis (1.1 kb) was determined to study the structural difference of major transcripts in the two tissues. This testicular cDNA had neither the 5' (94 nucleotides) nor the 3' (594 nucleotides) end of previously reported brain cDNA corresponding to 1.7 kb. The mRNA levels and enzyme activities of different regions and developmental changes were examined in the brain. The mRNA levels and enzyme activities were concomitantly high in cerebral cortex and hippocampus. Although they increased rapidly approximately 30 days after birth in the testis and decreased in aged rats, they increased gradually after birth and remained high during the aging of the brain. Both structural and developmental studies show that the expression of the PIMT gene in brain and testis is regulated in a tissue-specific manner.
Collapse
Affiliation(s)
- M Mizobuchi
- Department of Neuropsychiatry, Ehime University School of Medicine, Japan
| | | | | | | |
Collapse
|
11
|
Gingras D, Boivin D, Beliveau R. Asymmetrical distribution of L-isoaspartyl protein carboxyl methyltransferases in the plasma membranes of rat kidney cortex. Biochem J 1994; 297 ( Pt 1):145-50. [PMID: 8280092 PMCID: PMC1137803 DOI: 10.1042/bj2970145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have studied the distribution of membrane-associated L-isoaspartyl protein carboxyl methyltransferases (PCMTs) in plasma membranes purified from rat kidney cortex. Addition of CHAPS to brush-border membranes (BBM) and basolateral membranes (BLM) was required to measure optimal membrane-dependent methylation of ovalbumin and TS-isoD-YSKY, substrates of L-isoaspartyl PCMTs. Extraction of both membrane-associated enzymes was achieved with detergents, but not with high-salt solutions, suggesting a strong membrane attachment. However, upon phase partitioning using Triton X-114, both enzymes were predominantly associated with the detergent-poor phase, suggesting a relatively hydrophilic nature. The enzymes showed similar catalytic properties such as substrate recognition and affinity towards the methyl donor, S-adenosyl-L-methionine. The activity of the BBM enzyme, however, was about 2-fold higher than that of the BLM enzyme. Identification of the endogenous substrates located in the two plasma membranes by acidic gel electrophoresis in the presence of a cationic detergent revealed significant differences in the methyl-accepting proteins of both membranes. The BBM-methylated proteins had sizes of 35, 50 and 54 kDa, whereas the major BLM-methylated substrates were of 97 and 100 kDa. The enzymes showed distinct behaviour on Mono Q anion-exchange chromatography. The BBM-associated PCMT did not bind to the column, being eluted in the flow-through, whereas the BLM enzyme bound to the column and was eluted at 0.15 M NaCl. Moreover, the two enzymes had different molecular masses under both denaturing and nondenaturing conditions, the BLM PCMT migrating at an apparent molecular mass of 29 kDa, compared with 27 kDa for the BBM enzyme. Taken together, these results show the presence of two distinct L-isoaspartyl PCMTs in the plasma membranes of the kidney cortex.
Collapse
Affiliation(s)
- D Gingras
- Laboratoire de Membranologie, Université du Québec à Montréal, Canada
| | | | | |
Collapse
|
12
|
Xie H, Clarke S. Protein phosphatase 2A is reversibly modified by methyl esterification at its C-terminal leucine residue in bovine brain. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42124-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Mudgett MB, Clarke S. Characterization of plant L-isoaspartyl methyltransferases that may be involved in seed survival: purification, cloning, and sequence analysis of the wheat germ enzyme. Biochemistry 1993; 32:11100-11. [PMID: 8198620 DOI: 10.1021/bi00092a020] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Protein carboxyl methyltransferases (EC 2.1.1.77) that catalyze the transfer of a methyl group from S-adenosylmethionine to L-isoaspartyl and D-aspartyl residues in a variety of peptides and proteins are widely, but not universally, distributed in nature. These enzymes can participate in the repair of damaged proteins by facilitating the conversion of abnormal L-isoaspartyl residues to normal L-aspartyl residues. In this work, we have identified L-isoaspartyl methyltransferase activity in a variety of higher plant species and a green alga. Interestingly, the highest levels of methyltransferase were located in seeds, where the problem of spontaneous protein degradation may become particularly severe upon aging. The wheat germ methyltransferase was purified as a monomeric 28,000-Da species by DEAE-cellulose chromatography, reverse ammonium sulfate gradient solubilization, and gel filtration chromatography. The purified enzyme recognized a variety of L-isoaspartyl-containing peptides, but did not recognize two D-aspartyl-containing peptides that are substrates for the mammalian enzyme. The partial amino acid sequence was utilized to design oligonucleotides to isolate a full-length cDNA clone, pMBM1. Its nucleotide sequence demonstrated an open reading frame encoding a polypeptide of 230 amino acid residues with a calculated molecular weight of 24,710. This sequence shares 31% identity with the L-isoaspartyl methyltransferase from Escherichia coli and 50% identity with the L-isoaspartyl/D-aspartyl methyltransferase from human erythrocytes. Such conservation in sequence is consistent with a fundamental role of this enzyme in the metabolism of spontaneously damaged polypeptides.
Collapse
Affiliation(s)
- M B Mudgett
- Department of Chemistry and Biochemistry, University of California-Los Angeles 90024
| | | |
Collapse
|
14
|
Xie H, Clarke S. Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38660-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Scheer A, Gierschik P. Farnesylcysteine analogues inhibit chemotactic peptide receptor-mediated G-protein activation in human HL-60 granulocyte membranes. FEBS Lett 1993; 319:110-4. [PMID: 8454040 DOI: 10.1016/0014-5793(93)80047-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Analogues of S-prenylated cysteine like N-acetyl-S-trans,trans-farnesyl-L-cysteine (AFC) have previously been shown to inhibit the carboxyl methylation of proteins carrying a C-terminal S-prenylated cysteine residue and to block the endotoxin-activated serum-elicited chemotactic response of mouse macrophages. Here, we show that AFC inhibits both basal and formyl peptide receptor-stimulated binding of guanosine 5'-O-(3-thiotriphosphate) (GTP[S]) to and hydrolysis of GTP by membranes of myeloid differentiated HL-60 granulocytes. Receptor-stimulated GTP[S] binding and GTP hydrolysis are more sensitive to AFC inhibition than basal G-protein functions. Inhibition of formyl peptide receptor-mediated G-protein activation is also observed for S-trans,trans-farnesyl-3-thiopropionic acid, but not for N-acetyl-S-trans-geranyl-L-cysteine, N-acetyl-L-cysteine, or the methyl ester of AFC, suggesting that the farnesyl moiety and the carboxyl group, but not the peptide bond of AFC are required for inhibition. The observations that exogeneous S-adenosyl-L-methionine is apparently not required for and S-adenosyl-L-homocysteine does not attenuate the inhibitory action of AFC raise the distinct possibility that AFC inhibits receptor-mediated G-protein interaction by a mechanism other than inhibition of protein carboxyl methylation.
Collapse
Affiliation(s)
- A Scheer
- Molecular Pharmacology Division, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
16
|
MacLaren DC, O'Connor CM, Xia YR, Mehrabian M, Klisak I, Sparkes RS, Clarke S, Lusis AJ. The L-isoaspartyl/D-aspartyl protein methyltransferase gene (PCMT1) maps to human chromosome 6q22.3-6q24 and the syntenic region of mouse chromosome 10. Genomics 1992; 14:852-6. [PMID: 1478665 DOI: 10.1016/s0888-7543(05)80104-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have mapped the genes for the human and mouse L-isoaspartyl/D-aspartyl protein carboxyl methyltransferase (EC 2.1.1.77) using cDNA probes. We determined that the human gene is present in chromosome 6 by Southern blot analysis of DNA from a panel of mouse-human somatic cell hybrids. In situ hybridization studies allowed us to confirm this identification and further localize the human gene (PCMT1) to the 6q22.3-6q24 region. By analyzing the presence of an EcoRI polymorphism in DNA from backcrosses of C57BL/6J and Mus spretus strains of mice, we localized the mouse gene (Pcmt-1) to chromosome 10, at a position 8.2 +/- 3.5 cM proximal to the Myb locus. This region of the mouse chromosome is homologous to the human 6q24 region.
Collapse
Affiliation(s)
- D C MacLaren
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Li C, Clarke S. A protein methyltransferase specific for altered aspartyl residues is important in Escherichia coli stationary-phase survival and heat-shock resistance. Proc Natl Acad Sci U S A 1992; 89:9885-9. [PMID: 1409717 PMCID: PMC50238 DOI: 10.1073/pnas.89.20.9885] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Proteins are subject to spontaneous degradation reactions including the deamidation, isomerization, and racemization of asparaginyl and aspartyl residues. A major product of these reactions, the L-isoaspartyl residue, is recognized with high affinity by the protein-L-isoaspartate(D-aspartate) O-methyltransferase (EC 2.1.1.77). This enzyme catalyzes the methyl esterification of the L-isoaspartyl residue in a reaction that can initiate its conversion to the normal aspartyl configuration. To directly study the physiological role of this methyltransferase, especially with respect to the potential repair of isomerized aspartyl residues in aging proteins, we examined the ability of the bacterium Escherichia coli to survive in the absence of its activity. We utilized gene disruption techniques to replace the chromosomal copy of the pcm gene that encodes the methyltransferase with a kanamycin-resistance cassette to produce mutants that have no detectable L-isoaspartyl methyltransferase activity. Although no changes in exponential-phase growth were observed, pcm- mutants did not survive well upon extended culture into stationary phase or upon heat challenge at 55 degrees C. These results provide genetic evidence for a role of the L-isoaspartyl methyltransferase in the metabolism of altered proteins that can accumulate in aging cells and limit their viability.
Collapse
Affiliation(s)
- C Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | |
Collapse
|
18
|
MacLaren DC, Kagan RM, Clarke S. Alternative splicing of the human isoaspartyl protein carboxyl methyltransferase RNA leads to the generation of a C-terminal -RDEL sequence in isozyme II. Biochem Biophys Res Commun 1992; 185:277-83. [PMID: 1339271 DOI: 10.1016/s0006-291x(05)80987-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have isolated two cDNA clones that correspond to the mRNAs for two isozymes of the human L-isoaspartyl/D-aspartyl protein carboxyl methyltransferase (EC 2.1.1.77). The DNA sequence of one of these encodes the amino acid sequence of the C-terminal half of the human erythrocyte isozyme I. The other cDNA clone includes the complete coding region of the more acidic isozyme II. With the exception of potential polymorphic sites at amino acid residues 119 and 205, the deduced amino acid sequences differ only at the C-terminus, where the -RWK sequence of isozyme I is replaced by a -RDEL sequence in isozyme II. The latter sequence is identical to a mammalian endoplasmic reticulum retention signal. With the previous evidence for only a single gene for the L-isoaspartyl/D-aspartyl methyltransferase in humans, and with evidence for consensus sites for alternative splicing in corresponding mouse genomic clones, we suggest that alternative splicing reactions can generate the major isozymes previously identified in human erythrocytes. The presence of alternative splicing leads us to predict the existence of a third isozyme with a -R C-terminus. The calculated isoelectric point of this third form is similar to that of a previously detected but uncharacterized minor methyltransferase activity.
Collapse
Affiliation(s)
- D C MacLaren
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | | | |
Collapse
|
19
|
Recognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42652-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Abstract
A protein carboxyl methyltransferase (EC 2.1.1.77) that recognizes age-damaged proteins for potential repair or degradation reactions has been found in all vertebrate tissues and cells examined to date. This enzyme catalyzes the transfer of methyl groups from S-adenosylmethionine to the carboxyl groups of D-aspartyl or L-isoaspartyl residues that are formed spontaneously from normal L-aspartyl and L-asparaginyl residues. A similar methyltransferase has been found in two bacterial species, Escherichia coli and Salmonella typhimurium, suggesting that this enzyme performs an essential function in all cells. In this study, we show that this enzyme is present in cytosolic extracts of six additional members of the alpha and gamma subdivisions of the purple bacteria: Pseudomonas aeruginosa (gamma), Rhodobacter sphaeroides (alpha), and the gamma enteric species Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris, and Serratia marcescens. DNA probes from the E. coli methyltransferase gene hybridized only to the chromosomal DNA of the enteric species. Interestingly, no activity was found in the plant pathogen Erwinia chrysanthemi, a member of the enteric family, nor in Rhizobium meliloti or Rhodopseudomonas palustris, two members of the alpha subdivision. Additionally, we could not detect activity in the four gram-positive species Bacillus subtilis, B. stearothermophilus, Lactobacillus casei, and Streptomyces griseus. The absence of enzyme activity was not due to the presence of inhibitors in the extracts. These results suggest that many cells may not have the enzymatic machinery to recognize abnormal aspartyl residues by methylation reactions. Since the nonenzymatic degradation reactions that generate these residues occur in all cells, other pathways may be present in nature to ensure that these types of altered proteins do not accumulate and interfere with normal cellular physiology.
Collapse
Affiliation(s)
- C Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | |
Collapse
|
21
|
Sellinger OZ, Wolfson MF. Carboxylmethylation affects the proteolysis of myelin basic protein by Staphylococcus aureus V8 proteinase. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1080:110-8. [PMID: 1718433 DOI: 10.1016/0167-4838(91)90136-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bovine myelin basic protein (MBP), charge isoform 1 (C1) was carboxylmethylated by the enzyme D-aspartyl/L-isoaspartyl protein methyltransferase (EC. 2.1.1.77) and the carboxylmethylated protein was subjected to proteolysis by sequencing grade staphylococcal V8 proteinase at pH 4.0 to identify its carboxylmethylated modified aspartate and/or asparagine residues which are recognized by this methyltransferase. Native MBP, C1 was treated similarly and the proteolysis products were compared, using electrophoretic, chromatographic and amino acid sequencing techniques. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed differences in the kinetics of proteolysis between the native and the carboxylmethylated MBP, C1 which were confirmed using HPLC. Partial sequencing of the native and carboxylmethylated fragments eluting at about 29 min (P29) revealed cleavage of native MBP, C1 at Gly-127-Gly-128 and of the carboxylmethylated MBP, C1 at Phe-124-Gly-125. Additional evidence including tryptic subdigestion of carboxylmethylated P29 disclosed the following partial sequence for this peptide: Gly-Tyr-Gly-Gly-Arg-Ala-Ser-Asp-Tyr-Lys-Ser-Ala-His-Lys-Gly-Leu-Lys- Gly-His-Asp-Ala-Gln-Gly-Thr-Leu-Ser-Lys-Ileu-Phe-Lys-. This sequence matches MBP residues 125-154. As a result of these findings, Asp-132 and Asp-144 were identified as two of the modified (isomerized or racemized) methyl-accepting L-aspartates in MBP. The results of the proteolysis experiments wherein the sequencing grade staphylococcal V8 proteinase was used at the rarely tested pH of 4.0, rather than at its commonly tested pH of 7.8, also disclose that the proteinase totally failed to recognize and hence cleave the two Glu-X bonds (Glu-82-Asn-83 and Glu-118-Gly-119) of MBP, preferring to cleave the protein at a number of hitherto unreported sites.
Collapse
Affiliation(s)
- O Z Sellinger
- Laboratory of Neurochemistry, University of Michigan Medical Center, Ann Arbor 48109-0720
| | | |
Collapse
|
22
|
Fu J, Ding L, Clarke S. Purification, gene cloning, and sequence analysis of an L-isoaspartyl protein carboxyl methyltransferase from Escherichia coli. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98723-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|